
Astro 448: Problem Set 5
Due Mar. 7

This is the final problem set and is therefore a bit longer and more involved. The intent is for you to become
familiar with the calculation of the power spectrum through a worked example. There is lots of formal baggage here
but don’t be intimidated. The actual calculation I’m asking you to do is separated off by the horizontal lines.

1. Power Spectra, Sources and the Addition of Angular Momenta:
Consider the general description of the temperature field Θ as a function of both position x and direction n at

x. It can in general be expanded in a complete set of modes denoted Gm
j as

Θ(x,n) =
∫

d3k

(2π)3
∑
`m

Θ(m)
` (k)Gm

` (x,k,n) , (1)

where

Gm
` = (−i)`

√
4π

2` + 1
Y m

` (n̂) exp(ik · x) . (2)

You know this is true since plane waves are a complete orthonormal set of modes for a spatial field and spherical
harmonics are the same for an angular field.

The angular power spectrum of the field is defined as

〈Θ(x,n1)Θ(x,n2)〉 ≡
∑
`1m1

∑
`2m2

Y m1
`1

(n1)∗Y m2
`2

(n2)C`1δ`1`2δm1m2

≡
∑

`

2` + 1
4π

C`P`(n1 · n2) (3)

under the assumption of translational and rotational invariance of the two point function. C` is the famous angular
power spectrum.

• Show that

C` = 4π

∫
d3k

(2π)3
∑
m

〈
Θ(m)∗

` Θ(m)
`

〉
(2` + 1)2

. (4)

The extra sum over m anticipates the following calculation where we temporarily break rotational invariance
by considering a single k with a particular direction that picks out special values of m. Invariance is restored
by the integral over k directions above. Since we are guaranteed m-invariance of the power spectrum at the
end we instead calculate the m-averaged contribution for each mode.

Let us suppose that the temperature field Θ is generated by the line-of-sight integral of another positionally and
directionally dependent field S evaluated at a x = Dn̂

Θ(x,n) =
∫

dD S(x,n) , (5)

=
∫

dD

∫
d3k

(2π)3
∑
jm

S
(m)
j (D, k)Gm

j .

Note that the radial distance D = (η0 − η).
Using the expansion of a plane wave in spherical coordinates (D,n)

exp(ikD · n) =
∑

`

(−i)`
√

4π(2` + 1)j`(kD)Y 0
` (n) , (6)

where we have now chosen the coordinate system so that ê3 ‖ k, we can rewrite the normal mode by adding the
local and plane wave angular dependences using the Clebsch-Gordan relation

Y m1
`1

Y m2
`2

=

√
(2`1 + 1)(2`2 + 1)

4π

∑
`,m

〈`1, `2; m1, m2|`1, `2; `, m〉 〈`1, `2; 0, 0|`1, `2; `, 0〉
√

4π

2` + 1
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` . (7)



The general form of the result is

Gm
j =

∑
`

(−i)`
√

4π(2` + 1)α(m)
j` Y m

` . (8)

Here the α
(m)
j` are linear combinations of spherical Bessel functions with weights given by Clebsch-Gordan coefficients.

• Anticipating its use for the Doppler effect, let’s assume that the source is some vector field so that j = 1. Show
that

α
(0)
1` (x) = j′`(x) , (9)

where primes are derivatives with respect to the argument and

α
(±1)
1` (x) =

√
`(` + 1)

2
j`(x)

x
. (10)

Hint: use Mathematica or a good quantum book to evaluate the Clebsch-Gordan coefficient; j′` and j`/x can
be written as linear combinations of j`±1.

Comparing expressions (1) and (5), we see that

Θ(m)
` = (2` + 1)

∫
dD

∑
j

S
(m)
j α

(m)
j` . (11)

This is the integral method for CMB calculations: once the source is known the observable CMB angular moments
follows from a simple geometric projection or radial integral over the source.

2. Limber Approximation

If the source field S
(m)
j (D) varies with D only on scales much larger than the wavelength 2π/k then the source

can be approximated at the peak of the spherical bessel function D = `/k and taken out of the radial integral in
(11) . This is the all-sky, directional source, generalization of the well-known Limber approximation.

• Using the relation ∫ ∞

0

dxj`(x) =
√

π

2
Γ[(` + 1)/2]
Γ[(` + 2)/2]

, (12)

evaluate Θ(m)
` (k) for m = −1, 0, 1 and a vector source j = 1. Noting that j`(0) = 0 and j`(∞) = 0, argue that

m = 0 vanishes.

• Transforming the variable of integration back to radial distance using D = `/k, show that

C` =
π2

`3

∫
dDD

∑
m=±1

∆2 (m)
S , (13)

where ∆2
S is the logarithmic power spectrum of the 3-D source field (with j = 1) and we have assumed ` � 1.

Notice that m = 0 does not contribute.

A relation like this which expresses a 2-D statistic on the sky as the radial integral of a 3-D statistic of a source is
usually called a Limber approximation in cosmology. A useful rule of thumb is that the logarithmic power spectrum
of the 2-D observable `2C`/2π ∼ H−2

0 ∆2
S/` since the sources are generally at distances of order the Hubble length

H−1
0 . Note the factor of ` in the denominator implies that a scale-invariant source will produce a spectrum that is

not scale-invariant – in particular falling with `. Thinking about why that is so and what happened to m = 0 may
help you with understanding the implications for the Doppler effect below.

3. Doppler and Vishniac Effects
Now let’s try an explicit example. The temperature field produced by the Doppler effect is given by

Θ(x,n) =
∫

dD g(D)n · v(x) , (14)



where the g(D) = τ̇ e−τ is the visibility function or the probability of last scattering within dD of D.
Recall that the Fourier decomposition of a vector field

v(x) =
∫

d3k

(2π)3

1∑
m=−1

v(m)Q(m)(k,x) , (15)

where the normal modes consist of one potential (scalar m = 0) and 2 vorticity (vector m = ±1) components

Q(0) = −ie3 exp(ik · x)

Q(±1) = ∓i
1√
2
(e1 ± ie2) exp(ik · x) , (16)

(note my Y m
l conventions differ from Jackson by (−1)m).

• Show that
n ·Q(m) = G

(m)
1 . (17)

Now we’ve got the source in exactly the right form to use the Limber approximation. The contribution of the
Doppler effect to the power spectrum follows immediately:

C` =
π2

`3

∫
dDD g2(D)

∑
m=±1

∆2 (m)
v , (18)

• In linear theory, the velocity field is a potential flow and hence the m = ±1 vorticity components vanish
identically. To leading order in the Limber approximation and perturbation theory, there is no Doppler effect.
Geometrically why is this so? How does vorticity escape this effect? Why are these arguments not true for the
Doppler contributions at recombination?

Naively, the Doppler effect during the reionized epoch would be very large: optical depths are at least a few
percent and velocity fields are of order 10−3 yielding Θ > 10−5, potentially masking the primary anisotropies from
recombination. Fortunately, this is not so when you consider the fact that the Doppler effect is directionally dependent
and does not follow the rule of thumb given above.

At higher order in perturbation theory, the Doppler source can gain an effective vorticity (m = ±1 component)
even when the underlying velocity field is still potential. What happens is that the spatial variations in the visibility
function effectively randomizes the direction of k so that it is no longer related to the direction of the velocity field.
The power in each m-component the becomes a third of the total.

If the variations in the visibility function are due to the linear density fluctuations of the baryons g(D) →
g(D)(1 + δb), this second order Doppler effect is called the Vishniac effect.

• Show that the power spectrum of the Doppler effect in the limit of small scales where the baryon density
fluctuations and velocity field are independent becomes

C` =
2π2

3`3

∫
dDD g2(D)v2

rms∆
2
δb

, (19)

where v2
rms =

∫
d ln k∆2 (0)

v which you should think of as just giving the amplitude of a coherent bulk flow on
these scales.

Because it is second order, the Vishniac effect is small - of order µK in the temperature anisotropies. It is
potentially detectable on scales below the damping tail where primary anisotropies drop out. Note that any spatial
variation in the visibility function produces an analogous effect. A variant of this effect that has received much recent
attention is the potential inhomogeneity of the ionization fraction at the onset of reionization.

You are now ready to calculate CMB anisotropies in the real world!


