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Abstract. We study the cosmological propagation of gravitational waves (GWs) beyond gen-
eral relativity (GR) across homogeneous and isotropic backgrounds. We consider scenarios
in which GWs interact with an additional tensor field and use a parametrized phenomeno-
logical approach that generically describes their coupled equations of motion. We analyze
four distinct classes of derivative and non-derivative interactions: mass, friction, velocity, and
chiral. We apply the WKB formalism to account for the cosmological evolution and obtain
analytical solutions to these equations. We corroborate these results by analyzing numeri-
cally the propagation of a toy GW signal. We then proceed to use the analytical results to
study the modified propagation of realistic GWs from merging compact binaries, assuming
that the GW signal emitted is the same as in GR. We generically find that tensor interactions
lead to copies of the originally emitted GW signal, each one with its own possibly modified
dispersion relation. These copies can travel coherently and interfere with each other leading
to a scrambled GW signal, or propagate decoherently and lead to echoes arriving at different
times at the observer that could be misidentified as independent GW events. Depending
on the type of tensor interaction, the detected GW signal may exhibit amplitude and phase
distortions with respect to a GW waveform in GR, as well as birefringence effects. We discuss
observational probes of these tensor interactions with both individual GW events, as well as
population studies for both ground- and space-based detectors.
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1 Introduction

The detection of gravitational waves (GWs) by the LIGO–Virgo collaboration [1, 2] has
launched the development of novel tests of general relativity (GR), and the presence of
exotic components in the Universe. Generally, deviations from GR may appear both during
emission due to high-energy new physics (see e.g. [3–6]), and during propagation due to low-
energy new physics, but in this paper we focus on the latter and assume that the emitted
signal is the same as that expected in GR. Previous analyses on the propagation of GWs
on a homogeneous and isotropic universe have shown that the presence of additional fields
interacting non-trivially with gravity can lead to deviations from GR in the GW propagation
speed, luminosity distance and phase evolution of the GW signal (see e.g. reviews in [7, 8]),
and some of these effects have already been constrained by the LIGO/Virgo collaboration
with current observations [9]. However, other effects of non-trivial cosmological scenarios
still remain to be better understood and modeled so that they can be tested in the future,
such as those appearing when GWs interact with another tensor-like cosmological field.

In this paper, we study the cosmological propagation of GWs in a homogeneous and
isotropic universe, in the case where gravity is coupled to another cosmological field beyond
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the concordance ΛCDM model. Since GWs do not couple to vector or scalar fields at linear
order in perturbation theory, we assume the additional field to be described by another rank-
2 tensor. Note that in the case of inhomogeneous backgrounds, vector and scalar fields can
couple to GWs, such as in the case of lensing beyond GR [10], but these scenarios are not
considered here. In particular, we follow [11] and adopt a model-independent approach con-
sidering parametrized deviations from GR in the equations of motion (EoM) for linear tensor
perturbations, which allow us to describe a wide variety of possible interactions between GWs
and the additional tensor field. We focus our attention on four particular interactions: ve-
locity (which appear as second-order spatial derivatives of the fields), friction (which appear
as first-order time derivative of the fields), mass (non-derivative contributions of the fields),
and chiral (first-order spatial derivatives of the fields that break parity symmetry). Specific
choices for the free parameters of this framework will correspond to cosmological scenarios
coming from different modified gravity theories. Examples of theories described by this ap-
proach include massive bigravity [12, 13], Yang-Mills theories [14–16], Abelian multi-gauge
fields in a gaugid configuration [17] and multi-Proca theories [18–21] (see also [11] for a survey
of the theory landscape). Note that these free parameters are not necessarily constants, but
instead are allowed to evolve on cosmological timescales with the expansion of the universe.
As a consequence, we will have two coupled EoM (for GWs and the extra tensor field) with
time-dependent parameters, which typically cannot be solved analytically. Nevertheless, one
can obtain simple analytical solutions using the Wentzel–Kramers–Brillouin (WKB) approx-
imation, in cases where the period of the GWs is much smaller than the Hubble timescale
(which is valid for current and next-generation planned GWs detectors).

The approach used in this paper was originally applied in [11] to understand the de-
viations from GR caused by the additional tensor field, and here we refine the formalism
and further study its phenomenological implications. More specifically, we extend [11] by
describing in detail all the deviations from GR expected in the chirping GW signal of a
coalescence of binary compact objects at different stages during its propagation to the ob-
server. We also extend and connect to previous investigations that have been performed for
the specific models of massive bigravity [22, 23] and gauge field dark energy [24, 25]. As has
been discussed in these previous works, due to the interactions between the metric and the
additional tensor field, GWs are composed by a superposition of wavepackets—the propa-
gating eigenstates—that can individually exhibit deviations from GR in their amplitude and
dispersion relation. Because of these modified dispersion relations (MDRs), each eigenstate
may propagate at a different physical speed. We clarify that it is the group velocity that
determines the arrival time of wavepacket components, as opposed to alternative quanti-
ties such as the particle velocity suggested in [26, 27]. These eigenstates that compose the
net GW signal are emitted at the same time but, depending on the propagation time, they
may eventually arrive at different times if they have a different propagation speed, leading
to the detection of separately-identifiable GW signals, or echoes. When this happens it is
said that the eigenstates have decohered. Before decoherence, on top of the modifications
of individual eigenstates, the total detected GW signal may differ from that of GR because
these eigenstates may interfere with each other. This interference may lead to a time or
frequency-dependent oscillation of the amplitude, as discussed in [8, 11, 22], but we crucially
find that phase distortions of the GWs will also be present in theories like massive bigravity.

We first corroborate our analytical findings by numerically solving the coupled tensor
EoM for a Gaussian wavepacket as a toy localized GW signal and, for simplicity, ignoring the
cosmological expansion. We analyze separately the distortions of the Gaussian signal in case
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where the metric has mass, friction, velocity and chiral interactions with the extra tensor
field. In particular, in each case we discuss how the amplitude, shape and polarization content
of the Gaussian changes during propagation, and how/when GW echoes will be detected. In
the case of chiral interactions, we show in detail how the detected signal can change its degree
of circular polarization (or amplitude birefringence) and also suffer a polarization rotation
(called here phase birefringence, but also known as velocity birefringence [28]) with respect
to the emitted signal. These toy Gaussian examples help build intuition on the various
propagation regimes of the GWs, and the expected deviations from GR.

We then apply the WKB formalism and our analytical results to the propagation of
realistic chirping GW signals from a binary black hole coalescence observed by LIGO-type
detectors (although generalizations to next-generation GW detectors are discussed as well).
In addition to the modifications present for the Gaussian wavepacket, these realistic examples
allow us to identify how the phase of the GW signal is distorted during propagation. Whereas
some of the examples we show exhibit both distortions in the phase and amplitude of the
GW signal, we also discuss examples in which individual detected GW events may still
have a GR-like waveform but with different amplitude, phase or polarization (a summary
of the possible waveform modifications is given in Table 2 and Fig. 12). In these cases, we
discuss how a bias in the reconstructed source parameters such as its luminosity distance,
coalescence phase, inclination and orientation would happen if GR was assumed during the
parameter estimation analysis of the detected signal. Nevertheless, a population analysis
may help distinguish these GR-like signals from true GR signals, but detailed forecasts in
model constraints are left for future work.

This paper is organized as follows. In Section 2 we introduce the general parametrized
EoM for GWs coupled to another tensor field, and describe the analytical solutions that are
obtained in the case of constant parameters as well as the case of time-dependent parameters
with the use of the WKB formalism. The GW solution is a superposition of propagating
eigenstates, each one having its own MDR. General properties of these MDRs are discussed
in App. A. In subsec. 2.2 we define three relevant timescales—mixing, decoherence and
broadening—describing different physical regimes in the propagation of the net GW signal
and the behavior of the individual eigenstates. Here we highlight the role of the group ve-
locity in the propagation of the GWs. In Section 3, we consider a toy example of an emitted
Gaussian plane wavepacket of GWs, and analyze its propagation numerically in the case of
time-independent free parameters in the EoM. We confirm our analytical findings and illus-
trate how this toy signal gets distorted in the presence of different types of mixing: velocity
(subsec. 3.2), mass (subsec. 3.3), friction (subsec. 3.4), and chiral (subsec. 3.5). Readers that
are familiar with the physics of tensor interactions can skip Sec. 3, and go directly to Section
4 where we use our analytical results from the WKB formalism to analyze the propagation
of realistic waveforms from binary black hole mergers, assuming time-dependent parameters
in the EoM. Since the WKB formalism gives the GW solution in spatial-momentum space,
we discuss how to obtain the GW solution in frequency space instead as this latter gives
the appropriate description of a temporally-varying GW signal detected at a given location
(additional details on connecting momentum and frequency space are also given in App. B).
We start by summarizing the main observational effects that can be found in subsec. 4.1,
and exemplifying them for velocity (subsec. 4.2), mass (subsec. 4.3), friction (subsec. 4.4)
and chiral (subsec. 4.5) interactions. For each case, we discuss the three relevant timescales
of mixing, decoherence and broadening and compare them to each other. Here we show how
the total duration of the GW event that would be detected could shorten or lengthen due to
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phase distortions. These changes in duration can also cause decoherence to be never achieved
even if the eigenstates propagate at different speeds if these individual signals get consider-
ably stretched in time (so as to never separate from each other and lead to the individual
echoes). In addition, we show how GWs suffer from phase and amplitude distortions, which
for mass interactions appear always together. In the case of chiral interactions, we also show
how the polarization of the signal changes during propagation (characterized by two param-
eters described in App. C) and exhibits amplitude and phase birefringence. We study when
individual signals may still look like GR waveforms but with different source parameters,
focusing mainly on how the GW luminosity distance can be biased if GR is assumed. We
furthermore discuss how populations of GW events may help distinguish these scenarios from
events coming truly from GR. Finally, in Section 5 we summarize our findings and discuss
their implications and future prospects.

Throughout this paper we use natural units with c = 1 and ~ = 1, unless explicitly
mentioned otherwise.

2 Cosmological GW propagation beyond general relativity

Let us consider a perfectly homogeneous and isotropic universe, where the space-time is
described by a metric gµν = ḡµν + hµν , with a background Friedmann-Robertson-Walker
(FRW) metric ḡµν whose line element in conformal time η is given by:

ds2 = a2(η)[−dη2 + d~x2] (2.1)

and linear perturbations hµν . Around homogeneous and isotropic backgrounds, linear per-
turbations can be decomposed into scalar, vector, and tensor components, according to how
they transform under 3-dimensional spatial rotations. Each one of these types of perturba-
tions will evolve independently and can be studied separately. GWs will be described by the
tensor modes, which carry two degrees of freedom in GR corresponding to the two possible
polarizations of the massless spin-2 graviton. These tensor modes will be described by the
transverse traceless spatial components of hµν : ∂ihij = 0 and ḡijhij = 0 for the background
FRW metric ḡµν . The two polarizations are usually labelled + and × for the linear states,
or in terms of right and left-handed circular states L and R. In GR, these two polarizations
evolve in the same way and hence satisfy the same EoM. In this case, we will use h to describe
the amplitude of GWs of either polarizations.

Even over homogeneous and isotropic backgrounds, GWs could mix with tensor per-
turbations of additional fields, which could arise in modified gravity theories and non-trivial
realizations of the cosmological principle (see introduction of [11]). In general, the presence
of additional cosmological fields would both change the background and introduce couplings
with h. In the following we focus on the latter and analyze how the mixing can affect the
wavepacket propagation in the presence of one additional field, generically described by s.
We will begin with a phenomenological approach solving the evolution of GWs in momentum
space

h(η, k) =
1√
2π

∫
dxe−ikxh̃(η, x) , (2.2)

and similarly for s. Here x is the spatial coordinate along the direction of the wavevector.
Because in position space the waves h̃(η, x) and s̃(η, x) are real, we see that h(η,−k) =
h∗(η, k) and s(η,−k) = s∗(η, k). Therefore, without loss of generality, we assume for the
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rest of the paper that k > 0. We analyze a generic propagation equation for second-order
derivative models that can be parametrized as:[

Î
d2

dη2
+ ν̂(η)

d

dη
+ Ĉ(η)k2 + Π̂(η)k + M̂(η)

](
h
s

)
= 0 , (2.3)

where ν̂, Ĉ, Π̂ and M̂ are the real-valued dimensionful friction, velocity, chiral and mass mix-
ing matrices, respectively, which may depend on time but not on k. Here, Î is the identity
matrix, and thus we have assumed that there are no second-order temporal derivative inter-
actions. In addition, we have also ignored the possible presence of terms of the form kd/dη
(and other parity-violating terms [28]) that can appear in theories like Chern-Simons gravity
[29, 30]. Similarly, we could have also considered higher spatial derivative terms, as they do
not automatically bring instabilities into the system, unlike higher temporal derivative terms
that bring Ostrogradski instabilities [31, 32]. Nevertheless, the WKB approach used in this
paper to solve these coupled EoM can be straightforwardly generalized to include these other
types of interactions, and to even include more than 2 fields interacting with each other.

We assume that these EoM come from an action principle, and therefore by renormal-
izing appropriately the fields h and s, one can always bring the matrices Ĉ, Π̂ and M̂ into
symmetric forms, whereas ν̂ can always be brought into a matrix such that ν̂12 = −ν̂21. In
this paper, we will assume this is the case. Note that in this equation we are implicitly
assuming that s also carries two tensor polarizations that couple to h, but as long as each
polarization of h propagates equally there is no need for a special subscript for polarization.
When we consider the possibility of polarization-dependent interactions, we will introduce
a subscript for polarization. In this case, each one of the polarizations will still satisfy an
equation of the form Eq. (2.3) but the coefficients in the equation may differ.

In the case in which the interactions between the tensor fields are switched-off, the
formalism discussed in this paper allows us to generically describe the modified propagation
of GWs over cosmological backgrounds:

h′′ + ν(η)h′ + ω2(η, k)h = 0 , (2.4)

where primes denote derivatives with respect to conformal time and we have defined the
dispersion relation

ω2 = c2
h(η)k2 + π(η)k +m2

g(η) , (2.5)

where all the parameters are allowed to be time dependent. The modified propagation of
GWs in light of multi-messenger GW astronomy has been extensively studied in the literature
[33–42] (see also [7, 43] for reviews). Having an electromagnetic (EM) counterpart allows one
to directly constrain the propagation speed ch and the additional friction term ν. However,
the GW signal alone can also be used to constrain modified gravity, due to the effects that
the terms π and mg in the MDR generate in the GW phase evolution. This has also been
studied in the past [9, 26, 27, 44, 45] for single fields, but in this paper we clarify how to
properly account for the induced waveform distortions.

2.1 GW solutions with mixing

In order to illustrate the general behavior of the GWs solutions due to the mixing with s,
we start by discussing the case when all the matrices in Eq. (2.3) are constants in time, and
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obtain the solution for plane waves. In the simple case where there is no friction, ν̂ = 0, then
the EoM can be simply written as: [

Î
d2

dη2
+ Ŵ

]
~Φ = 0, (2.6)

where we have defined Ŵ ≡ Ĉk2 + Π̂k + M̂ and ~Φ ≡ (h, s). Since Î and Ŵ commute, we
can diagonalize them simultaneously by changing basis, and hence completely decouple the
EoM. This means that h and s will generically be described by linear combinations of two
modes H1,2 that evolve independently:(

H1

H2

)
= Û−1

(
h
s

)
(2.7)

with Û being the unitary basis transformation matrix. The propagation eigenstates HA

(where A ∈ {1, 2}) can be solved in terms of plane waves H ∝ eiωAη, with the eigenfrequencies
determined by

det
[
Ŵ − Îω2

A

]
= 0 . (2.8)

This equation will always have four constant solutions of the form ±ω1 and ±ω2 arising from

ω2
A =

1

2

(
Tr
[
Ŵ
]
±
√

4Ŵ12Ŵ21 +
(
Ŵ11 − Ŵ22

)2
)

if Ŵ11 > Ŵ22, (2.9)

where we choose the convention that ω2
1 = Ŵ11 in the no-mixing limit (i.e. when Ŵ12 =

Ŵ21 = 0), so that ω1 always describes the propagation of the field h in this limit. Therefore,
since we define the square root as

√
x2 = |x| for a real number x, ω2

1 is defined as (2.9) with a
plus sign in front of the square root if Ŵ11 > Ŵ22, otherwise ω2

1 is defined with a minus sign.
In addition, we will use the overall sign convention that ωA > 0. Therefore, the independent
eigenmodes are given by:

HA = H0+,Ae
iωA∆η +H0−,Ae

−iωA∆η , (2.10)

where H0±,A are constants determined by the initial conditions at η0 and ∆η = η−η0. Notice
that since k > 0 and ωA > 0 by definition, “+” represents a wave propagating in the −x
direction whereas “−” represents a wave propagating in the +x direction.

We can transform back to the interaction basis using the matrix of eigenvectors:

Û =
Ê√
|det(Ê)|

; Ê =

 1 − Ŵ12

Ŵ11−ω2
2

− Ŵ21

Ŵ22−ω2
1

1

 . (2.11)

Notice that Ê21 = −Ê12 so this mixing matrix takes the form of a rotation matrix, up
to an arbitrary normalization that we have chosen such that the diagonal terms are unity.

Therefore the unitary mixing matrix Û involves a renormalization by

√
|det(Ê)|. The result

of the mixing is thus fully parametrized by a mixing angle, which is chosen to be such that
tan Θg = Ê12 (i.e. Ê describes a ~Φ basis that is rotated by Θg clockwise from that of ~H), and
the frequency difference ∆ω = ω2 − ω1, as is familiar from the case of mass mixing of highly
relativistic neutrinos. In this paper, we have assumed that ωA approaches the value ŴAA in
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the limit of Ŵ12, Ŵ21 → 0 (see Eq. (2.9)), so that the off-diagonal terms of the mixing matrix
Ê vanish in the no-mixing limit (and hence Θg vanishes). In this case, the frequency ω1 (ω2)
determines the propagation of the field h (s) in the no mixing limit. We emphasize though
that the choice of labels 1, 2 in the eigenfrequencies is a convention that does not affect the
final physical result.

The final solution can be then written as:

~Φ = Û ~H = Û
[
P̂+

~H0+ + P̂− ~H0−

]
= Û

[
P̂ ∗ ~H0+ + P̂ ~H0−

]
, (2.12)

where we have introduced a diagonal propagation matrix for the eigenstates

P̂ = P̂− = P̂ ∗+ =

(
e−iω1∆η 0

0 e−iω2∆η

)
. (2.13)

If we now allow for a friction matrix, ν̂ 6= 0, the EoM are not exactly diagonalizable
as ν̂ will not commute with Ŵ . Due to the linear derivative in time in the EoM, waves
propagating in a given direction are not the same as the time reversal of waves propagating
in the opposite direction. Therefore, there is no single matrix Û that diagonalizes the system,
but we can instead obtain two separate Û+ and Û− matrices that diagonalize the EoM of
waves propagating in the two different directions. We start by changing to the propagation
basis and obtaining the complex eigenfrequencies θA, which will satisfy the following equation:

det
[
Ŵ − Îθ2

A + iν̂θA

]
= 0 . (2.14)

This equation will generically have four complex constant solutions of the form (see Appendix
A)

θA± = ±ωA + iΓA , (2.15)

where we assume that in the no mixing limit (i.e. all diagonal matrices), θA± are such that
ΓA = ν̂AA/2, and thus the eigenfrequencies 1 and 2 describe the propagation of h and s,
respectively. Note that there may be models in which the eigenfrequency solutions with
mixing are not smoothly connected to those of the no-mixing limit. In those cases, we will
choose arbitrarily what eigenfrequency will be 1 and 2, although they will still have the form
on Eq. (2.15). This result implies that, in the propagation basis, each eigenstate will follow
an independent evolution determined by[

d2

dη2
+ 2ΓA

d

dη
+
(
ω2
A + Γ2

A

)]
HA = 0 , (2.16)

whose solution is HA ∝ e±iωAη−ΓAη. Thus ωA corresponds to the oscillatory piece of the
wave and determines the phase and group velocity of the waves. Hence ± again represents
the direction of propagation. ΓA determines the damping or growth of the wave with time
and therefore is the same for waves propagating in either direction.

The associated eigenvector matrix that transforms the states back to the interaction
basis is given by:

Û± =
Ê±√
| det(Ê±)|

; Ê± =

 1 − Ŵ12+iν̂12θ2±
Ŵ11−θ2

2±+iν̂11θ2±

− Ŵ21+iν̂21θ1±
Ŵ22−θ2

1±+iν̂22θ1±
1

 . (2.17)
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Note that ± are again related by conjugation as must be the case for a real wavepacket to
remain real after propagation:

Ê± = ÊR ± iÊI . (2.18)

The final solutions for h and s can then be written as:

~Φ = Û+P̂+
~H0,+ + Û−P̂− ~H0,−

= Û∗P̂ ∗ ~H0,+ + Û P̂ ~H0,− , (2.19)

where Û = Û− and is not necessarily unitary when including friction. The propagation
matrix is now

P̂ = P̂− = P̂ ∗+ =

(
e−iω1∆η−Γ1∆η 0

0 e−iω2∆η−Γ2∆η

)
. (2.20)

From here we explicitly see that friction leads to an exponential suppression in the modes, and
that now there is no global transformation matrix that allows us to express the ~Φ solutions
as Eq. (2.12), without first determining the direction of propagation. On the other hand,
by first separating out the components that propagate in opposite directions, we can write
down two separate equations analogous to Eq. (2.12).

To clarify the role of mixing and propagation, let us consider a wave propagating in the
+x direction only and specified initially by ~Φ0 = (h0, s0) at η0. After propagating for ∆η

~Φ = Û P̂ Û−1~Φ0 (2.21)

=
1

1− Ê12Ê21

(
(h0 − Ê12s0)e−iω1∆η−Γ1∆η + Ê12(s0 − Ê21h0)e−iω2∆η−Γ2∆η

(s0 − Ê21h0)e−iω2∆η−Γ2∆η − Ê21(h0 − Ê12s0)e−iω1∆η−Γ1∆η

)
.

In general, the mixing is described by 4 parameters: the real and imaginary parts of E12 and
E21 respectively.

In the special case that we consider below where the initial state is purely h0, then the
detected h after propagation depends only on the combination Ê12Ê21:

h(η, k) =
h0(k)

1− Ê12Ê21

(
e−iω1∆η−Γ1∆η − Ê12Ê21e

−iω2∆η−Γ2∆η
)
, (2.22)

whereas s depends separately on Ê12 and Ê21. Therefore it is convenient to define the mixing
angle as:1

tan2 Θg(η, k) = |Ê12Ê21|. (2.23)

We can also define an associated phase to the mixing, which is given by:

φg(η, k) = −i ln

(
Ê12Ê21

|Ê12Ê21|

)
. (2.24)

Notice that in the absence of friction Ê is a purely real rotation matrix and hence φg = π and
Θg becomes the usual mixing angle that fully determines the mixing matrix (and therefore
only one parameter determines both h and s). The same will hold when we only have

1Note that a change in the normalization of Ê will not change the mixing angle but will change the
corresponding ~H vector that satisfies the EoM. Although Eq. (2.23) is not manifestly invariant under rescalings
of Ê, more generally one generically has to divide by Ê11Ê22 the right hand side of this equation. As previously
mentioned, the sign of Ê can be fixed by the convention that Θg describes a clockwise rotation from ~Φ to ~H.
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friction mixing with off-diagonal terms, since in that case Ê12 and Ê21 are purely complex.
The amplitude of h can be conveniently expressed as:

|h(η, k)|2 = |h0(k)|2
[
|f1(η, k)|2 + |f2(η, k)|2 − 2|f1(η, k)||f2(η, k)| cos (∆ω∆η − φg)

]
. (2.25)

Here, we have introduced the functions f1 and f2 such that they describe the contributions
from the eigenstates H1,2 to the detected signal h: 2

h(η, k) = h0(k)
[
f1(η, k)e−iω1∆η + f2(η, k)e−iω2∆η

]
(2.26)

where

f1(η, k) =
e−Γ1∆η

1− tan2 Θgeiφg
; f2(η, k) = −f1(η, k) tan2 Θg e

−∆Γ∆η+iφg , (2.27)

and we have defined the damping difference ∆Γ = (Γ2 − Γ1). Notice that the mixing phase
φg not only shifts the phase of the mixing but also changes the overall amplitude of |f1| and
|f2| together whereas |f2|/|f1| = tan2 Θge

−∆Γ∆η.
Therefore for the case of interest, the change to the propagation of h is determined

by four parameters: ∆ω, which determines the mixing frequency and the difference in phase
velocities; ∆Γ which determines the relative damping of these components; Θg which controls
the amplitude of mixing; φg which controls the phase of mixing. For a monochromatic wave,
the mixing term creates an amplitude modulation that oscillates between (|f1|±|f2|)|h0|, and
as we shall see, for a wavepacket with a spread in frequencies, this modulation can eventually
decohere into two wavepackets with amplitudes |f1h0| and |f2h0| respectively.

We can perform a similar construction for the −x propagating components which are
given by ωA → −ωA and φ → −φ. For more general initial or detection conditions there
would be two additional mixing parameters describing the mixing from and into the s state.

Finally to construct a wavepacket after mixing due to propagation in the +x direction
out of the Fourier components of a real initial wavepacket, we have:

~Φ(η, x) =
1√
2π

∫ ∞
0

dk
[
eikxÛ P̂ Û−1~Φ0(k) + e−ikxÛ∗P̂ ∗Û−1∗~Φ∗0(k)

]
. (2.28)

Notice that an initially real wavepacket remains real. A similar relation follows for the
component propagating in the −x direction with Û P̂ Û−1 terms replaced by their conjugate.

2.1.1 WKB approximation

If we allow the coefficients in the EoM to vary in time, in the limit of a large GW frequency
compared to the time variation of the matrix elements, which will always be the case if they
evolve on cosmological time scales, we can solve the propagation in momentum space with
a WKB approximation [11]. In essence, what the WKB approximation does is to provide a
framework to obtain iteratively the change of basis and the propagation eigenstates, which
will be characterized by a time dependent frequency and amplitude. The WKB solution is
obtained solving the propagation equation (2.3) order by order in terms of a small dimen-
sionless parameter ε, which corrects for the evolution of the amplitude and phase, whose
rate of change is taken to be slow compared with the frequency of the wave. Following [11],

2One should note that in order to separate the time variation of the amplitude from the high frequency
oscillation of the phase, we need ∆ω � ωA.
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for modes propagating in a given direction (either +x or −x), it is convenient to introduce
the following ansatz for plane waves that iteratively corrects the constant coefficient solution
(2.21)

~Φ(η) ≡ Û(η)P̂ (η, η0)Û−1(η0)~Φ0

= Û(η) P̂0(η, η0) [Q̂0(η, η0) + εQ̂1(η, η0) + · · · ]Û−1(η0)~Φ0 . (2.29)

Note that we can again interpret this solution as one where we have the mixing matrix Û
transforming the propagation eigenmodes ~H to the observed modes ~Φ, such that ~Φ(η) =
Û(η) ~H(η). The way these eigenmodes propagate will be described by the propagation ma-
trix P̂ , where ~H(η) = P̂ (η) ~H0 with ~H0 = Û−1(η0)~Φ0. We will see that these eigenmodes
propagate effectively independently from each other in the WKB approximation and, as be-
fore, they have eigenfrequencies given by θ̂. Also, the full propagation matrix P̂ will contain
the matrices Q̂i, which correct its constant-coefficient form:

P̂0(η, η0) = e
+ i
ε

∫ η
η0
θ̂(η′)dη′

. (2.30)

Here we have introduced an ε−1 scaling since we assume that the phase matrix θ̂ evolves
much more quickly than the amplitude matrices (that are of order εn with n > 0). When the
coefficients are constants, we have at lowest order that Q̂0 is the identity matrix, in which
case we recover the results of the previous section.

When applying the WKB approximation, one can see that the leading order EoM de-
termine the eigenfrequencies θ̂, which are given by the roots of the quartic equation (2.14).
Thus, they have the same structural form as the constant coefficient case but now each pa-
rameter from the propagation equation could be a function of time. As a consequence, we
obtain four solutions of the form (2.15), which can again be separated into real and complex
parts as:

θ̂±(η) =

(
θ1±(η) 0

0 θ2±(η)

)
= ±ω̂(η) + iΓ̂(η) , (2.31)

which describes +x propagating modes for θ̂−, and −x propagating modes for θ̂+. Similarly,
the leading order WKB equation tell us that Û(η) will correspond to the same eigenvector
matrix as in Eq. (2.17) at time η, for each θ̂± solution. Thus, the first elements of the
WKB expansion look like the constant solution substituting the constant coefficients by
time dependent functions. In other words, at leading order the WKB eigenstates follow
adiabatically the local changes in the background.

Next, we analyze the first-order corrections from the WKB expansion to the constant
coefficient solution. This WKB order gives a first-order differential equation for the propa-
gation eigenmodes upon expressing ~H(η) = P̂0(η, η0) ~HQ(η), with ~HQ(η) = Q̂0(η, η0) ~H0:

(2θ̂ + iÛ−1ν̂Û)P̂ ~H ′Q + (θ̂′ + 2Û−1Û ′θ̂ + iÛ−1ν̂Û ′) ~HQ = 0. (2.32)

This equation tells us how Q̂0 evolves in time. In particular, we can rewrite (2.32) as3:

Q̂′0 = −ÂWKBQ̂0; Q̂0 = e
−

∫ η
η0
ÂWKB(η′)dη′

, (2.33)

where

ÂWKB = P̂−1
0

(
2Û θ̂ + iν̂Û

)−1 (
Û θ̂′ + 2Û ′θ̂ + iν̂Û ′

)
P̂0. (2.34)

3This equation is equivalent to equation (2.11) of [11].
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Note that the solution in Eq. (2.33) has free integration constants that we have fixed so that
Q0(η0, η0) = Î since ~Φ(η0) = ~Φ0. From here we obtain that, at leading order in ε, the most
general solution for ~Φ will have the following form:

~Φ(η) =
∑
±
Û±(η)P̂0±(η)e

−
∫ η
η0
ÂWKB±(η′)dη′

Û−1
± (η0)~Φ0±. (2.35)

This WKB result can be generalized iteratively going to higher orders in the expansion ε.
Note that the −x propagation matrices Û+, P̂0+ and ÂWKB+ are related by conjugation to
those of the +x propagation, as described in the previous section. From now on, we focus
only on the +x propagating modes and drop the corresponding subscript − from all the
matrices.

In the case of time varying coefficients, we see that generically ÂWKB (and hence Q̂0) is
a time varying non-diagonal matrix that corrects the leading-order propagation of the system
determined by Û and P̂0. The off-diagonal terms of ÂWKB mean that the two eigenmodes ~H
found in the previous section for constant coefficients (that can be interpreted as “instanta-
neous” eigenmodes) no longer propagate independently. Indeed, in Eq. (2.32) we can see that
the matrix coefficients of ~H ′Q and ~HQ are not always diagonal, and thus the two propagation
eiegnmodes are generically expected to mix with each other. Nevertheless, there is a simpli-
fying adiabatic regime, in which these eigenmodes do propagate nearly independently. This
happens when the change in the local eigenmodes from the change of the mixing coefficients
is slowly varying compared with the mixing time itself. Schematically, we can factor out of
ÂWKB the terms that come from P̂0 and P̂−1

0 and write its elements as:

ÂWKB, AB = ei
∫

(θA−θB)dηAAB , (2.36)

where AAB (for A,B = 1, 2) is a slowly-varying linear combination of θ̂′ and Û ′. For the
diagonal terms A = B this exponential prefactor is unity, but for the off-diagonal terms
A 6= B it oscillates with the mixing frequency |θ1 − θ2|. Therefore the off-diagonal term in
lnQ0 is the integral of the product of a slowly varying and oscillating term, which is expected
to average out when these oscillations are fast enough as they should be for sufficiently high k.
On the other hand, the diagonal terms in lnQ0 are integrals over terms that are proportional
to θ′ and U ′ and therefore reflect the net change in the properties of the local eigenstates
across the propagation distance. The relative suppression of the off-diagonal terms means
that two local eigenstates propagate nearly independently.4

As an example, let us assume no friction: ν̂ = 0. In this case, we find that ÂWKB is
given by:

ÂWKB =

[
1
2
θ′1
θ1

0

0 1
2
θ′2
θ2
.

]
+ Θ′g

[
0 θ2

θ1
e−i

∫
(θ1−θ2)dη

− θ1
θ2
ei

∫
(θ1−θ2)dη 0

]
. (2.37)

Here we explicitly see that the off-diagonal terms oscillate at the mixing frequency. Since
to obtain ~Φ we integrate over ÂWKB, we expect these quickly oscillating off-diagonal terms
to average out as long as the WKB time variations are on a much longer scale than the

4Note that even when the two eigenmodes do propagate nearly independently, one cannot directly neglect
their interactions in Eq. (2.32). If one were to do that, Eq. (2.32) would lead to two independent solutions
for the components of ~HQ, which would have the structure HQ,A ∝ exp{

∫
dη (θ̃′A)/(2θA + iν̃A)}, where

θA = θ̂AA, ν̃A = (U−1ν̂Û)AA and θ̃′A = (θ̂′ + 2Û−1Û ′θ̂ + iÛ−1ν̂Û ′)AA. However, this solution does not
yield exactly the same result as when neglecting the off-diagonal terms after obtaining the full solution
~HQ = exp{

∫
dη ÂWKB} ~H0.
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mixing time. Note that the diagonal terms in ÂWKB can be explicitly integrated because
they form total derivatives. Assuming the adiabatic approximation in which we neglect the
contribution of the off-diagonal terms, the solution for ~Φ simplifies to:

~Φ = Û(η)P̂0

√ θ1(η0)
θ1(η) 0

0
√

θ2(η0)
θ2(η)

 Û−1(η0)~Φ0, (2.38)

which trivially generalizes the usual WKB form for the amplitude and phase evolution. In
general cases with friction, the matrix ÂWKB takes a more complicated form. However, in the
large-k limit and for small mixing angles (i.e. |E21|, |E12| � 1), one expects5 |θ̂| � |Û−1ν̂Û |
and |θ̂′| � |Û−1Û ′θ̂ + iÛ−1ν̂Û ′| so that ÂWKB ≈ θ̂′(2θ̂)−1.

In general, in the adiabatic approximation we can still interpret the solution in terms of
two eigenmodes with oscillation frequencies ω1 and ω2 and solve the wave packet propagation
as in equation (2.28). When the initial condition is ~Φ0 = (h0, 0), the amplitude of h can be
expressed in terms of the matrix Q̂0 as:

h(η, k) =
h0(k)[

1− Ê12(η0)Ê21(η0)
]√ | det Ê(η0)|
|det Ê(η)|

{
e−i

∫
ω1dη−

∫
Γ1dηQ̂0,11(η, η0)

− Ê12(η)Ê21(η0)e−i
∫
ω2dη−

∫
Γ2dηQ̂0,22(η, η0)

}
(2.39)

≡ h0(k)
[
f1(η, k)e−i

∫
ω1dη + f2(η, k)e−i

∫
ω2dη

]
, (2.40)

where recall we assume a +x propagating mode, Û = Ê/

√
|det Ê| and Ê has unity numbers in

the diagonals. Here we have also implicitly assumed that the off-diagonal terms of Q̂0 vanish
and θ1 6= θ2. We also emphasize that Q̂0 may not always be real, but it is a slowly varying
function of the cosmological background. Therefore, the phase of Q̂0 does not determine the
oscillation frequency of the eigenmodes, but it will contribute to additional phase off-sets.
The constant coefficient solution in Eq. (2.22) is recovered when Q̂0 is the identity matrix.

The definitions of the mixing angle and phase have the same expressions as in Eq. (2.23)-
(2.24), and now depend on time. Note that now, however, the mixing angle does not fully
determine the amplitude of the second eigenmode to h, as it was the case for constant
coefficients. In Eq. (2.40) we have explicitly expressed the solution of h in a compact form
as a superposition of the propagating eigenstates, each one with its own dispersion relation
ωA and amplitude correction function |fA(η, k)|.

2.2 GW wavepacket propagation

In the previous sections we have seen that the GW propagation of each k mode is determined
by a superposition of the propagation eigenstates, which can have both non-trivial dispersion

5This can be confirmed by noticing that for theories with an EoM with a maximum of two derivatives, then
Ŵ is of order O(k2) in the large-k limit, and the eigenfrequencies in θ̂ are O(k). Therefore, the mixing matrix
Û has elements that are at most of order O(k0). Then, the matrix Û−1ν̂Û has elements O(k0) and they will be
subdominant compared to θ̂. Similarly, we will have that |Û−1ν̂Û ′| ∼ O(k0) and can be neglected. However,
|Û−1Û ′θ̂| ∼ O(k1) and can be comparable to θ̂′. However, in the small mixing angle regime (i.e. small
deviations from GR) we can also neglect |Û−1Û ′θ̂|.
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Timescales Physics Effects

T � Tmix, Tbroad

Single

Unmodified waveform
Tbroad < T � Tmix Distortion due to MDR

Tmix < T < Tbroad, Tcoh Distortion due to interference
Tmix, Tbroad < T < Tcoh Distortion due to interference and MDRs

Tcoh < T � Tbroad Echoes
Unmodified phase with different amplitude

Tcoh, Tbroad < T Distorted due to MDRs

Table 1: Summary of the propagation regimes and their effects on the signal. An unmodified
waveform refers to one that propagates with the dispersion relation ω = ck, and hence keeps
the shape of its phase evolution during propagation. In addition, MDR refers to a modified
dispersion relation. Note that we always have that Tmix < Tcoh, thus in the top four regimes,
we will detect a single GW event, whereas in the bottom two regimes we will detect GW
echoes.

relations as well as wavenumber or time dependent amplitudes. We can generically write the
GW solution when only h is emitted as:

h(η, k) =
∑
A

h0(k) fA(η, k) e−iφA(η,k) , (2.41)

where the phases are φA =
∫
ωAdη. From here we can identify distinct regimes in the propa-

gation of the GW signal, which are summarized in Table 1, and depend on how the propaga-
tion time of the signal T compares to certain characteristic timescales. Here, Tmix indicates
when the phase interference between the two eigenmodes becomes relevant, in cases where
φ1 6= φ2. GW signals associated with mergers are temporally localized in a finite wavepacket.
Therefore, we may also have that its associated group velocities are different, vg,1 6= vg,2, and
thus the two eigenstates propagate at different speeds and may eventually decohere, leading
to two individual GW signals or echoes. In this case, there is no interference between the
two propagating eigenstates and thus Tmix becomes irrelevant. Finally, the timescale Tbroad

indicates the moment when each eigenstate starts suffering considerable deformations due to
the fact that non-trivial dispersion relations typically lead also to dispersive group velocities
vg,A(k). Note that each eigenstate may have its own distinct Tbroad. In Table 1 we show
what the physical effects in the signal will be for different timescale scenarios.

These time scales can be illustrated by considering the propagation of a finite wave-
packet, with a central frequency k0. In this case, the phase of the Fourier components of the
wavepacket of each propagating eigenstate can be expanded as:

φA = k0x+ (k − k0)x−
∫
η0

dη

[
ωA(η, k0) +

∂ωA
∂k

(k − k0) +
1

2

∂2ωA
∂k2

(k − k0)2 + . . .

]
, (2.42)

for A = 1, 2, and η0 the emission time. On the one hand, the zeroth-order term here
determines the phase velocity vph,A = ωA(η, k0)/k0 of the k0 mode, and provides a constant
phase shift to the wavepacket. Since the two eigenmodes have different frequencies ωA, when
they propagate coherently the total signal is expected to exhibit oscillations due to the mixing
at frequency ∆ω = ω2 − ω1 (see Eq. (2.25)). This allows us to define the typical time scale
where the phase of the two eigenmodes mix, and its associated length scale:∫ η0+Tmix

η0

dη∆ω(η, k0) ∼ 2π; Lmix ∼ 〈vg,A(k0)〉Tmix, (2.43)
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where the length scale is defined as the corresponding location of the wavepacket at Tmix,
using the time average 〈vg,A(k0)〉 of the group velocity. We shall see below that to define
the smallest length scale at which mixing is important, vg,A is the group velocity of the
eigenmode that propagates faster.6 These scales will tell us whether for a given source at
a fixed distance we expect to see a change in the interaction states due to mixing, as with
neutrino mixing. When mixing occurs, the amplitude of h undergoes oscillatory modulation
between (|f1| ± |f2|)|h0| with frequency ∆ω according to Eq. (2.25).

The group velocity itself is related to the first order term in Eq. (2.42) through the
stationary phase approximation:

vg,A(η, k0) =
∂ωA(η, k)

∂k

∣∣∣∣
k=k0

. (2.44)

If the two eigenmodes propagate at different group velocities, after a sufficiently long time,
the two modes will decohere and h will have two observably distinct components that effec-
tively propagate independently from each other. More specifically, the temporal coherence
of the wavepacket is lost at the time Tcoh when the difference in the group velocities of each
eigenstates ∆vg = vg,2− vg,1 has introduced a spatial separation larger than the width of the
eigenstate wavepackets, σA,∣∣∣∣∫ η0+Tcoh

η0

dη∆vg(η, k0)

∣∣∣∣ ∼ σA(η = η0 + Tcoh), (2.45)

where, we shall see below, that due to wavepacket distortion effects the width may evolve
from its initial value. Furthermore, since each eigenstate has a different dispersion relation,
they may suffer different amount of distortions. In Eq. (2.45) we will make the conservative
choice of using the width σA of the wavepacket that has elongated the most.

Thus, the coherence time Tcoh sets a relevant time scale in the GW propagation beyond
GR that can be used to divide the propagation into different regimes as a function of the
travel time ∆η = η − η0. Similar to the mixing length scale, one could define a coherence
length scale as

Lcoh ∼ 〈vg,A(k0)〉Tcoh , (2.46)

where vg,A is chosen as the group velocity of the eigenmode propagating faster. This scale
is useful when determining whether the GW signal is in the coherent or decoherent regime.
On the one hand, for ∆η � Tcoh, the two eigenmodes propagate coherently and hence the
GW amplitude |h| is given by Eq. (2.25) for nearly monochromatic wavepackets, where the
third term describes the coupling between the two eigenmodes. On the other hand, for
∆η � Tcoh, |h| has two separate wavepackets, whose amplitudes are given by |f1h0| (from
the first eigenmode) and |f2h0| (from the second eigenmode). Similarly, their time delay will
be given by the difference in the group velocities of the eigenstates ∆vg and the distance to the
source. Note that depending on the theory and the distance to the source, the propagation
eigenmodes might always be in the coherent state observationally. Moreover, the duration
of the GW signal, or its waveform width σx is subject to the detector sensitivity. We will
discuss more on the observational implication in Section 4.

6Using the group velocity ensures that regardless of whether the initial wavepacket is a pure state in
h in momentum or frequency space that the mixing time and length are the same for a sufficiently broad
wavepacket (see analogous discussion for neutrino mixing [46] and App. B).
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The third term in Eq. (2.42) gives the group velocity dispersion. The fact that each
propagation eigenstate behaves as a dispersive wave also tell us that there could be distortions
of the wavepackets in the propagation basis as well. If the initial wavepacket has a width σx
and thus a range in k of width σk ∼ σ−1

x , then the dispersion in group velocities across the
packet will distort its shape when∫ η0+Tbroad

η0

dη σk
∂vg,A
∂k

(η, k0) ∼ σx ⇒
∫ η0+Tbroad

η0

dη
∂2ωA
∂k2

(η, k0) ∼ σ2
x. (2.47)

For example with a Gaussian wavepacket with a velocity constant in time, the group velocity
dispersion will lead to a broadening to:

σA = σx

√
1 +

(
∆η

Tbroad,A

)2

. (2.48)

Note that the amplitude of the wavepacket will also diminish as |hA(σA)/hA(σx)| = σx/σA
(for A = 1, 2) due to the broadening. In more general situations where various frequencies in
the wavepacket are emitted at different times, such as in the case of the coalescence of two
compact objects, the distortions caused by group velocity dispersion can lead a shrinking
of the duration of the signal as well, but we will continue to use “broad” to denote the
effect. We recall that if Tcoh > Tbroad then the broadened width of the wavepacket should be
used in determining the coherence time as shown in Eq. (2.45). For a Gaussian wavepacket,
combining Eq. (2.48) and (2.45), for constant coefficients in the EoM of h and s, we find that

Tcoh ∼ σx/
√

∆v2
g(k0)− σ2

x/T
2
broad,A(k0). (2.49)

For the decoherence time to remain finite one needs

∆vg(k0)Tbroad,A(k0) > σx. (2.50)

This is because the ratio of the wavepacket separation to the broadened width eventually
becomes constant in time in a case of constant coefficients,∫ η0+∆η

η0
∆vg(k0)dη

σA
→ ∆vg(k0)Tbroad,A(k0)

σx
, (2.51)

despite the growth in both.
Next, we emphasize that for certain propagation times, higher-order terms in the ex-

pansion (2.42) may also be relevant. In particular, the cubic term (1/6)∂3ωA/∂k
3(k − k0)3

can lead to additional distortions for propagation times longer than T > T3,A where T3,A ∼
σ3
x/(∂

3ωA/∂k
3). Furthermore, even when T < T3,A, the series expansion (2.42) can only be

approximately truncated to quadratic order if Tbroad,A < T3,A. For toy Gaussian wavepacket,
note that since σx may broaden in time due to (∂2ωA/∂k

2) 6= 0, then the relative difference
between Tbroad,A and T3,A can change in time. Indeed, since T3,A/Tbroad ∝ σx, at short times
we may have Tbroad ∼ T3,A depending on the model parameters. An analogous reasoning can
be applied to higher-order terms in Eq. (2.42).

Note that in this section we have Taylor expanded the effects of the dispersion relation
as in Eq. (2.42) as a tool to discuss the different physical effects that mixing can bring.
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However, in practice, in the rest of the paper we make use of the exact MDRs for both prop-
agating eigenstates, and therefore all the effects discussed here (and higher-order corrections,
if present) will be included.

From this Taylor expanded analysis, we conclude that the phenomenological description
of GW wavepacket propagation naturally involves the group velocity in determining key
observational properties of the signal. This is different from many previous works in the
literature where the GW signal was interpreted as an ensemble of gravitons traveling at the
particle velocity [26, 27]. Such an approach has been motivated by explicit Lorentz-violating
theories of quantum gravity, while here we are dealing with spontaneous violations of Lorentz
invariance due to a modified gravity propagation over cosmological backgrounds.

In addition to the changes discussed here in the arrival time and shape of the overall
wavepacket, the phase evolution of the waveform across the wavepacket provides a direct
observable of GW signals. This can also be understood from Eq. (2.42) and the fact that
the group velocity depends on the frequency, vg,A(k), which will change the arrival time and
phase of each frequency component within the wavepacket, as well as their relative phases
with respect to GR. If the phase evolution of gravitational waves in GR is known, then it
is possible to test for deviations from GR. In particular, these waveform distortions due to
the phase are the analogue of amplitude distortions and occur when T > Tbroad. They can
be straightforwardly tested in the decoherence regime T > Tcoh, when there is no additional
mixing between the two eigenstates. In this regime, the propagation of each eigenstate can
be considered independently, resembling the case of a single tensor mode in Eq. (2.4) with
dispersion relation (2.5). The phase modification of each eigenstate with respect to GR can
be generically expressed as:

hA(η, k) ∝ hfid(η, k) e−i∆φmg,A(η,k) , (2.52)

where hfid(η, k) = h0(k)e−ik(η−ηe) for an initially emitted plane wave h0(k) at ηe, and

∆φmg,A(η, k) =

∫ η

ηe

(ωA(k)− k) dη′ . (2.53)

In Section 4, we will apply the formalism developed here to realistic waveforms to analyze
these phase distortions. Note that throughout this section we have been assuming that
both eigenstates have the same initial condition and thus fiducial waveform in momentum
space. However, realistic GW initial conditions are typically given in frequency space, hfid(ω),
as they describe a temporally varying signal detected at a fixed location. As discussed in
Appendix B, if the difference between the modified dispersion relations of each eigenstate
is small compared to σk, then initial conditions given in ω space can be straightforwardly
translated into initial conditions in k space, where both eigenstates have approximately the
same momentum k, validating thus our assumptions.

It is important to note that this modification of the phase is only due to the propagation,
and hence it is independent of the emission mechanism of the wave. In other words, there
are no constraints on the type of waveform to be considered in h0(k).

3 Examples of GW mixing

Now that we have seen how to solve analytically the mixed propagation of h and s, we
proceed to numerically corroborate our results with a toy Gaussian wavepacket and consider
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particular examples of each type of mixing. In addition, this section will help gain physical
intuition on the relevant time scales and parameters that lead to observational effects. We
will discuss the prospects of detecting such observational signatures for realistic waveforms
from compact binary coalescences in Section 4.

3.1 Initial Conditions

Since for the moment we are more interested in understanding the physical implications of
the various GW propagation effects than quantifying the effects on a specific GW merger
signal, we will work with an initial wavepacket described at emission, which we take to be
η0 = 0 in this section, by a carrier frequency k0 modulated by a Gaussian wave packet of
width σx, i.e.

h̃0(x) = 2 cos(k0x)e−x
2/2σ2

x = (eik0x + e−ik0x)e−x
2/2σ2

x , (3.1)

propagating in the +x direction. At the time η0 we also choose s(η0) = 0, in order to isolate
the effects due to mixing of degrees of freedom only.

Conveniently, the Fourier transform is the sum of Gaussians centered at k0 and −k0:

h0(k) =
1

σk

[
e−(k−k0)2/2σ2

k + e−(k+k0)2/2σ2
k

]
, (3.2)

where σk = 1/σx. Since the initial wavepacket is real, note that h0(−k) = h∗0(k) and because
the propagation maintains its reality, we need to calculate only k > 0 components. We will
also work in the limit that k0 � σk so that to good approximation the first term carries the
k > 0 components. For convenience, we will display the real space wavepacket constructed
from the k > 0 components in this way, e.g for the initial wave:

h̃0(x)→ 1√
2π

∫ ∞
0

dkeikx
1

σk
e−(k−k0)2/2σ2

k ≈ eik0xe−x
2/2σ2

x , (3.3)

which has the benefit that the modulus extracts the Gaussian envelope without having to
average over the carrier oscillations. Despite the simplicity of this toy model, it captures all
the relevant effects of mixing, dispersion and wavepacket decoherence.

In the rest of this section, we consider separately different types of interactions between
h and s, and analyze their effects on the modulated Gaussian wave packets. Even though
we will consider separately the effects of velocity, mass, friction, and chiral mixing, a general
cosmological model may have a combination of these types of mixing. In that case, at least at
linear order in the mass, friction and chiral matrix elements compared to k2, the expressions
for the eigenfrequencies of the propagating eigenstates will be the superposition of the linear
corrections beyond GR that we find for each separate example.

The numerical examples in this section will have an arbitrary normalized unit for 1/k,
σx, the typical timescales Tmix, Tcoh, Tbroad, and the dimensional model parameters. In all
the examples that will follow, we use units of wavepacket width σx.

3.2 Velocity Mixing

Velocity mixing occurs when there are interactions between the tensor modes at quadratic
order in k. The EoM that includes this type of mixing are given by[

Î
d2

dη2
+

(
c2
h c2

hs

c2
hs c2

s

)
k2

](
h
s

)
= 0, (3.4)
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where in general each tensor mode has a different speed c2
A and the mixing is governed by c2

hs.
The velocity matrix is assumed to be real and positive definite, in order to ensure stability
of the solutions. In that case, we find the eigenfrequencies to be real (i.e. ΓA = 0) and linear
in k, with dispersion relations given by

ω2
1 = k2

(
c2
h +

1

2
∆c2 +

1

2

√
4c4
hs + ∆c4

)
, (3.5)

ω2
2 = k2

(
c2
h +

1

2
∆c2 − 1

2

√
4c4
hs + ∆c4

)
, (3.6)

if ∆c2 = c2
s − c2

h 6 0, so that in the no-mixing limit, that is chs = 0, we get that ω1 describes
the frequency of h and ω2 that of s. Whereas, if ∆c2 > 0, then we will define ω2

1 with a
minus sign in front of the square root, and ω2

2 with a plus sign.
The mixing matrix Ê is real and satisfies Ê12 = −Ê21. This matrix is completely

determined by the mixing angle Θg (fixing the mixing phase to φg = π), which follows:

tan2 Θg =
4c4
hs(

|∆c2|+
√

∆c4 + 4c4
hs

)2 . (3.7)

Note that the mixing angle is frequency independent and thus it only rescales the amplitude
of each eigenstate. In the no mixing limit, chs → 0, we have that Θg → 0, regardless of the
sign of ∆c2. For tensor modes with the same speed, ∆c2 = 0, the mixing is maximal, that is
Θg = π/4.

The mixing time is simply given by Tmix = 2π/∆ω. Since the dispersion relations are
linear in k, there will be no distortions of the signals associated to a MDR. In other words,
the broadening time Tbroad → ∞. The group velocities in this case can also be directly
computed as vg,A = ωA/k, which is again frequency independent and equal to the phase
velocity. Therefore, the coherence time Tcoh = σxk/∆ω is independent of k and leading to a
splitting of the original wavepacket into two signals or echoes, with an amplitude rescaling of
|f1|, |f2| for T > Tcoh but no waveform distortion. The overall signal can be however distorted
due to the interference of the eigenstates transitioning to the decoherence regime. The group
velocity of each eigenstate could in general be different from the speed of light either because
ch,s 6= 1 or due to the mixing with the other mode. As we will discuss in Sec. 4.2, this makes
velocity mixing testable with multi-messenger GW events.

Fig. 1 shows a numerical example of the propagation of a toy GW signal described
by a narrow Gaussian wavepacket, with each curve showing a temporal snapshot of the
signal, from the coherence regime to the transition to decoherence. The top panel shows the
amplitude |h| of the GW signal, and the bottom shows the second tensor field |s|. Here we
have chosen k0 = 12, σx = 1, c2

hs = 0.1 , ∆c2 = 0, and tune c2
h = 0.9 to set vg,1 = 1. For this

choice, the mixing and coherence timescales are Tmix = 5.0 and Tcoh = 9.5. In addition, the
mixing angle is given by tan2 Θg = 1, which rescales the amplitude of the two propagating
eigenstates to half of the initial amplitude as indicated by the horizontal grey lines. During
the coherence regime, the two eigenstates interfere and, as a result, the overall amplitude of
the signal oscillates with a period of Tmix. We show the snapshots at nTmix/2 where n is
an integer. We see that h suffers destructive interference at odd n, while s at even n. As
the two eigenmodes separate, the h and s wavepackets become double peaked and both even
and odd n saturate to 1/2 amplitude. This separation is apparent earlier in the destructive
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interference cases due to the sensitive cancellation required. Since this mixing behavior and
approach to decoherence is similar in the cases that follow, we hereafter omit showing s and
also align the h wavepacket to the arrival of the first peak in order to display a larger range
of propagation times.
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Figure 1: Propagation of a narrow Gaussian wavepacket for the case of velocity-mixing
from the coherence to the decoherence regime. We have chosen c2

hs = 0.1, ∆c2 = 0, and tune
c2
h = 0.9 to set vg,1 = 1. We also choose k0 = 12 and σx = 1. The grey horizontal lines

indicate the maximum amplitude of the two Gaussian propagating eigenmodes, which are
both equal to half of the initial amplitude in this example.

3.3 Mass Mixing

Mass mixing commonly appears in models of modified gravity, however it may appear in
combination with other types of mixings. Mass mixing only is a feature of massive bigravity
[12, 13], which effectively propagates one massless graviton interacting with one massive
graviton. In this section, we consider general scenarios with only mass mixing interactions.
The general EoM are given by:[

Î
d2

dη2
+

(
c2
h 0
0 c2

s

)
k2 +

(
m2
h m2

hs

m2
hs m2

s

)](
h
s

)
= 0, (3.8)

where we have assumed that the fields h and s are canonically normalized so that the mass
matrix is symmetric, and we assume c2

h,s > 0 and the mass matrix to be real and positive
definite to ensure stability of the solutions in the no-mixing limit. The associated eigenfre-
quencies are therefore always real (i.e. ΓA = 0) and given by:

ω2
1 =

(
c2
h +

1

2
∆c2

)
k2 +

1

2
M2 − 1

2

√
(∆c2k2 + ∆m2)2 + 4m4

hs , (3.9)

ω2
2 =

(
c2
h +

1

2
∆c2

)
k2 +

1

2
M2 +

1

2

√
(∆c2k2 + ∆m2)2 + 4m4

hs , (3.10)
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if ∆c2k2 + ∆m2 > 0, so that in this case ω1 describes the propagation of h in the no mixing
limit of mhs = 0. In the case of ∆c2k2 +∆m2 6 0, we define ω2

1 and ω2
2 with a plus and minus

sign in front of the square root term, respectively. Here, we have introduced the sum of the
squared masses M2 ≡ m2

h + m2
s, their difference ∆m2 = m2

s −m2
h, as well as the difference

in the speeds ∆c2 = c2
s − c2

h. Notice that ∆m2 is the mass difference between h and s, and
not of the propagating eigenstates.

In this case, the mixing matrix Ê is real and Ê12 = −Ê21. This matrix is fully deter-
mined by the mixing angle (the mixing phase is fixed to φg = π), which is explicitly given
by:

tan2 Θg =
4m4

hs(
|∆c2k2 + ∆m2|+

√
(∆c2k2 + ∆m2)2 + 4m4

hs

)2 . (3.11)

Note that whenever ∆c2 6= 0, the mixing angle will be frequency dependent, possibly in-
troducing distortions in the wavepacket even in the decoherence regime. In addition, in the
no-mixing limit, we have that Θg = 0, regardless of the sign of ∆c2k2 + ∆m2.

In the following, we consider particular sub-cases of mass mixing and analyze their
effect on the GW propagation. Note that, in general, both eigenmodes will have different
group velocities, according to Eq. (2.44). As a consequence, these modes will decohere after
sufficiently long times. From Eq. (2.25), since ΓA = 0 and φg = π, we expect the amplitude
of each detected wavepacket, |f1h0| and |f2h0|, to be given by:

f1 =
1

1 + tan2 Θg
, f2 = f1 tan2 Θg , (3.12)

thus being fully controlled by the mixing angle Θg.

3.3.1 Small speed difference

We consider the case in which the difference in velocities is smaller than the mixing term:
|∆c2k2| � |m2

hs|. A specific case is when ∆c2 = 0. Because of the similarities with massive
bigravity theory, we will focus on the case in which m4

hs = m2
hm

2
s so that there is one massless

and one massive eigenmode. In particular, from (3.9)-(3.10) we find in this regime that

ω2
1 ≈ c2

hk
2 +

m2
h

M2
∆c2k2 , (3.13)

ω2
2 ≈ c2

hk
2 +M2 +

m2
s

M2
∆c2k2 , (3.14)

where we see that in the limit of mh → 0 (so that ∆c2k2 + ∆m2 > 0), we obtain that ω1 and
ω2 describe the propagation of h and s, respectively. The mixing angle also simplifies to:

tan2 Θg ≈
(
mhs

ms

)4(
1− 2

∆c2k2

M2

)
, (3.15)

which vanishes in the no-mixing limit of mhs → 0. Due to the non-zero value of M , the
group velocities of the two eigenmodes will differ and the initial wavepacket will eventually
decohere. Explicitly, their group velocities are given by:

vg,1 ≈ ch
(

1 +
1

2

∆c2

c2
h

m2
h

M2

)
, vg,2 ≈

c2
hk√

c2
hk

2 +M2

(
1 +

1

2

∆c2

c2
h

m2
s

M2

(c2
hk

2 + 2M2)

(c2
hk

2 +M2)

)
. (3.16)
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The typical time scales that describe the mixing, coherence and broadening of the signal are:

Tmix ≈
2π√

c2
hk

2 +M2 − chk
(3.17)

Tcoh ≈ Tmix

√
c2
hk

2 +M2

2πch
σA (3.18)

Tbroad,1 ≈ σ2
x

chM
6

3m4
hs∆c

4k
; Tbroad,2 ≈ σ2

x

(
c2
hk

2 +M2
)3/2

c2
hM

2
, (3.19)

where we distinguish the broadening time of each of the eigenstates.
A toy model of the propagation of h is shown in Fig. 2, where ∆c2 = 0. Here we are

plotting the evolution with respect to the group velocity of the first eigenmode vg,1, which
coincides in this case with the decoupled velocity of h. For the choice of m2

s = m2
h = m2

hs = 1,
ch = cs = 1, k0 = 100 and σx = 1, the mixing angle is such that tan2 Θg = 1, so the
amplitudes of the two eigenmodes contributing to h are equal f1 = f2 = 1/2 (described by
the horizontal grey line). The vertical dashed line indicates the position of the first eigenmode,
who is at the origin, whereas the position of the second wavepacket is indicated with dotted
vertical lines, and it is calculated using the group velocity difference ∆vg = vg,2 − vg,1 given
in (3.16). The propagation time is scaled by the coherence time Tcoh. As discussed in
Sec. 2.2, when the propagation time is much larger than the coherence time η � Tcoh, the
propagation enters the decoherent regime so that one eigenmode lags behind another and the
wave packet splits into two separate parts. We confirm that the two eigenmodes decohere
when η � Tcoh and the wavepacket splits into two Gaussians. Note that the Gaussians
associated to both eigenmodes do not exhibit any visible distortions on the timescales shown.
In particular, in this example the first wavepacket is not distorted at all since ∂2ω1/∂k

2 = 0
(i.e. Tbroad,1 → ∞), whereas for the second wavepacket we find ∂2ω2/∂k

2 ≈ 2m2
hs/chk

3.
Therefore, in this example the change in width σ2

A− σ2
x (see Eq. (2.48)) is highly suppressed

or exactly vanishing.

3.3.2 Small mass mixing

In the case in which there is a different sound speed between h and s the mixing is modified.
Here we consider the limit when the mixing term in the mass matrix is small compared to the
difference in frequencies associated with the difference in sound speeds. In this limit we have
that |m2

hs/(∆c
2k2)| � 1 (for ∆c2 6= 0), and from (3.9)-(3.10) we find the eigenfrequencies to

be approximately given by:

ω2
1 ≈ c2

hk
2 +m2

h −
m4
hs

∆c2k2 + ∆m2
+O

(
m8
hs

∆c8k8

)
, (3.20)

ω2
2 ≈ c2

sk
2 +m2

s +
m4
hs

∆c2k2 + ∆m2
+O

(
m8
hs

∆c8k8

)
, (3.21)

which makes ω1 to be associate to h in the no-mixing limit, regardless of the value of ∆c2k2 +
∆m2. Here we see that the correction to the dispersion relations of h and s due to their
couplings will scale as k−2 at high wavenumber. The mixing angle is

tan2 Θg ≈
m4
hs

(∆c2k2 + ∆m2)2 +O
(

m8
hs

∆c8k8

)
. (3.22)
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Figure 2: Propagation of a narrow Gaussian wavepacket, in the case of mass-mixing and
same speeds ch = cs. The grey horizontal line indicates the amplitude of the envelopes for
the two eigenmodes, which coincide in this example. The vertical lines show the positions
of the wavepackets predicted from the group velocities, with dashed and dotted lines for the
first and second eigenmodes, respectively. Parameters: m2

s = m2
h = m2

hs = 1, c2
h = c2

s = 1,
k0 = 100, σx = 1.

In this case, the group velocities of the two modes are explicitly given by:

vg,1 ≈
c2
hk√

c2
hk

2 +m2
h

+
m4
hs

(∆c2k2 + ∆m2)2

k
(
2
(
c2
hk

2 +m2
h

)
∆c2 + c2

h

(
∆c2k2 + ∆m2

))
2
(
c2
hk

2 +m2
h

)3/2 + . . . ,

(3.23)

vg,2 ≈
c2
sk√

c2
sk

2 +m2
s

− m4
hs

(∆c2k2 + ∆m2)2

k
(
2
(
c2
sk

2 +m2
s

)
∆c2 + c2

s

(
∆c2k2 + ∆m2

))
2 (c2

sk
2 +m2

s)
3/2

+ . . . ,

(3.24)

with corrections of order O
(

m8
hs

∆c8k8

)
and higher. Also, the typical time scales describing

mixing, coherence, and broadening are:

Tmix ≈
2π√

c2
sk

2 +m2
s −

√
c2
hk

2 +m2
h

, (3.25)

Tcoh ≈
σA

k

(
c2s√

c2sk
2+m2

s

− c2h√
c2hk

2+m2
h

) , (3.26)

Tbroad,1 ≈ σ2
x

(
c2
hk

2 +m2
h

)3/2
c2
hm

2
h

; Tbroad,2 ≈ σ2
x

(
c2
sk

2 +m2
s

)3/2
c2
sm

2
s

. (3.27)

A toy model calculation of this example is presented in Fig. 3, where we show h at
different times and follow the same plotting conventions of Fig. 2. Here we have chosen
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c2
h = 1, c2

s = 0.9, m2
s = m2

h = 1 and m2
hs = 10, σx = 1. Contrary to the previous case, now

the mixing (and thus the amplitude of the second mode) is suppressed as tan2 Θg ∼ O(10−4)
due to the difference in speeds of the eigenmodes. Since the group velocities of the two
eigenmodes are different, after Tcoh they decohere and propagate as two separate wavepackets.
The horizontal lines show the theoretical expectation for the amplitude of each wavepacket,
according to Eq. (3.12). Note that in this case, none of the velocities of the two wavepackets

coincide with the naive velocity of h, that is vh = c2
hk/
√
c2
hk

2 +m2
h, due to the presence of

the mass mixing. In the small mixing limit, as shown in Eq. (3.23) the group velocity of

the first eigenstate vg,1 deviates from vh by O
(

m4
hs

(∆c2k2+∆m2)2

)
. In this example, there is no

visible broadening of the Gaussian, as the broadening timescale (timescale determining when
the variance changes by an order 1 factor) is estimated to be Tbroad ∼ 104Tcoh.
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Figure 3: Wave packet propagation of the h field for small mass-mixing case, at different
times. The two horizontal lines indicate the amplitudes of the envelopes for the two eigen-
modes. The vertical lines show the positions of the wavepacket, with dashed and dotted lines
for the first and second eigenmodes, respectively. Parameters: m2

s = m2
h = 1, m2

hs = 10,
c2
h = 1, c2

s = 0.9, k0 = 100, σx = 1.

3.4 Friction Mixing

Friction mixing appears when there are derivative interactions between the metric and the
additional modified gravity fields. This happens for instance in vector-tensor models such
as multi-Proca theories with internal global symmetries [20], which may also include the
presence of additional mass mixing interactions. Nevertheless, in this section we consider
general models with only friction mixing for pedagogical reasons. The EoM are given by:[

Î
d2

dη2
+

(
0 −2α

2α 4∆ν

)
d

dη
+

(
c2
h 0
0 c2

s

)
k2

](
h
s

)
= 0 , (3.28)

where we have not included a friction term for h because it can always be reabsorbed through
a field redefinition of both fields ~Φ → e−

∫
νhdη/2~Φ without affecting the rest of the terms in
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the EoM. In general, explicit expressions for the eigenfrequencies are complicated and not
particularly illuminating. In order to get some intuition let us consider different sub-classes
of limiting situations, from the simplest to the more involved.

3.4.1 ∆ν = 0 and ∆c2 = 0

Whenever we only have the non-diagonal entries α and cs = ch, the eigenfrequencies are real
and simplify to

ω1 =
√
c2
hk

2 + α2 − α , (3.29)

ω2 =
√
c2
hk

2 + α2 + α , (3.30)

with Γ1 = Γ2 = 0. In fact, they only differ by a constant factor, i.e. ∆ω = 2α, and therefore
the group velocities of both eigenmodes are the same

vg,1 = vg,2 =
c2
hk√

c2
hk

2 + α2
. (3.31)

Contrary to the mass mixing case, the two eigenmodes propagate coherently all the time,
and the oscillations of the GW signal are described by the mixing timescale Tmix = 2π/α.

For the eigenfrequencies in Eq. (3.29)-(3.30), the mixing matrix Ê will be imaginary,
such that Ê−12 = Ê−21 = i. Therefore, the mixing angle fully determines the mixing matrix,
and it is given by Θg = π/4 (and the mixing phase is fixed to φg = π). Therefore, the solution
of h reads

|h(η)|2 =
1

2
|h0|2 (1 + cos [2αη]) . (3.32)

From here we observe that the phase and frequency evolution of the total wave will be
preserved, and we will only see a time modulation of the amplitude.

A toy model calculation for a Gaussian wavepacket is shown in Fig. 4. Since, the
only property of h that changes according to Eq. (3.32) is the amplitude, we only plot the
maximum amplitude of the Gaussian wavepacket h at different times. We fix the values of
the parameters to α = 0.1, ch = cs = 1, σx = 1, and k = 100. The black line shows the
prediction from Eq. (3.32), and the red dots confirm the numerical results.

3.4.2 ∆ν=0

If we now allow for a different speed between the tensor modes cs 6= ch, the eigenfrequencies
read

ω2
1 =

(c2
h + c2

s)k
2 + 4α2 −

√
16c2

hk
2α2 + (4α2 + ∆c2k2)2

2
, (3.33)

ω2
2 =

(c2
h + c2

s)k
2 + 4α2 +

√
16c2

hk
2α2 + (4α2 + ∆c2k2)2

2
, (3.34)

if ∆c2 > 0, so that ω1 describes the propagation of h in the no-mixing limit of α→ 0.
The mixing matrix Ê is found to be always imaginary, but |Ê12| 6= |Ê21| in general

situations, and hence the mixing angle does not always determine the mixing matrix. Never-
theless, since Ê12Ê21 is real, the mixing angle does always determine the solution for h when
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Figure 4: Maximum amplitude of coherent propagation of h at different times, in the case
of friction-mixing. Tmin = 2π/α is the phase evolution time for one period. The black line
is the theoretical prediction of the amplitude Eq. (3.32) while the red dots are the numerical
calculations. Parameters: α = 1, c2

h = c2
s = 1, k0 = 100, σx = 1.

the initial conditions for s vanish. Even though there is friction in this example, the eigen-
frequencies are real and thus the amplitude of the eigenmodes do not exhibit an exponential
decay due to the friction mixing. Explicitly, since ΓA = 0 and φg = π, the amplitude of the
two eigenmodes contributing to h are given by Eq. (3.12).

Next, we analyze various limiting cases:

A) Small mixing. In the limit of |α2/(∆c2 k2)| � 1 the eigenfrequencies simplify to

ω1 = chk

(
1− 2

α2

∆c2k2
+O

(
α4

∆c4k4

))
, (3.35)

ω2 = csk

(
1 + 2

α2

∆c2k2
+O

(
α4

∆c4k4

))
, (3.36)

which are defined such that ω1 describes the propagation of h in the no-mixing limit, for any
value of ∆c2. The group velocities of each eigenmode are different and explicitly given by:

vg,1 = ch

(
1 + 2

α2

∆c2k2
+O

(
α4

∆c4k4

))
, (3.37)

vg,2 = cs

(
1− 2

α2

∆c2k2
+O

(
α4

∆c4k4

))
, (3.38)

In this limit, the mixing matrix is described by:

Ê12 ≈ 2i
csα

∆c2k
, Ê21 ≈ 2i

chα

∆c2k
, (3.39)

and hence the mixing angle approximates to:

tan2 Θg ≈ 4
chcsα

2

∆c4k2
. (3.40)
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Note that this case is very similar to the mass mixing case in the regime of small mixing (see
Eq. (3.22)), in the sense that the mixing angle is suppressed by both the small friction/mass
mixing compared to the speed difference ∆c2k2. However, here tan2 Θg scales as k−2 whereas
in the mass mixing case it scales as k−4, for large k. Therefore, we have a parametrically
smaller suppression with friction mixing. The typical time scales of mixing, coherence, and
broadening are given by:

Tmix ≈
2π(ch + cs)

∆c2k
, (3.41)

Tcoh ≈
(ch + cs)σA

∆c2
, (3.42)

Tbroad,1 ≈
∆c2k3σ2

x

4chα2
; Tbroad,2 ≈

∆c2k3σ2
x

4csα2
. (3.43)

B) Small mixing and smaller speed difference. In the limit in which both α/(chk)
and (k∆c2)/αch are small, then we get

ω1 = chk

(
1 +

∆c2

4c2
h

− α

chk
+

1

2

α2

c2
hk

2
+O

(
α4

c4
hk

4

))
, (3.44)

ω2 = chk

(
1 +

∆c2

4c2
h

+
α

chk
+

1

2

α2

c2
hk

2
+O

(
α4

c4
hk

4

))
, (3.45)

for ∆c2 > 0. In the case of ∆c2 < 0, the expressions of ω1 and ω2 are swapped. The group
velocity of the first eigenmode is:

vg,1 = ch

(
1 +

∆c2

4c2
h

− 1

2

α2

c2
hk

2
+ · · ·

)
, (3.46)

and the second eigenmode has a speed that is suppressed by ∆vg ≈ −(k∆c4)/(8c2
hα). Due to

this non-vanishing difference, the two eigenmodes will decohere after sufficiently long times,
in particular after Tcoh ∼ σA/∆vg. Since ∆vg can be very small, the decoherence time can be
very long. Also note that there is a non-trivial group velocity of the eigenmodes at leading
order in k. In this case, the anomalous speed also affects the mixing matrix:

Ê12 = Ê21 ≈ i
(

1− k|∆c2|
4chα

)
(3.47)

and thus the mixing angle is given by

tan2 Θg ≈ 1− k|∆c2|
2chα

. (3.48)

The typical time scales of mixing, coherence, and broadening are given by:

Tmix ≈
π

α

(
1− ∆c4k2

32c2
hα

2

)
, (3.49)

Tcoh ≈
8c2
hασA

∆c4k
, (3.50)

Tbroad,1 ≈ Tbroad,2 ≈
chk

3σ2
x

α2

(
1 +

∆c4k3

16chα3

)
. (3.51)
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Note that this case is similar to the case of mass mixing with small speed differences, where
typically tan2 Θg ∼ 1 and thus both eigenmodes contribute equally to h, according to Eq.
(3.12). However, here the distortions of the Gaussian wavepackets can be sizeable by the time
the two eigenmodes decohere or even prevent them from reaching decoherence, as discussed
in Eq. (2.50), decoherence will be achieved if ∆vgTbroad,A/σx ' k4∆c4σx/(8c

2
hα

3) > 1.
A toy model calculation is shown in Fig. 5. On the left panel we show the evolution

of the Gaussian wavepacket. The expected amplitudes of each eigenmodes is shown in the
horizontal grey line. In this case we see that there are visible distortions to the wavepacket
on the timescales observed. For the parameters considered in this example, we get that
σ1/σx ≈ 2.0 and σ2/σx ≈ 1.8 at the time 20Tcoh. Since each eigenmode conserves energy
independently, their amplitudes decay to compensate for the spread of the Gaussian, and
therefore their amplitudes do not match exactly the expected grey lines. In this example, a
slight skewness of the first wavepacket is also visible, which brings about ∼ 1% distortions
in the Gaussian. This happens because the cubic higher order term in the phase expansion
(2.42) is such that T3/Tbroad ∼ kσx ∼ 0.01. In the right panel of Fig. 5 we explicitly show
the evolution of the width of the wavepackets as a function of time. The black line shows the
theoretical expectation of the width evolution, based on the quadratic expansion in Eq. (2.48).
The red dots show the numerical results, which agree with the expected theoretical results
in the black solid line.
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Figure 5: On the left panel we show the wavepacket propagation for small friction-mixing
case in the limit both α/(chk) and (k∆c2)/αch are small. The two eigenmodes decohere
after Tcoh and then exhibit considerable distortions that are reflected in the spread of the
Gaussians since Tbroad ∼ 9.6Tcoh. On the right panel, we show the first eigenmode wavepacket
width evolution as function of time. The black line is the theoretical prediction of the width
Eq. (2.48) while the red dots are the numerical calculations that correspond to the left panel
curves centered at 0. The model parameters in this example are α = 1, c2

h = 1, c2
s = 0.999,

k0 = 100, σx = 1.
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3.4.3 ∆c2=0

Assuming ch = cs, when ∆ν > 0 (to ensure stability of the solution in the no-mixing limit),
the set of four eigenfrequencies can be complex and given by:

θ1± = ±
√
c2
hk

2 − (|ων | −∆ν)2 + i∆ν − i|ων | , (3.52)

θ2± = ±
√
c2
hk

2 − (|ων |+ ∆ν)2 + i∆ν + i|ων | , (3.53)

if α 6 ∆ν. Here, we have introduced the frequency parameter ων ≡
√
α2 −∆ν2 associated

to the friction mixing. In general, we use the following convention for taking the square root
of a complex number:

√
A2ei2φ = |A|eiφ, and therefore we have that ων = i|ων | if α 6 ∆ν.

Here, we have defined the eigenfrequencies such that in the no-mixing limit of α→ 0, θ1± and
θ2± describe the propagation of h and s, respectively. In addition, from Eqs. (3.52)-(3.53)
we see manifestly that both eigenfrequencies have the structure θ± = ±ω+ iΓ, for some real
ω and Γ parameters determining the oscillation frequency and decay rate of the propagation
modes, respectively.

For α > ∆ν, we define the eigenfrequencies in a way that is disconnected from that
found in (3.52)-(3.53), since when α > ∆ν the set of four eigenfrequencies must be paired
differently in order to have the structure θ± = ±ω+ iΓ. In this case, we thus define θ1± and
θ2± as

θ1± = ±
√
c2
hk

2 + (±ων + i∆ν)2 + i∆ν ± ων , (3.54)

θ2± = ±
√
c2
hk

2 + (±ων − i∆ν)2 + i∆ν ∓ ων . (3.55)

Notice that even though it is not manifest, Eq. (3.54)-(3.55) do satisfy that only their real
part change signs with the ± solutions, whereas their imaginary part does not change signs,
when α > ∆ν. Since these definitions are not applicable in the no-mixing limit (as they
require α > ∆ν), there is no generic association between θ1 and the field h, thus the labels of
1 and 2 are chosen arbitrarily. In this case, we have chosen them in a convenient way so that
for the − propagating mode (the one propagating forward), the expressions in (3.52)-(3.53)
and (3.54)-(3.55) are actually the same.

Focusing in the − propagating mode, we obtain the propagation speeds of the two
eigenstates as vgA = <(∂θA−/∂k). Regardless of the parameter values of the model, we find

vg,1 = <

 c2
hk√

c2
hk

2 + (ων − i∆ν)2

 , vg,2 = <

 c2
hk√

c2
hk

2 + (ων + i∆ν)2

 . (3.56)

In the case of α 6 ∆ν, ων = i|ων | and both expressions for (∂θA−/∂k) are real, and generically
different. Therefore, in this case, the two eigenstates will eventually reach decoherence. On
the other hand, in the case of α > ∆ν, we have that ων is real, and both expressions for
(∂θA−/∂k) are complex. Nevertheless, both speeds vg,A are the equal since the arguments in
both equations are related by simple conjugation, and hence their real parts < are the same.
The two eigenmodes propagate always coherently in this case, although each eigenstate will
have a different exponentially suppressed amplitude.

The corresponding mixing matrix Ê will have off-diagonal components that may be
different and complex. Therefore, the mixing of h is described by a non-trivial mixing angle
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Θg and mixing phase φg, both depending on the model parameters. We explicitly find that
mixing to be given by:

Ê12−Ê21− =
α2

(∆ν − iων)2
, (3.57)

which vanishes in the limit of no mixing, when α→ 0. From here we obtain that the mixing
angle and phase, for the − propagating mode, are given by:

tan2 Θg = 1, tanφg = +
2ων∆ν

∆ν2 − ω2
ν

, if α > ∆ν, (3.58)

tan2 Θg =
α2

(∆ν + |ων |)2
, φg = 0, if α 6 ∆ν . (3.59)

Notice that in the case of α > ∆ν, one always has a fixed maximal mixing between both
modes. However, in the limit of α→ 0, the mixing angle vanishes.

In the case of α 6 ∆ν, the timescales of mixing, coherence, and broadening in the
large-k limit are given by:

Tmix ≈
∆νπ

chk|ων |
+O(k−3), (3.60)

Tcoh ≈ σA
(

chk
2

2|ων |∆ν
+

3

4

(|ων |2 + ∆ν2)

ch∆ν|ων |
+O(k−2)

)
, (3.61)

Tbroad,1 ≈ σ2
x

(
chk

3

(|ων | −∆ν)2
− 3k

2ch
+O(k−1)

)
, (3.62)

Tbroad,2 ≈ σ2
x

(
chk

3

(|ων |+ ∆ν)2
− 3k

2ch
+O(k−1)

)
. (3.63)

On the other hand, in the case of α > ∆ν, the timescales of mixing, coherence, and broadening
are given by:

Tmix =
π

ων
, (3.64)

Tbroad,1 = Tbroad,2 = σ2
x<
((

c2
hk

2 + (ων − i∆ν)2
)3/2

c2
h(ων − i∆ν)2

)
, (3.65)

and Tcoh is infinite since vg,1 = vg,2.
A toy model calculation with α > ∆ν is shown in Fig. 6, for the values ∆ν = 0.05,

α = 0.1, ch = cs = 1, k0 = 100, and σx = 1. Since the modes propagate coherently,
we only show the maximum of h as a function of time, using as reference the mixing time
Tmix. The black line describes the theoretical prediction, according to Eq. (2.25), while the
red dots indicate the numerical results. Note that since the eigenfrequencies are complex,
the amplitudes of both eigenmodes are suppressed by e−ΓAη (recall ΓA are the imaginary
components of the eigenfrequencies (3.54)-(3.55)). We observe that the amplitude of h is
a combination of the exponential suppression due to friction, together with an oscillatory
behavior of the two modes that have ω1 6= ω2. In this particular example, we have Γ1 ≈ Γ2,
and both modes contribute equally as tan2 Θg = 1, and the mixing phase is φg = +(2/3)π.
The exponential suppression of the envelope is shown in the cyan line. Notice that because
the mixing phase alters the overall amplitudes of |f1| ≈ |f2|, h not only oscillates due to
mixing but also can exceed this envelope.
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Figure 6: Maximum amplitude of h at different times, in the case of friction-mixing with
ch = cs and non-vanishing ∆ν. The black line is the theoretical prediction of the amplitude
Eq. (2.25) while the red dots are the numerical calculations. The cyan line corresponds to
exponential suppression of the amplitude of the wavepacket. Parameters: α = 0.1, ∆ν = 0.05,
c2
h = c2

s = 1, k0 = 100, σx = 1.

3.5 Chiral Mixing

Chiral mixing appears in theories that break parity symmetry, such as in the case for Yang-
Mills theories [47], and vector-tensor magnetic gaugid theories [17]. In the latter, for special
choices of model parameters, chiral mixing is the only form of mixing present. Motivated
by these models, in this section we isolate the effects of chiral mixing. Let us consider the
following polarizations-dependent EoM:[

Î
d2

dη2
+

(
c2
h 0
0 c2

s

)
k2 ±

(
µh γ
γ µs

)
k

](
hL,R
sL,R

)
= 0, (3.66)

where the ± correspond to the left-handed and right-handed circular polarizations. The
associated eigenfrequencies are different for the two polarizations:

(ω1;L,R)2 =

(
c2
h +

1

2
∆c2

)
k2 ± 1

2
µtotk −

k

2

√
4γ2 + (k∆c2 ±∆µ)2 , (3.67)

(ω2;L,R)2 =

(
c2
h +

1

2
∆c2

)
k2 ± 1

2
µtotk +

k

2

√
4γ2 + (k∆c2 ±∆µ)2 , (3.68)

if k∆c2±∆µ > 0, so that in the no-mixing limit of γ = 0, ω1 and ω2 describe the propagation
of the field h and s, respectively. Here, we have introduced µtot ≡ µh+µs and ∆µ = µs−µh.
Note that these eigenfrequencies are real, and therefore the eigenmodes will not exhibit
exponential decays in their amplitudes, i.e. ΓA = 0. We also note that the chiral terms µh,s
and γ affect the group velocities of the eigenmodes and therefore, for each polarization, the
two eigenmodes are generally expected to propagate at different speeds even when ch = cs.
Note that even if γ = 0, GWs would still be chiral if µh 6= 0, and left and right circular
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polarizations would propagate birefringently with different ω1;L and ω1;R. However, if in
addition γ 6= 0, then the detected GW signal h in the most general case would be the
superposition of 4 propagating modes: 2 eigenstates for each of the 2 polarizations given in
Eq. (3.67)-(3.68).

For the case with mixing, i.e. γ 6= 0, we define the mixing angles and relevant regime
timescales for the two propagating modes left and right separately. Since the eigenfrequencies
and the matrix Ê are real, the solution of h is fully determined by the mixing angle only,
with a mixing phase φg = π. In particular, we have that:

tan2 Θg;L,R =
4γ2(

|∆c2k ±∆µ|+
√

4γ2 + (∆c2k ±∆µ)2
)2 , (3.69)

which vanishes in the no-mixing limit. Furthermore, the amplitudes of the two eigenmodes
contributing to hL and hR will have the same functional form as that for the mass mixing
case, given by Eq. (3.12).

We emphasize that, contrary to the cases of friction and mass mixing, besides modi-
fications in the dispersion relation and amplitude of the signal, chiral mixing also leads to
changes in the polarization of the GW, which can be probed with multiple GW detectors.
Indeed, if we start with a given polarization at emission, then during propagation this po-
larization may rotate due to the chirality of the solution. More specifically, if a source emits
only left-handed or only right-handed polarization, then the detected signal will have the
same polarization as the emitted one since left and right polarizations do not mix with each
other. However, if a source emits any other type of polarization, then it will change during
propagation due to the different admixtures of L and R, which propagate differently, e.g. for
+ and ×:

h+ =
1√
2

(hL + hR); h× =
i√
2

(hL − hR). (3.70)

Therefore, it becomes relevant to characterize the polarization of the detected signal in order
to understand how it changed during its propagation. As explained in Appendix C, for each
wavepacket, one can calculate the total L and R polarization content of the wave (which will
be a superposition of the propagating eigenstates), and characterize the total signal with four
parameters {A, φ, β, χ}, where A determines the total amplitude of the signal, φ its phase,
and the angles β and χ its polarization. In particular, the parameter β describes the degree
of circular polarization through the ratio between the semi-major and semi-minor axes of a
general elliptical polarization (with β = 0 describing a linear polarization, and β = ±π/4 a
circular polarization), and χ gives the orientation of that elliptical polarization. At emission,
the wave will have a fixed β and χ polarization parameters, but as the signal evolves in time,
its polarization can change and have new β and χ parameters that depend on how long the
signal has been propagating for. The change in β due to propagation is called amplitude
birefringence, whereas the change in χ is called phase birefringence (see a review of parity-
violating theories with a single tensor field that exhibits these two types of effects in [28]).
The former is associated with a change due to propagation in the relative amplitude of L vs.
R and the latter in their relative phase; in particular:

hR
hL

= re4iχ; r = (cosβ + sinβ)/(cosβ − sinβ), (3.71)

where both angles range between [−π/4, π/4], and thus r > 0.
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In general, these angles may also depend on wavenumber, but for the Gaussians consid-
ered in this section, we can calculate these angles at the central wavenumber k = k0. From
Eq. (2.22), we know that the most general solution to left and right polarizations define these
relative amplitudes and phases and hence ∆χ and ∆β:

hp(η, k) = h0p(k) cos2 Θgp

√
1 + tan4 Θgp + 2 tan2 Θgp cos(∆ωp∆η)e−iθ

′
p , (3.72)

where p is a subscript indicating each polarization p = L,R. Also, we have defined ∆ωp =
ω2;p−ω1;p, and tan θ′p = (sinω1;p∆η+tan2 Θg;p sinω;2p∆η)/(cosω1;p∆η+tan2 Θg;p cosω2;p∆η).

In the coherence regime, the polarization angles β and χ can be calculated superposing
all the wavepackets and calculating the net hL and hR components of the signal, according
to Eq. (3.72). On the other hand, in the decoherence regime, one can characterize the
polarization content of each echo formed. For example, when ch = cs, for small deviations
from GR we will find that only two echoes form: one containing the propagating modes ω1;R

and ω1;L, and another one containing ω2;L and ω2;R. For each echo, one can calculate its own
β and χ angles in order to describe its observed polarizations. In a more general case with
cs 6= ch, four echoes will form, each one with a purely circular polarization left or right.

Next, we explore in more detail two limiting cases:

3.5.1 ∆c2 = 0

For ∆c2 = 0, the eigenfrequencies simplify to:

(ω1;L,R)2 = c2
hk

2 ± 1

2
µtotk ±

k

2

√
4γ2 + ∆µ2 , (3.73)

(ω2;L,R)2 = c2
hk

2 ± 1

2
µtotk ∓

k

2

√
4γ2 + ∆µ2 , (3.74)

if ∆µ 6 0 so that in the no-mixing limit of γ = 0, ω1 and ω2 describe the propagation of h
and s, respectively. The associated group velocities are:

vg1;L,R =
4c2
hk ± µtot ±

√
4γ2 + ∆µ2

2
√

4c2
hk

2 ± 2µtotk ± 2
√

4γ2 + ∆µ2k
(3.75)

vg2;L,R =
4c2
hk ± µtot ∓

√
4γ2 + ∆µ2

2
√

4c2
hk

2 ± 2µtotk ∓ 2
√

4γ2 + ∆µ2k
. (3.76)

From here we see that generically the group velocities of the four propagating eigenmodes
are different, and thus for a general initial wavepacket containing both left and right polar-
izations, one expects to see four echoes for long enough times, each one with a purely circular
polarization. However, in the large-k expansion, we see that there are only two distinct group
velocities:

vg1;L ≈ vg1;R ≈ ch +
1

32c3
hk

2

(
µtot +

√
4γ2 + ∆µ2

)2
+O(k−3), (3.77)

vg2;L ≈ vg2;R ≈ ch +
1

32c3
hk

2

(
µtot −

√
4γ2 + ∆µ2

)2
+O(k−3). (3.78)

Therefore, from here we see that right after decoherence of the left-handed wavepackets ω1;L

and ω2;L is reached (and similarly for right-handed), only two echoes will be observed, each
one containing a combination of both right and left polarizations.
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Nevertheless, for long enough times, four echoes may be observed, since the eigenmodes
ω1;L and ω1;R may eventually decohere, and similarly for the pair ω2;R and ω2;L. In order to
decohere, the separation of the eigenmodes needs to be larger than their width, which could
be changing due to broadening as discussed in Eq. (2.50). In particular, their decoherence
timescales will be given by their group velocity difference:

vg1;R − vg1;L ≈
1

32c5
hk

3

(
µtot +

√
4γ2 + ∆µ2

)3
+O(k−5), (3.79)

vg2;L − vg2;R ≈
1

32c5
hk

3

(
µtot −

√
4γ2 + ∆µ2

)3
+O(k−5). (3.80)

Combining with the Tbroad expression given below, the criteria for the full decoherence of the
four eigenmodes reads

1

2
(µtot ±

√
4γ2 + ∆µ2)

σx
c2
h

> 1, (3.81)

which must be satisfied for both ± signs for the two pairs of (ω1;L, ω1;R) and (ω2;L, ω2;R)
to decohere. Note that this condition does not depend on k at leading order, and therefore
whether decoherence is reached depends only on the choice of parameters.

On the other hand, the mixing angle simplifies to:

tan2 Θg;L,R =
4γ2(√

4γ2 + ∆µ2 + |∆µ|
)2 , (3.82)

so that the mixing angle vanishes in the no-mixing limit of γ → 0. Notice that, in this case
with ∆c2 = 0, the two mixing angles are the same. Depending on the parameter choice,
these mixing angles may be small or large, Because of the relation between Θg;L and Θg;R,
the amplitude of the four independent wavepackets |h0fA;L,R| satisfy the following relations:

|f1;L|
|f1;R|

=
|f2;L|
|f2;R|

= 1, (3.83)

where h0L and h0R are the initial conditions for left and right polarizations. The typical
timescales of mixing, coherence, and broadening in the large-k limit are given by:

Tmix;L,R ≈
4πch√

4γ2 + ∆µ2

(
1± µtot

4c2
hk

)
, (3.84)

Tcoh;L,R ≈ σA;L,R
8c3
hk

2

µtot

√
4γ2 + ∆µ2

(
1± (∆µ2 + 4γ2 + 3µ2

tot)

4µ2
totc

2
hk

)
, (3.85)

Tbroad,1;L,R ≈ σ2
x

16c3
hk

3

(µtot +
√

4γ2 + ∆µ2)2

(
1 +

3(±µtot ±
√

4γ2 + ∆µ2)

4c2
hk

)
, (3.86)

Tbroad,2;L,R ≈ σ2
x

16c3
hk

3

(µtot −
√

4γ2 + ∆µ2)2

(
1 +

3(±µtot ∓
√

4γ2 + ∆µ2)

4c2
hk

)
. (3.87)
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In the coherence regime, the explicit amplitudes of each circular polarization are given
by

|hL,R|2 =
|h0L,R|2

4γ2 + ∆µ2

[
2γ2 + ∆µ2 + 2γ2 cos

(√
4γ2 + ∆µ2

2ch
∆η

)

± γ2 sin

(√
4γ2 + ∆µ2

2ch
∆η

) √
4γ2 + ∆µ2µtot∆η

4c3
hk

]
+O

(
1/k2

)
,

(3.88)

where we see that at leading order in k, both left and right polarizations suffer the same
amplitude change due to propagation. It is only at order k−1 where differences appear and
hence change the degree of circular polarization β:

tanβ =
r − 1

r + 1
, (3.89)

which is explicitly given by

tanβ =
r0 − 1

r0 + 1
− r0

(1 + r0)2×

×
γ2 sin

(√
4γ2+∆µ2

2ch
∆η

)
2γ2 + ∆µ2 + 2γ2 cos

(√
4γ2+∆µ2

2ch
∆η

)√4γ2 + ∆µ2µtot∆η

2c3
hk

+O
(
1/k2

)
,

(3.90)

where r0 describes the initially emitted polarization that, in this paper, is assumed to be given
by the GR signal, r0 = |h0R/h0L|. Here we see that amplitude birefringence is suppressed by
1/k. In the coherence regime, the phase between the two polarizations is given by

tan(4χ− 4χ0) =
tan θ′L − tan θ′R

1 + tan θ′L tan θ′R
. (3.91)

For large k, this expressions approximates to:

tan(4χ− 4χ0) =
{

2γ2 sin ((ω2;L − ω1;R)∆η) + 2γ2 sin ((ω1;L − ω2;R)∆η)

+(−2γ2 −∆µ2 + ∆µε) sin ((ω1;R − ω1;L)∆η) + (2γ2 + ∆µ2 + ∆µε) sin ((ω2;L − ω2;R)∆η)
}

/
{

2γ2 cos ((ω2;L − ω1;R)∆η) + 2γ2 cos ((ω1;L − ω2;R)∆η)

+(2γ2 + ∆µ2 −∆µε) cos ((ω1;R − ω1;L)∆η) + (2γ2 + ∆µ2 + ∆µε) cos ((ω2;L − ω2;R)∆η)
}

+O
(
1/k2

)
, (3.92)

where for brevity we have defined ε =
√

4γ2 + ∆µ2 .
On the other hand, since in the high-k limit we find that Tcoh;R ≈ Tcoh;L (using Eq.

(3.85) and the fact that Tbroad;L ≈ Tbroad;R) and vg1;R ≈ vg1;L, then for propagation times
comparable to Tcoh;R a signal containing generally right and left-handed polarization will split
into two wavepackets: one containing the propagating modes ω1;R and ω1;L, and another
one containing ω2;L and ω2;R. In this case, the birefringence angle β for each of the two
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wavepackets is given by:

tanβ1 =
|h0R| cos2 Θg;R − |h0L| cos2 Θg;L

|h0R| cos2 Θg;R + |h0L| cos2 Θg;L
=
r0 − 1

r0 + 1
, (3.93)

tanβ2 =
|h0R| sin2 Θg;R − |h0L| sin2 Θg;L

|h0R| sin2 Θg;R + |h0L| sin2 Θg;L
=
r0 − 1

r0 + 1
, (3.94)

where we used the relation Θg;L = Θg;R. We see that each wavepacket does not change its
β angle during its evolution. In addition, the angle ∆χ for the two wavepackets that have
decohered are given by

∆χ1 = ∆χ0 +
1

4
(ω1L − ω1R) ∆η, (3.95)

∆χ2 = ∆χ0 +
1

4
(ω2L − ω2R) ∆η, (3.96)

where ∆χ0 is given by the initial conditions, where h0R/h0L = r0 exp{4i∆χ0}.
We show an example in Fig. 7, where we present separately how left and right-handed

polarizations evolve in time for a Gaussian initial condition. In this example we have γ = 1
and ∆µ = −1, hence tan2 Θg;L,R = (3 −

√
5)/2. We see that the amplitudes of the two left

and right-handed eigenmodes are different, however the second right-handed eigenmode has
the same amplitude as the second left-handed eigenmode, and similarly for the first right
and left-handed eigenmodes. For this parameter choice, we obtain that the mixing, coherent
and broadening timescales are Tmix;L,R = {5.64, 5.59}, Tcoh;L,R = {1.8 × 104, 1.7 × 104},
Tbroad,1;L,R = {9.2×105, 8.6×105}, Tbroad,2;L,R = {2.9×108, 2.9×108}. We thus confirm the
previous results and see that Tcoh;L ≈ Tcoh;R, because the propagating speed of the second
right-handed mode is the same as that one of the first left-handed mode, and viceversa (see
(3.77)-(3.78)). We also see that Tbroad � Tcoh thus there are negligible distortions for the
timescales shown in the figure.

Since a generic wavepacket may contain both right and left-handed polarizations, the
signal will suffer amplitude and phase birefringence. We give an example of these two effects
in Figs. 8 and 9. We show how an initially + polarized Gaussian wavepacket evolves in time,
during the coherence regime (and we thus present timescales comparable to Tmix � Tcoh). We
show the amplitudes of left and right polarizations of the total signal in the left panel of Fig. 8,
where we see that they evolve slightly different in time. Indeed, this can be seen from the
amplitude birefringence angle β, as shown in the left panel of Fig. 9 (dots are the numerical
results and black line is the analytical estimate using Eq. (3.90)). We can see that there
are only small variations in β, since its changes are suppressed by k according to Eq. (3.90).
In addition, we show the amplitudes of +, × polarizations of the total signal in the right
panel of Fig. 8 and see how a × component is generated during the propagation due to phase
birefringence. This corresponds to a rotation of the polarization during propagation, which
can be explicitly seen in the right panel of of Fig. 9 where we show the angle χ characterizing
the phase birefringence. We can see that χ oscillates between 0 and π/4 corresponding to
pure + and × polarizations, respectively. We demonstrate how the numerical example (red
dots) fits well the theoretical expectation (black line) of Eq. (3.92).

In Fig. 10 we show an example to illustrate that in the high-k limit the broadening
effects prevent the signal to fully decohere into four wavepackets, for this parameter choice.
Here we have chosen γ = 2, µh = 0.75, µs = 0.25, c2

h = c2
s = 1, k0 = 100, and σx = 1,

and chosen the initial wavepacket to be purely + polarized. We plot the propagation of the
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Figure 7: Wave packet propagation for the chiral mixing with ∆c2 = 0. The left and right
panels show left and right polarizations respectively. The amplitude of the two propagation
eigenmodes swap for the left and right polarizations. Parameters: γ = 1, µh = 1.5, µs = 0.5,
c2
h = c2

s = 1, k0 = 100, σx = 1.
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Figure 8: Maximum amplitude of the wave packet envelope during the coherence regime for
the chiral mixing with ∆c2 = 0. The initial wave packet is purely + polarized. Parameters:
γ = 1, µh = 1.5, µs = 0.5, c2

h = c2
s = 1, k0 = 100, σx = 1.

signal in a timescale much larger than the ‘naive’ coherence timescale between ω1,L and ω2;L

given by σx/∆vg;L, which compares the separation of the wavepackets to the initial width of
the signal. We see that the full decoherence criteria Eq. (3.81) is barely satisfied. Therefore,
although the peak separations of the four wavepackets keep growing and eventually become
much larger than the initial width σx, they never become significantly larger than the actual
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Figure 10: Wavepacket propagation at time η∆vg;L/σx = 200 for chiral mixing with
∆c2 = 0 in the high-k limit. In this example we have initially pure + polarization. During
propagation the peaks of the four purely left and right polarized wavepackets separate from
each other, but their broadening prevents them to fully decohere. Parameters: γ = 2,
µh = 0.75, µs = 0.25, c2

h = c2
s = 1, k0 = 100, σx = 1.

wavepacket widths σ1,2 because of their broadening effect. The separation of eigenmodes to
width ratio Eq. (2.51) saturates to 1.5 for the slower pair and 2.4 for the faster pair for long
enough times as shown in the figure.
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3.5.2 ∆c2 6= 0 and small mixing

In the limit |γ/(∆c2k)| � 1 and |∆µ/(∆c2k)| � 1, from Eq. (3.67)-(3.68) we find

(ω1;L,R)2 = ω2
1,fid;L,R −

γ2

∆c2

(
1∓ ∆µ

∆c2k

)
+O

(
γ4

∆c8k4

)
+O

(
γ2∆µ2

∆c6k2

)
, (3.97)

(ω2;L,R)2 = ω2
2,fid;L,R +

γ2

∆c2

(
1∓ ∆µ

∆c2k

)
+O

(
γ4

∆c8k4

)
+O

(
γ2∆µ2

∆c6k2

)
. (3.98)

Here, we have introduced the following fiducial eigenfrequencies:

ω1,fid;L,R =
√
c2
hk

2 ± µhk ; ω2,fid;L,R =
√
c2
sk

2 ± µsk , (3.99)

which are the frequencies when there is no mixing γ = 0. Therefore, Eq. (3.97)-(3.98) are
such that in the no-mixing limit, ω1 and ω2 describe the propagation of h and s, respectively,
regardless of the model parameter values. The associated group velocities in this limit are
given by:

vg1;L,R =
2c2
hk ± µh

2ω1,fid;L,R
+

(2c2
hk ± µh)

4∆c2ω3
1,fid;L,R

γ2 +O
(

∆µγ2

∆c4k2

)
, (3.100)

vg2;L,R =
2c2
sk ± µs

2ω2,fid;L,R
− (2c2

sk ± µs)

4∆c2ω3
2,fid;L,R

γ2 +O
(

∆µγ2

∆c4k2

)
. (3.101)

(3.102)

Contrary to the previous case with ∆c2 = 0, here we find that the group velocities of the four
eigenmodes are in principle different at leading order, and hence in the decoherence regime
there will be four wavepackets, with purely right and left polarization. Nevertheless, for some
values of the parameters, it may happen that two of the four wavepackets decohere first. In
the case of ∆c2 > 0, the mixing angle is suppressed by

tan Θg;L,R =
γ2

∆c4k2

(
1∓ 2∆µ

∆c2k

)
+O

(
γ4

∆c8k4

)
+O

(
γ2∆µ2

∆c8k4

)
, (3.103)

where the analogous expression for ∆c2 would be given by (tan Θg;L,R)−1.
Finally, we mention the typical time scales of mixing, coherence, and broadening:

Tmix;L,R ≈
2π

k(ch − cs)
± π(chµs − csµh)

k2chcs(cs − ch)2
, (3.104)

Tcoh;L,R ≈
σA;L,R

ch − cs
+
σA;L,R

(
4γ2c2

hc
2
s − µ2

hc
3
s(ch − cs) + µ2

sc
3
h(ch − cs)

)
8k2c3

hc
3
s(ch − cs)3

, (3.105)

Tbroad,1;L,R ≈
4σ2

xc
3
h∆c2k3

(4c2
hγ

2 + µ2
h∆c2)

(
1± 3(4c2

h∆c2γ2µh + 8γ2∆µc4
h + ∆c4µ3

h)

2kc2h∆c2(4c2
hγ

2 + µ2
h∆c2)

)
, (3.106)

Tbroad,2;L,R ≈
4σ2

xc
3
s∆c

2k3

(4c2
sγ

2 − µ2
s∆c

2)

(
1± 3(4c2

s∆c
2γ2µs + 8γ2∆µc4

s −∆c4µ3
s)

2kc2
s∆c

2(4c2
sγ

2 − µ2
s∆c

2)

)
. (3.107)

In the coherence regime, the explicit amplitudes of each circular polarization are given
by

|hL,R|2 =|h0L,R|2
[
1 +

2γ2

k2∆c4

(
1∓ 2

∆µ

∆c2k

)
(cos(∆ωL,R∆η)− 1)

]
+O

(
γ4

∆c8k4

)
+O

(
γ2∆µ2

∆c8k4

)
, (3.108)
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where ∆ωL,R = ω2;L,R − ω1;L,R. Therefore, the polarization of a given initial wave evolves
such that:

tanβ =
r0 − 1

r0 + 1
+

4γ2r0

∆c4k2(1 + r0)2
[(cos(∆ωR∆η)− cos(∆ωL∆η))

± 2∆µ

k∆c2
(−2 + cos(∆ωR∆η) + cos(∆ωL∆η))

]
+O

(
γ4

∆c8k4

)
+O

(
γ2∆µ2

∆c8k4

)
. (3.109)

Here we see that the changes in β are more suppressed than in the case with ∆c2 = 0. In
addition, the phase birefringence angle is given by:

tan (4χ− 4χ0) =
1

2
sec2 (∆ω1∆η)

{
sin (∆ω1∆η) +

γ2c2

∆c6k3

[
(k∆c2 − 2∆µ) sin(∆ωL∆η)

−(k∆c2 + 2∆µ) sin(∆ωR∆η)
]}

+O
(

γ4

∆c8k4

)
+O

(
γ2∆µ2

∆c8k4

)
, (3.110)

where we have defined ∆ω1 = ω1;L − ω1;R. Similarly to the case with ∆c2 = 0, here we see
that the angle χ varies during propagation at leading order in the large-k limit.

A toy model calculation is shown in Fig. 11. With ∆c2 = −0.1, k0 = 100, γ =
1, ∆µ = −1, we have tan Θg;L,R ≈ 10−2, thus the amplitude of the second eigenstate |f2h0|
is suppressed by two orders of magnitude compared to that of the first eigenstate |f1h0|
for both left and right polarizations. The difference between the amplitudes of left and
right polarizations is |f1|;L − |f1|;R = |f2|;R − |f2|;L ≈ 4 × 10−3. For this parameter choice,
we obtain that the mixing, coherent and broadening timescales are Tmix;L,R = {1.1, 1.3},
Tcoh;L,R = {19.8, 20.0}, Tbroad,1;L,R = {1.6×105, 7.3×104}, Tbroad,2;L,R = {1.3×105, 8.0×104}.
We then see that Tbroad � Tcoh and hence the wave distortions are negligible for the
timescales shown in the plots. It is important to notice that for the parameters of this
example, the velocity difference between the four eigenstates have the following hierarchy:
|vg1;L − vg2;L| ∼ |vg1;R − vg2;R| � |vg1;L − vg1;R| ∼ |vg2;L − vg2;R|. This means that for a
propagation time ∆η ∼ Tcoh;L,R a general signal containing the four eigenstates will split
into two echoes, one containing (ω1;L, ω1;R) and another one with (ω2;L, ω2;R). Each echo,
will have a birefringence angles given by:

tanβ1 =
|h0R| cos2 ΘgR − |h0L| cos2 ΘgL

|h0R| cos2 ΘgR + |h0L| cos2 ΘgL
≈ r0 − 1

r0 + 1
− 8γ2∆µr0

(1 + r2
0)k3∆c6

+O
(
γ4∆µ

∆c10k5

)
,

(3.111)

tanβ2 =
|h0R| sin2 ΘgR − |h0L| sin2 ΘgL

|h0R| sin2 ΘgR + |h0L| sin2 ΘgL
≈ r0 − 1

r0 + 1
+

8∆µr0

(1 + r2
0)k∆c2

+O
(

∆µ2

∆c4k2

)
. (3.112)

Contrary to the previous case with ∆c2 = 0 in which the signal splits into two wavepack-
ets containing (ω1;L, ω1;R) and (ω2;L, ω2;R), none of which exhibit amplitude birefringence
(see Eqs. (3.93)-(3.94)), here we see that the two wavepackets exhibit amplitude birefrin-
gence, albeit small due to the k suppression. In addition, the phase birefringence of the two
wavepackets is given by:

∆χ1 = ∆χ0 +
1

4
(ω1L − ω1R) ∆η, (3.113)

∆χ2 = ∆χ0 +
1

4
(ω2L − ω2R) ∆η. (3.114)

For the example if Fig. 11, tt is only at ∆η & 102Tcoh;L,R that the signal will split into four
echoes.
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Figure 11: Wave packet propagation for the chiral mixing in the limit γ/(∆c2k) � 1 and
∆µ/(∆c2k) � 1. The left and right panels show left and right polarizations respectively.
Parameters: γ = 1, µh = 1.5, µs = 0.5, c2

h = 1, c2
s = 0.9, k0 = 100, σx = 1.

4 Observational implications

After developing the framework for the GW propagation with additional tensor fields and
applying it to toy Gaussian wavepackets, we now proceed to analyze the observational impli-
cations of a modified propagation for real compact binary coalescence signals. As discussed
in Sec. 2.2, the main difference between the coalescence scenario compared to the Gaussian
model is that the coalescence signal contains observed frequencies with distinct arrival times,
or equivalently, contains frequency components whose stationary phase point evolves across
the wavepacket — the famous chirping — that current detectors measure.7 Thus, chirping
GW signals contain information about both amplitude and phase evolution, as opposed to
the Gaussian signal analyzed in the previous section where we only discussed its amplitude.
The other main difference with respect to our analysis in Sec. 3 is that we now allow pa-
rameters to vary over cosmological time scales. Therefore, in this section, we implement our
WKB formalism and analyze the different propagation regimes of the signal as a function of
the source redshift as opposed to its propagation time. For clarity, we will recover the speed
of light c in the analytical expressions of this section.

In order to compute the modifications of the waveform realistically, we must propagate
a spherical wave, as opposed to the plane wave analyzed in the previous section. The main
difference is the diminution of the flux due to surface area during propagation, since at the
detector the wavefronts are planar to good approximation. We thus generalize the plane wave
solutions obtained in the previous sections (see Eq. (2.39)-(2.40)) and schematically express

7It is to be noted that a compact binary coalescence can also lead to quasi-monochromatic signals if they
are detected early enough in the inspiral. This is expected for example to happen for some sources detected by
the future space-based detector LISA [48]. Here, however, we focus on signals that have sufficient frequency
evolution during the observation time.
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the total GW signal, in terms of the source redshift zs, as:

h(k, zs) = hfid(k, zs)
∑
A

fA(k, zs)e
−i

∫ zs
0 ∆ωA(k,z)/H(z)dz, (4.1)

where H(z) is the Hubble rate, and the subscript A describes all the possible propagation
eigenstates that conform the total signal. Here we have assumed that without modified
propagation effects, there is a fiducial detected signal hfid(k, zs) that propagates from the
source to the observer according to the GR dispersion relation ω = ck. Since the emitted
signal is assumed to be a spherical wave, we then have that hfid(k, zs) ∝ e−ick

∫
dz/H(z)/dL(zs)

where the proportionality factor depends solely on the emission process, and dL(zs) is the
true luminosity distance to the source at redshift zs. In addition, in Eq. (4.1), we have
introduced ∆ωA = ωA− ck, the difference of the dispersion relation with respect to GR, and
the functions fA(k, z) that are determined by the mixing matrix Ê(k, η), the damping factors
ΓA(k, η) and the first-order WKB correction matrix Q̂(k, η), according to Eq. (2.39). From
Eq. (4.1), we see that waveform distortions with respect to GR may appear due to:

• Slow-varying amplitude and phase changes carried by fA ∈ C,

• Phase changes on each eigenstate due to their non-trivial dispersion relations,

• The way the eigenstates interfere with each other during the coherent regime to give
the net GW signal.

In all of the simple examples illustrated in this paper, only the two last mentioned effects
modify the shape of the GW signal (i.e. its phase and amplitude frequency evolution across
the signal), since frequency variations of fA (that may also affect the GW signal shape)
are found to be highly suppressed in the large-k limit and thus only produce an overall
amplitude rescaling that maintains the signal’s shape. However, we emphasize that this is
not a general feature since different types of mixing could lead to non-negligible frequency-
dependent variations in fA. This happens for example when there is mass, friction or chiral
mixing combined with tensor modes with different speeds, ∆c2 6= 0. This will also happen
if two or more types of mixings are combined. During decoherence, a frequency-dependent
fA(k) implies that individual echoes will be distorted even if they do not have a modified
dispersion relation.

Since GW detectors observe the time evolution of GW signals, emitted and detected
GW waveforms are actually provided as function of time or in temporal Fourier (frequency)
space, as hfid(ω, zs), where ω is determined by properties of the GW source, such as the
motion of a binary of compact objects. However, as described in more detail in Appendix
B, if the difference between the MDR of each eigenstate is small for the detected range
of frequencies, then the initial conditions in ω space can be directly translated into initial
conditions in k space, where both eigenstates have approximately the same momentum k. In
this case, one can assume that both eigenstates have the same fiducial waveform in k space as
well hfid(ω(k)), where the relation between ω and k is obtained assuming that the deviations
from GR are small. In practice, we thus model the frequency space signal by taking Eq. (4.1)
and approximating ω ≈ ck:

h(ω/c, zs) = hfid(ω/c, zs)
∑
A

fA (ω/c, zs) e
−i

∫ zs
0 ∆ωA(ω/c,z)/H(z)dz ≡

∑
A

hA , (4.2)

– 41 –



and the real space signal can be obtained by Fourier transforming this solution:

h̃(zs, t) =
1√
2π

∫ ∞
0

dω<
{
eiωth(ω/c, zs)

}
. (4.3)

We emphasize that by making this simplifying assumption of ω ≈ ck, we are describing
correctly the phase shifts ∆ωA and functions fA only at leading beyond GR. This can,
however, be improved by replacing instead the exact relations ω1(k) and ω2(k) for the initial
conditions of the first and second propagating eigenstate, respectively. Nevertheless, in all
the examples studied in this section, the leading-order deviations from GR are enough to
describe the detected waveform accurately. Since the phase of each eigenstate is key to assess
the waveform distortions, we further define the detected eigenstates hA as the contribution
of eigenstate A to the detected signal h. Note that hA are different from the propagation
eigenstates HA introduced in Sec. 2 since hA carries the mixing elements from Û as well as
the amplitude corrections from the WKB and damping through fA.

We emphasize that GWs carry two tensor polarizations and thus there will be a solution
like Eq. (4.1) for each polarization, which is obtained by propagating the two polarizations
emitted. The polarizations are typically cast in the + and × or L and R basis. For coalescing
binary sources, the emitted polarization depends on the inclination between the binary’s
angular momentum and the line of sight. The detected strain hs by a given GW detector,
will be a linear combination of the two polarizations, determined by the polarization-response
of the detector, which can be generally expressed as:

hs(k, η) =
∑
p

Fp(θ, φ, ψ)hp(k, η), (4.4)

where Fp (with p indicating the two possible polarization states) are the antenna-pattern
functions that depend on angular parameters characterizing the location and orientation of
the source with respect to a detector; θ and φ indicate the position of the source in the sky,
and the polarization/orientation angle ψ indicates the orientation of the binary system. For
LIGO/Virgo-type interferometers, these functions for + and × polarizations can be found
e.g. in [49]. Analogous expressions for left and right-handed polarizations can be obtained
by using the relations in Eq. (3.70). If there is no chiral mixing, then each polarization
+ and × propagates equally, and the total strain will be described by two propagating
eigenstates. However, if there is chiral mixing, then each polarization propagates differently
and in principle the total strain will be described by four propagating eigenstates: two for each
left and right-handed polarization. In order to measure the polarization states individually,
a global detector network of at least three interferometers is necessary.

Before considering the different mixing scenarios and the details of their phenomenol-
ogy, we highlight that in our formalism the distortions of the waveform follow naturally
from solving the propagation equations, and the general solution is valid for any emitted
signal, irrespective of its complexity (e.g. coming from equal or unequal-mass binaries, with
orbits with precession, eccentricity, etc), and it naturally selects the group velocity as the
key quantity characterizing the propagation (as opposed to the particle velocity). Therefore,
our approach is fundamentally different to the typical GW analysis that searches for phase
distortions due to a MDR in an inspiraling, circular binary using the stationary phase ap-
proximation (SPA) and the particle velocity [26, 27], which has been used by LIGO–Virgo [9].
We have checked that the SPA with the group velocity is a limiting case of our propagation
approach.
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4.1 Main effects: echoes, phase distortions, oscillations and birefringence

In full analogy with the general discussion in Sec. 2.2 and Table 1, in this section we intro-
duce the coherence, mixing and broadening redshifts—zcoh, zmix, zbroad—which characterize
different regimes in the propagation of the signal. We discuss the observational signatures
that are expected in the GW signal, depending on how the source redshift z compares to zcoh,
zmix, and zbroad. Table 2 summarizes different observable scenarios associated to each prop-
agation period that we also exemplify in Fig. 12 with realistic GW waveforms from a binary
coalescence that assumes the same emission of GWs as in GR, but a modified cosmological
propagation. In addition, all the concrete examples presented in this section assume that
the background cosmological evolution is not modified due to the presence of the additional
tensor field, and hence assumed to evolve as in the ΛCDM model.

Regime Observables
0) z � zmix, zbroad, zcoh Unmodified waveform
1) zbroad < z � zmix, zcoh Single event with modified phase evolution
2a)

zmix < z < zbroad, zcoh
Single event with dGW

L 6= dL and constant phase shift, or
2b) frequency-dependent amplitude modulation with phase distortions
3) zmix, zbroad < z < zcoh Single event with modified phase evolution
4) zcoh < z < zbroad Echoes with different arrival times and dGW

L

5) zcoh, zbroad < z Echoes with different arrival times and phase distortions

Table 2: Summary of the observational effects in different propagation regimes, for a redshift
source z. An unmodified waveform refers to one that propagates in the same way as in GR,
and therefore has a dispersion relation ω = ck and its amplitude decays as 1/dL for radial
waves. In addition, dGWL is the inferred GW luminosity distance, that may be different
from dL due to the GW modified propagation. In regimes 0-3, there will be single GW
event detected, whereas in 4-5 there will be multiple GW events (or echoes). The modified
phase evolution and amplitude could be different for each polarization if chiral interactions
are present, which leads to the additional observational effect of birefringence (not shown
explicitly in this table). Note that since each eigenstate has its own zbroad timescale, it could
be that the various eigenstates are not in the same regime at the same time. Similarly, if
there are more than two eigenstates, there may be multiple decoherence timescales, and for
a given source redshift some of the eigenstates may have decohered whereas others may not.
Moreover, whenever z > zmix, there could be distortions in each waveform associated to a
frequency dependent mixing angle, which may lead to additional observational signatures
that, for simplicity, we do not break down in this table. A graphical representation of the
waveform distortions associated with each of the propagation regimes is presented in Fig. 12.

Previous works in the literature have considered some of the effects that we will discuss
next in specific theories. For example, the modification of the apparent luminosity distance
dGW
L in gauge field dark energy theories have been studied in [24, 25]. Similarly, modification

of dGW
L in bigravity have been considered in the context of LIGO–Virgo [23] and LISA [8]

observations. In addition, the decoherence of the wavepacket in bigravity has been explored
in [22]. Lastly, a large overview of the different observational effects during the coherence
regime for the different types of mixing (mass, friction, chiral) was performed in [11]. Here,
we follow a similar phenomenological approach to [11] but extend their analysis discussing
the decoherence regime together with the coherence period, while paying attention to the
waveform distortions and phase evolution.
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Figure 12: Examples of the 6 different types of waveforms from a binary coalescence due
to a modified GW propagation, assuming a GR emission. In grey, we show the signal that
would be expected in GR, and in blue the modified signal due to a non-trivial cosmological
propagation. Each panel represents a propagation epoch following Table 2, without showing
case 0 as that is indistinguishable from GR. Specifically, each panel corresponds to: 1) single
massive graviton with mg ∼ 10−21eV/c2; 2a) friction mixing with ν ∼ H0; 2b) and 3) mass
mixing with mg ∼ 10−21eV/c2; 4) velocity mixing with ∆vg ∼ H0, and 5) mass mixing with
mg ∼ 10−21eV/c2 (note that in this case zcoh, zbroad,2 < z < zbroad,1). In all the examples we
have fixed the parameters such that at least the one eigenstate propagates at the speed of
light. All these modifications could happen independently for each GW polarization leading
to birefringence. Moreover, each eigenstate could be in a different propagation epoch at the
same time so that, for example, only one of the echoes displays distortions.
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4.1.1 Coherence and Echoes

In order to understand the phenomenology of a modified propagation, the first step is to
determine if the observed signal will be composed of single or multiple waveforms. Echoes of
a given emitted signal can only happen when the eigenstates have different group velocities
vg,1 6= vg,2. We define the conformal time delay between two eigenstates, for a source at zs
measured by the detector today as:

∆η(zs) = mink[ηo,slowest(k)]−maxk[ηo,fastest(k)]

≈ mink

[
ηe(k)−

∫ zs

0

(
vg,slowest(z, k)

c

)
dz

H(z)

]
−maxk

[
ηe(k)−

∫ zs

0

(
vg,fastest(z, k)

c

)
dz

H(z)

]
, (4.5)

where we have defined the group velocities of the fastest and slowest propagating eigenstates
as vg,fastest and vg,slowest. Here, ηo,fastest(k) and ηo,slowest(k) are the observed arrival times of
a mode k belonging to the fastest and slowest eigenstate, respectively. Also, the maximum
and minimum functions are taken with respect to the frequency range of the GW signal that
a given GW detector observes, and select the value of k that maximizes and minimizes the
observed arrival time. We include this because depending on the mixing model the high or
low frequency modes of each eigenstate could arrive earlier or later. The first line is such
that for ∆η < 0, regardless of the propagation distortions and duration of the signal in time,
the two wavepackets overlap at the detector. In the second line of Eq. (4.5) we rewrite the
arrival times in terms of the emitted times (which are assumed to be the same for a given
k value in both wavepackets) and the group velocities vg,fastest and vg,slowest, and make the
approximation that these two group velocities are close to the speed of light. Here, in the
integral we use the group velocities in comoving coordinates per conformal time, as we have
been using throughout this paper. For a given source, such as an inspiraling binary, one
can obtain the emission times between two frequency components ηe(k1) − ηe(k2) from GR
models of gravitational waveforms.

Whenever ∆η(z) < 0, the wavepackets of each eigenstates are still traveling together
(as they are at least partially superposing in time domain), whereas for ∆η(z) > 0 the
wavepackets have a finite temporal separation among them. Therefore, we can define the
coherence redshift zcoh as:

∆η(zcoh) = 0. (4.6)

This quantity is the one that distinguishes between the two blocks of rows in Table 2. Cases
0-3 correspond to a single continuous detected signal (z < zcoh), while 4-5 display echoes
(z > zcoh). Note that Eq. (4.6) defines decoherence as a property of the time-domain signal.
It would also be possible to distinguish the arrival of each eigenstate directly in the frequency
domain. In that case, it may be possible to detect decoherence earlier than in time domain,
and it will be limited by the frequency resolution rather than frequency range of the detector.

When z > zcoh, decoherence is achieved and multiple signals or echoes will arrive at
different times, with possibly different amplitudes, polarizations, and phase evolutions. In
order to identify these echoes with current or foreseeable future detectors, the time delay
should be larger than the detector’s temporal resolution, but also shorter than the span of
observation projects, that is ∼ 10 years. Echoes can be confirmed as two events coming
from the same sky location. The observation and characteristics of these echoes will serve to
infer a number of properties about the type of mixing. For instance, the number of echoes
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expected depends on the number of eigenstates with different group velocities. Therefore,
echo-counting could be used as a direct way to determine the number of gravitational degrees
of freedom. For example, in theories with N metric fields, the so-called multi-gravity [50],
there is always one massless mode and N − 1 massive ones. Therefore, there could be up
to 2N different echoes from the two tensorial polarizations of each metric field. Something
similar happens in vector field theories with N copies of the SU(2) group [24]. Each copy of
SU(2) will have an associated effective tensor mode and thus echo.

Note that two or more similar echoes (or images) coming from the same sky location can
also be produced in GR, due to strong lensing caused by inhomogeneities in the Universe. In
the case of strong lensing, two images from a single source are also expected to have different
arrival times, amplitudes (or magnifications), and can even have a different phase evolution
as well [49, 51–53]. However, the time delay distribution of strong lens images depends on
the distribution of astrophysical objects [54], whereas for the echoes studied in this paper, it
depends on the modified gravity parameters instead. Therefore, information about the entire
population of GWs may help distinguish different time delay distributions of echoes and their
origin. In addition, in the case of modified gravity, one would expect all events further than
a threshold distance to exhibit the same number of echoes, which can be searched for in
the data. However, the formation of multiple images by strong lensing is an effect whose
probability of occurrence grows with distance, and the number of images depends on the
details of the individual lensing systems, see e.g. [55]. Furthermore, lensing would also affect
a possible EM signal from the GW source and its galaxy host, and hence one would expect
multiple EM images to arrive to the observer as well [56], contrary to the case of modified
gravity.

Echoes may also be detected due to a modification of the GW signal during emission.
This is the case for exotic compact objects (ECOs) without a horizon, where authors have
shown that these objects have reflective surfaces and can therefore produce infinitely many
echoes of GWs, with decreasing amplitude, and fixed time delays among them [57–59]. This
prediction on number of echoes, amplitude hierarchy, and time delay distribution is funda-
mentally different to what is expected in the mixing models studied in this paper.

4.1.2 Mixing

While in the coherence period, z < zcoh, the important characteristic of the wavepacket is
whether the eigenstates interfere differently after propagation or not. This can be determined
computing the mixing redshift zmix as

2π ∼
∣∣∣∣∫ zmix

0
∆ω(η, k∗)

dz

H(z)

∣∣∣∣ , (4.7)

where, as in the previous sections, ∆ω = ω2 − ω1 is the difference in the dispersion relation
of the two eigenstates, and k∗ is some appropriate wavenumber representative of the signal.
Since generically the dispersion relation may depend on the wavenumber k, in practice it may
be convenient to choose different values of k∗ in Eq. (4.7) depending on the signal. In the case
of inspiral binaries of compact objects, we define zmix using a value of k representative for
most of the duration of the signal during the inspiral, which we will choose as the minimum
frequency observed by a given GW detector, k∗ = kmin. Cases 2-3 in Table 2 display mixing.

For z � zmix, zcoh, case 1, there is no effect from the additional tensor mode and the
modified propagation is equivalent to that of a single tensor, which could itself still have phase
deviations from GR (depending on how it compares to the broadening redshift that will be
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introduced next). When zmix < z < zcoh, cases 2-3, the two propagation states interfere with
each other, leading to a new net GW signal that can be scrambled compared to the original
emitted signal. This can happen when both waves propagate at the same speed and hence
travel together from source to observer, or when their speed difference is small enough such
that they do not have time to decohere before reaching the observer. During this period,
there could be differences with respect to GR in the phase evolution and the amplitude of
the GWs, as in cases 2b-3 and 2a, respectively. Because mixing effects depend on the source
distance, observations on a population of GWs events would help constrain this coherent
regime with mixing.

A special case of the regime zmix < z < zcoh is when the mixing frequency ∆ω(η, k) is
nearly constant in k throughout the frequency range of the detected signal. In such a case,
the signal may suffer a constant phase shift and an overall rescaling in amplitude that are
degenerate with simple GR waveform templates of non-precessing nearly equal-mass binaries.
This corresponds to case 2a in Table 2, which will be discussed in more detail in subsec. 4.1.4.
If the GR signal contained multiple frequency components at a given time (such as from
binaries with unequal masses, spin or eccentricity precession), the detected waveform in time
domain will be distorted due to the constant phase shift, thus breaking the GR waveform
template degeneracy. This is analogous to the constant phase shift that can appear in strong
lensing in GR [49, 51, 52]. However, in this paper we only analyze simple waveforms from
nearly-circular binaries with equal masses, in which case the aforementioned constant phase
shift will be degenerate with source parameters and will lead to a GR waveform with shifted
parameters. Note that, for a chirping GW signal, case 2a only occurs when the phase and
group velocity difference between the propagating eigenstates are such that ∆vph � ∆vg.
Whenever the group velocity difference is comparable or larger, there will be distortions
(especially near the chirp) that lead to case 2b.

4.1.3 Broadening

Independently of whether the signal is in the coherence or decoherence regime, waveform
distortions can arise due to a dispersive (i.e. frequency-dependent) group velocity. Analo-
gous to the definition of Tbroad in Eq. (2.47), we define a broadening redshift zbroad for the
wavepacket of each eigenmode as the redshift when the duration of the signal expected in
GR σt becomes comparable to the observed time delay between frequency components across
the wavepacket:

cσt ∼
∣∣∣∣∫ zbroad,A

0
(vg,A(z, kmax)− vg,A(z, kmin))

dz

H(z)

∣∣∣∣ , (4.8)

where kmin and kmax are associated to the minimum and maximum frequencies that a detector
observes from the signal8. Note that each eigenstate may have its own zbroad,A since they
may have different group velocities vg,A. As discussed in Sec. 2.2, besides changes to the
overall length/duration of a signal, a modified propagation also changes the phase evolution
of the signal compared to GR, which will be generally given by Eq. (2.53).

In contrast with the Gaussian toy-model, the duration of the observed signal σt is a
detector-dependent quantity since it is determined by the the overlap between the signal
arriving to the observer and the sensitivity frequency range of the detectors. In the case of a

8We could have again defined a slightly different condition for zbroad specifically for temporal wavepackets,
as

∫ zbroad

0
(1− vg(kmax)/vg(kmin))dz/H ∼ σt, which is expected to give a similar result as (4.8) in the regime

we are interested in where vg ≈ c and the frequency variations in vg are small.
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nearly equal-mass binary coalescence of compact objects, we estimate this quantity by using
the fact that the observed time interval between coalescence and the reception of the signal at
a frequency f? (that is sufficiently smaller than the coalescence frequency) is approximately
[60]:

∆tmerge =
5tMz

(8πtMzf?)
8/3

, (4.9)

where tMz = GMz/c
3 ' 5µs(Mz/1M�), for a binary with a redshifted chirp massMz. The

duration of the signal can then be approximated as σt ' ∆tmerge(fmin), where fmin is the
minimum frequency a detector is sensitive to. This time-frequency relation for the evolution
of binary systems may also be used to analytically obtain the emission time delay between
two frequency modes, as needed for the calculation of zcoh in Eq. (4.5).

Cases 1, 3 and 5 of Table 2 are all examples of waveforms with broadening. In case
1 the distortion of the waveform is purely caused by the MDR while in case 3 the total
distortion is a combination of the MDR and the interference due to mixing. In case 5, each
of the eigenstates could be modified due to the MDR (in analogy to case 1), as well as
any frequency-dependent mixing amplitudes fA, although the broadening redshifts could be
different for each of them.

From the perspective of a global GW catalog/population analysis, modifications of the
waveform could be seen in different ways. If the GW events in the catalog have all redshifts
smaller than the coherence and mixing redshift of the modified gravity theory (case 1), then
the population analysis could constrain a single dispersion relation valid for all the events. If
instead the events had a z such that zbroad, zmix < z < zcoh (case 3), one would have to model
additional time and frequency dependent amplitude corrections to the GR template. On the
other hand, if all the GW events were in the decoherence regime (case 5), echoes would
lead to two sub-populations of events, each of them fitting a different dispersion relation
associated to each eigenstate. In the intermediate case, when there are GW signals with z
above and below zcoh (but still below zmix), one would find that the dispersion relation of
events at different redshifts changes: low-redshift would lead to a single dispersion relation
and high-redshift would lead to two sub-populations with independent dispersion relations.

4.1.4 Biased Parameter Estimation

Here we discuss special cases of modified propagation in which individual GW signals suffer
modifications that can be degenerate with GR waveform template parameters, including
cases with chiral interactions that exhibit birefringence.

Luminosity distance and coalescence phase. For signals with z < zbroad, there will
be no distortions of the waveform due to a dispersive group velocity, but there could still
be modifications if there is mixing when zmix < z < zbroad, zcoh (for example case 2b).
However, if the mixing frequency ∆ω(η, k) is nearly constant in k for the range of frequencies
observed by a given detector, then the effect of interference due to ∆ω will only introduce an
overall rescaling of the amplitude and frequency-independent phase shift of an individual GW
signal. For a population of GW events, since the model parameters will typically evolve on
cosmological timescales, mixing will lead to a redshift-dependent phase shift and oscillatory
pattern in their amplitudes.

However, for an individual event, a frequency-independent phase shift will be degenerate
with the coalescence phase parameter of GR waveform models (which indicates the location
of the compact objects in the orbit at the moment of the merger) for the simple GW signals
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analyzed in this paper (those dominated by ` = |m| = 2 spherical harmonic multipoles), as
shown in [49]. In addition, the overall change in amplitude of the detected signal is degenerate
with the luminosity distance of GR waveform models. Therefore, an analysis of these signals
with modified propagation will lead to a biased inferred luminosity distance and coalescence
phase, when using GR waveform templates. This is because, from a data analysis perspective,
these parameters are constrained via parameter estimation (PE) given a template bank.

On the contrary, if ∆ω(η, k) varies in k considerably across the detected signal, then
interference will lead to additional phase distortions (even for simple waveforms) that cannot
be generally mimicked by a change in GR waveform parameters (for example in cases 1 and
3). In general, a degeneracy between detected individual GW signals and GR waveform
templates can only happen in regimes where waveform distortions are either suppressed or
mimicked by a change in GR waveform parameters (for example for case 2a with mixing, and
case 4 without mixing).

More generally, a modified GW propagation can introduce waveform distortions, which
means that the inference of dGW

L (and other waveform parameters) is subject to bias if the PE
is not performed using beyond GR waveforms. Assuming that the right waveforms are being
used for the amplitude and phase evolution (otherwise some unknown bias in any waveform
parameter could be introduced), we can then define the modification in the dGW

L from the
envelope of the GW waveform, tracking the maximum amplitude at the coalescence frequency.
The change of the luminosity distance will have a direct impact on GW observations. For a
single event, if no EM counterpart is observed, a bias in dGW

L will lead to a biased inferred
source redshift (and source masses of the binary), or a biased Hubble rate today H0. These
degeneracies can however be partially broken if an EM counterpart counterpart is observed,
which can constrain directly the source redshift z. GW170817 constituted the first such
measurement and led to constraints in dGW

L /dL at z ' 0.009, see e.g. [40, 61] for a given H0.
On the other hand, when zcoh < z < zbroad, there could be a constant rescaling in

the decoherence regime, simply because we will be observing a single eigenmode that only
contains partial energy of the total signal (case 4). This again would be completely degenerate
with GR waveform templates, by either shifting the Hubble rate today H0 or the source
redshift and masses. Therefore, if only sources at z > zcoh are observed, the mixing could
not be disentangled, unless external observations that fix the value of H0 or z were used in
combination.

Even if individual events with modified propagation due to mixing fit well GR wave-
form templates, a population analysis would show a source-redshift oscillation of the GW
luminosity distance that would hint to non-trivial physics. This is because if the amplitude
of the GW changes with redshift, the probability of detecting a source at a given redshift and
mass also changes. This, as a consequence, affects the rates of events and their observed mass
distribution [62], with an oscillatory pattern that could be potentially identified as modified
gravity. However, it is important to note that there are still many uncertainties about the
merger rate history of binary black holes. Therefore, this intrinsic astrophysical uncertainties
would limit the capabilities to test modifications of the GW propagation from a population
perspective.

In the case of GW events that mimic GR waveforms and that are detected in the deco-
herence regime, all the individual events would have a constant rescaling of the amplitude.
However, the two echoes will generally have different amplitudes. If only the echoes with
largest amplitudes are detected (e.g. if the other echo has a small amplitude under the signal-
to-noise threshold of detectability, or if it has distortions that do not allow to make a detection
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with current match-filtering techniques), then the population of events with z > zcoh would
be degenerate with a re-scaling of the local merger rate, and GW data alone could not dis-
tinguish this scenario from GR. However, if both echoes are detected, the GW events would
appear in pairs that have the same phase evolution, and all detected pairs would have the
same amplitude ratio, and one could use that information to identify the effect of modified
gravity.

Polarization. All the previously discussed regimes could apply separately to left and right-
handed polarizations, if there is a chiral cosmological interaction. In general, since a total
signal could contain both types of polarizations, the signal will be composed of four eigen-
states, which may have various decoherence timescale, e.g. the signal may decohere into two
wavepackets first, and then into four (each one of the four being only purely left or right
handed). The different behavior of the left and right-handed polarizations means that the
signal will change its polarization from emission to detection, leading to additional changes
to source PE. The change in the polarization is characterized by the angles β and χ that de-
fine the degree of circular polarization, and the orientation of the polarization, respectively.
If these angles β and χ are nearly independent of k for the range of frequencies observed
by a given detector, then a change in them during propagation will again lead to GR-like
waveform with biased source parameters; the orientation ψ and inclination ι of the source.
This polarization content can be measured with multiple detectors. The detailed observa-
tional consequences of birefringence are model dependent (e.g. whether both β and χ will
vary during propagation, or only one of them), and must be analyzed case by case.

In addition to individual events, chirality could be tested in the entire population of
GWs if the polarization has a special distribution. For instance, propagation could enhance
the amplitude of one of the two polarizations, leading the events to exhibit preference for one
specific polarization (e.g. in dynamical Chern-Simons theories [63, 64]). Another example is
if the left and right-handed eigenstates have different propagation speeds, in which case all
the events with z > zcoh would lead to echoes that are purely right and left handed. For
LIGO/Virgo, there have been tests of chirality to check if sources tend to have mostly right-
handed or left-handed polarization (which translates into biases of the source parameters
that show preference for face-on or face-off binaries) [64], and this has been confirmed not
to be the case. Since these propagation effects accumulate over distance, chirality may not
be visible for present GW detectors (nearby sources), but may be for the next generation of
GW detectors. One can also test the chirality of primordial GWs via the CMB polarization
[65–68].

4.2 Velocity mixing

Here we generalize the model with velocity mixing given in Eq. (3.4), by allowing a cosmo-
logical time dependence in the coefficients of the EoM, and applying the resulting modified
propagation to a realistic GW waveform. The equations considered are:[

Î
d2

dη2
+

(
c2
h(η) c2

hs(η)
c2
hs(η) c2

s(η)

)
k2

](
a(η) · h(η, k)
a(η) · s(η, k)

)
= 0, (4.10)

which are assumed to hold for the renormalized fields a ·h and a · s, as it is typically the case
when the Hubble expansion of the universe is taken into consideration for specific gravity
theories. In such cases, when this renormalization is performed, the presence of diagonal
mass-like terms appear, which are of the order of the conformal Hubble rate H squared and
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its time derivative (H2 = a2H2 and dH/dη) and thus are neglected here when compared to
the velocity matrix in the large-k limit.

We start by obtaining the analytical solution of h, using the WKB formalism. At zeroth
order in the WKB approximation, we obtain the eigenfrequencies which are of the form ω ∝ k,
with the same expressions as those given in Eq. (3.5)-(3.6). Since these dispersion relations
have the same form as that in GR, velocity mixing is the simplest type of interactions because
there is no distortion associated to the dispersion relation of the propagating eigenstates.
At linear order in the WKB approximation, the calculation of h simplifies greatly if all
the velocity parameters ch, cs and chs have the same time dependence. In this case, the
propagation matrix Û is constant and we find that ÂWKB = θ̂−1θ̂′/2, which can be integrated
exactly to obtain a simple expression for the general solution of h in Eq. (2.39). The final
solution for h in Fourier space, assuming only h is initially emitted, can then be written as

h+,×(k, η) = hfid+,×(k, η)
[
f1(η)e−i

∫ η
ηe
k(vg,1(η)−c)dη′ + f2(η)e−i

∫ η
ηe
k(vg,2(η)−c)dη′

]
, (4.11)

f1(η) =
cos2 Θg√

vg,1(η)/vg,1(ηe)
, f2(η) =

sin2 Θg√
vg,2(η)/vg,2(ηe)

, (4.12)

where η is the cosmological conformal time of detection, ηe the time of emission, and hfid

will be assumed to be given by GR. Here, the group velocities vg,A are the same as the phase
velocities obtained from Eq. (3.5)-(3.6), and the mixing angle Θg has the same expression
as in Eq. (3.7). In this type of mixing, both polarizations + and × propagate in the same
way. From Eq. (4.11) we see that the propagation and phase evolution of each individual
eigenstate is trivial since their phase corrections are linear in k and thus correspond to a shift
in the overall arrival time of the signal. In addition, the coefficients fA are simple rescalings
of the total amplitude of the signal, which do not distort the waveform since their timescale
evolution is much larger than the duration of the GW signal detected. Nevertheless, there
can still be distortions due to interference during the coherence regime where the full signal
can be re-expressed as:

h+,×(k, η) = hfid+,×(k, η) cos2 Θg

√
1 + tan4 Θg + 2 tan2 Θg cos (∆φI)e

−iθ′e−i
∫ η
ηe
k(vg,1(η)−c)dη′ ,

(4.13)
where ∆φI =

∫
k(vg,2 − vg,1)dη, and θ′ is defined such that tan θ′ = tan2 Θg sin(∆φI)/(1 +

tan2 Θg cos(∆φI)). Here, we have assumed that vg,A(η)/vg,A(ηe) ≈ 1 which is valid for low-
redshift sources (such as those observed by current GW detectors) or when the velocities
evolve slow enough in time. Since ∆φI depends linearly on k, a GW signal spanning a
wide range of frequencies will be expected to have frequency-dependent amplitude and phase
corrections during the coherence regime.

Time scales. Since the group velocities of the two propagating eigenstates are in general
different, the signal is expected to eventually reach decoherence. Furthermore, since the group
velocity is frequency independent and there are no distortions of the signal in each eigenstate,
the coherence redshift is simply achieved when the time delay between the eigenstates is
comparable to the duration of the original emitted signal∣∣∣ ∫ zcoh

0

∆vg
c

dz

H(z)

∣∣∣ ∼ σt . (4.14)

Then, for zmix < z < zcoh, velocity mixing will correspond to case 2b of Table 2, with
distortions in the waveform only associated to the interference between eigenstates. After
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decoherence, z > zcoh, the signal will be in case 4, with non-distorted echoes with different
amplitudes.

Since in general the sound speeds of the eigenstates will be different from the speed
of light, one needs to be careful to satisfy the constraints on the speed of GWs cg from
GW170817 [69], which set |cg/c− 1| . 10−15 at z ∼ 0.009. On the one hand, if ch 6= c, then
one can fine tune the mixing so that the sound speed of the first eigenmodes is exactly equal
to the speed of light today, vg,1(z = 0) = c, i.e.

c2
hs =

√
c2 − c2

h

√
c2 − c2

s . (4.15)

On the other hand, if ch(z = 0) = c, one can have vg,1(z = 0) ≈ c by suppressing the
mixing parameter |c2

hs/∆c
2| � 1 (see Eq. (2.73) in [11]). Note that in all the theories of

tensor interactions summarized in [11] (bigravity, Yang-Mills, gaugid, multi-Proca), only the
Horndeski Yang-Mills interaction [70] term LµναβF aµνF

a
αβ, where Lµναβ is the double dual

Riemann tensor, introduces c2
hs 6= 0. All other cases lead to chs = 0, in addition to ch = c

and, sometimes, cs 6= c. For that reason we will not consider together velocity mixing with
other types of interactions in the following sections.

In the case in which the mixing parameter is fine tuned according to Eq. (4.15), one
may obtain that the fractional difference in the group velocities is of O(1), and thus the time
delay between echoes is itself cosmological, for cosmological sources. Therefore, interesting
cases, where both echoes can be detected, are those in which c2

h + c2
s ≈ 2c2. In this limit, we

find that:

∆vg = vg,2 − c ≈
c2
h + c2

s − 2c2

2c
, (4.16)

which can itself be tuned to give a time delay of the order of the duration of the signal when
∆vg/c ∼ σtH0. This is indeed the case exemplified in the panel 4) of Fig. 12, where for sim-
plicity we assumed that the velocity matrix is time independent although the generalization
is straightforward (only the arrival times of the echoes would change). In a more generic
case, the second echo could arrive well outside any realistic observational window.

For this mixing scenario the mixing redshift is given by the same expression of the
coherence redshift (4.14) if one substitutes σt → 2π/ck. On the other hand, since there is no
MDR introducing waveform distortions, zbroad →∞ for both echoes.

Waveform distortions. We now illustrate the different propagation regimes and distor-
tions that a GW signal will exhibit due to velocity mixing. Fig. 13 shows the propaga-
tion of GWs with constant velocity parameters given by ∆c2

h = c2
h − c2 = −6.6 · 10−18c2,

∆c2
s = c2

s− c2 = −2.2 ·10−18c2 and c2
hs = 3.8 ·10−18c2, so that the eigenmodes have group ve-

locities given by vg,1 = c and vg,2−c = −4·10−18c. We compare the modified GW signal (blue
curves) and the waveform expected in GR (grey curves), when assuming that the emitted
signal is the same as that in GR. This figure illustrates a waveform emitted by an equal-mass
non-spinning binary black hole with redshifted component mass mz = m1z = m2z = 30M�.
We will use this example binary in the rest of the paper as it represents a typical detec-
tion, but our formalism is insensitive to the initial signal. Binaries with different masses
can be more or less constraining for different types of mixing depending if the modifications
are enhanced at low or high frequencies. In addition, we choose the binary to be overhead
(φ, θ, ψ = 0) so that F+ = 1 and F× = 0, and assume it to be face-on, with inclination
angle ι = 0, so that |h+| = |h×|. The detected strain seen by such a single detector is then
simply hs = h+, which is calculated using the fiducial detected signal hfid+ obtained from
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the phenomenological GR model IMRPhenomD [71]. We plot the waveform that would be de-
tected by a LIGO-type ground-based single detector, when the source is located at redshifts
z = 0.002, 0.02 and 0.2. These redshifts are chosen to represent different propagation epochs:
coherence, transition to decoherence, and decoherence. For this example the mixing redshift
is zmix ∼ 0.0009 and the coherence redshift zcoh ∼ 0.15. In all the panels, we choose the
arrival time such that ∆t = 0 is the arrival time of the coalescence frequency of the GR
waveform.
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Figure 13: GW signal observed by ground-based GW detectors, coming from a non-
spinning equal-mass black hole binary system. The three panels show the distortions of the
signal suffered during propagation in a velocity mixing model, in the case of sources with
three different redshifts. At the top, we have a nearby source such that the two propagating
eigenstates are in the fully coherence regime, whereas the bottom panel shows a further
source such that both eigenstates are in the fully decoherence regime. In the top two panels
we also show the two independent eigenstates in insets. ∆t = 0 is set by the arrival time
of the frequency of coalescence traveling at the speed of light. The mixing is chosen so that
vg,1 = c.

In the top panel of Fig. 13 we show the waveform during the mixing regime for a source
with redshift z = 0.002, which exhibits distortions in the amplitude and phase evolution of
the signal due to interference, and thus represents an example of case 2b in Table 2. In the
inset we show separately the detected eigenstates h1 and h2. For the parameters chosen here
the mixing angle is 0.17π and therefore the amplitude of h2 is smaller than that of h1. Note
that each one of these individual eigenstates has the same phase evolution as the GR one,
but since they propagate at different speeds, at a given time there will be two different k
modes arriving (one from h1 and one from h2) which will lead to the distortions observed in
the net signal. At z = 0.02, we see that the two eigenstates are transitioning to decoherence,
and distortions of the waveform are clearly visible. Here we can explicitly see the time delay
of the eigenmode h2 due to the fact that it propagates slower than the speed of light. Finally,
at z = 0.2 we see the decoherence regime where two separate echoes are detected, each one
with the same phase evolution as the GR signal, but with a different overall amplitude. This
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last panel is in the same regime as the one illustrated in case 4 of Fig. 12.

Biased parameter estimation. As previously discussed, in the coherence regime the
signal is generally distorted due to frequency-dependent amplitude and phase corrections.
However, in the decoherence regime both eigenstates have the same phase evolution as the
originally emitted signal, with only an amplitude difference. In particular, each echo will
have a different amplitude determined by the mixing angle Θg such that the apparent GW
luminosity distance will be different from the true one by:

dGW
L

∣∣
1
→ dL/ cos2 Θg , dGW

L

∣∣
2
→ dL/ sin2 Θg , (4.17)

for the first and second echo, respectively. On an individual event analysis, this constant
rescaling will be fully degenerate with the source redshift or H0. On a population analysis,
if only the echoes with the highest amplitudes are detected then their change in amplitude
will be degenerate with the local merger rate R0. However, if both echoes are detected, the
merger rate as a function of redshift will suffer non-trivial effects that must be analyzed in
detail in the future.

4.3 Mass mixing

We generalize the mass mixing example studied in subsec. 3.3, by including a cosmological
time dependence in the coefficients of the EoM, and applying the resulting modified propaga-
tion to a realistic GW waveform. Inspired by the cosmological behavior of massive bigravity
in the late-time universe, we consider the following model:[

Î

(
d2

dη2
+ (ck)2

)
+ a(η)2c4

(
m2
h m2

hs

m2
hs m2

s

)](
a(η) · h(η, k)
a(η) · s(η, k)

)
= 0, (4.18)

where the parameters mh, ms and mhs are assumed to be constants, and satisfy the condi-
tion m4

hs = m2
hm

2
s. Similarly to the velocity mixing example, we have assumed that these

equations hold for the renormalized fields a · h and a · s, and neglected the mass-like terms
of order of Hubble rate when compared to the mass terms mh, ms, and mhs.

In this example, since all the mass mixing terms have the same time dependence, the
structure of the WKB solution at lowest order remains the same as in the constant coefficient
examples of Section 3.3. Indeed, following the description of Section 2.1.1, we find the
eigenfrequencies ωA and the mixing matrix Ê(0) to have the same expressions as those found
in Eq. (3.13)-(3.14), rescaling all the masses with the scale factor. In particular, we find that
ω2

1 = c2k2 and it propagates in the same way as in GR, whereas ω2
2 = c2k2 + a2c4m2

g, with
m2
g = m2

s + m2
h. Therefore, the second eigenstate will have a non-trivial dispersive group

velocity given by
vg,2
c
≈ 1−

a2c2m2
g

2k2
(4.19)

in the large-k limit.
At linear order in the WKB formalism, the calculation of h simplifies since ÂWKB =

θ̂−1θ̂′/2 can be integrated exactly (see also [11]). The total solution for h in Fourier space,
assuming only h is initially emitted, can then be written as

h+,×(k, η) = hfid+,×(k, η)
[
f1 + f2(k, η)e−i

∫ η
ηe

∆ω2(η′,k)dη′
]
, (4.20)

f1 = cos2 Θg, f2(k, η) =
sin2 Θg√

ω2(k, η)/ω2(k, ηe)
, (4.21)
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where the mixing angle Θg is constant in this case and given by tan2 Θg = (mhs/ms)
4,

and each polarization + and × propagates in the same way. Therefore, the mixing an-
gle can be considered as a parameter independent from the mass parameter mg in the
ω2 dispersion relation. Since we will assume that deviations from GR are small, then
ω2(k, η)/ω2(k, ηe) ≈ 1 + c4m2

g/(ck)2(a2− a2
e), and we thus find that for each eigenstate there

are negligible distortions due to deviations from GR in the amplitude if (c2mg)/(ck)� 1. In
other words, the functions f1,2(k, η) in Eq. (4.21) are either exactly (for the first eigenstate)
or approximately constant (for the second eigenstate) in k and η, and the main distortions
come from the dispersion relation in the phase and the interference of both waves.

Time scales. In this model, since the first eigenstate propagates as in GR, the time delay
between the two echoes is controlled by the mass term of the second eigenstate. From Eq.
(4.5) we can obtain the time delay at any given redshift. After decoherence is achieved
(∆η > 0), we obtain that

∆η(z > zcoh) ≈
c2m2

g

2k2
max

∫ z

0

dz

(1 + z)2H(z)
, (4.22)

where deviations from GR are assumed to be small. Here only the time delay from the disper-
sive velocity vg,2 is present, since the k values chosen for maxk[ηo,fastest(k)] and mink[ηo,slowest(k)]
are both the same, given by the maximum frequency observed in the waveform, kmax. In
the left panel of Fig. 14 we present the result for a typical LIGO/Virgo source with a fixed
mass mg = 10−21eV/c2. In this example, the time delay at LIGO/Virgo frequencies is always
smaller than 1 second. Other parameter choices can be directly inferred using the m2

g scaling
of ∆η in Eq. (4.22). Therefore, the observed time delay contains physical information about
the mass of the graviton. We note, however, that for sufficiently large mg, the time delay
can be longer than the observation time of a given detector, in which case the second signal
may never be observed.9 It is to be noted that, as shown in Fig. 14, the duration of the
second eigenstate is parametrically larger than the time delay. This will also make a GR
template-based detection of the second eigenstate for large masses difficult since the signal
would be completely distorted. Noticeably, the time delay saturates for high redshifts of
the source. In particular, for a flat ΛCDM cosmology with fractional dark matter energy
Ωm,0 ≈ 0.31 we obtain that:

∆η(z →∞) ≈ 0.26
1

H0

c2m2
g

k2
max

. (4.23)

This is because, in this example, the difference in group velocities between the two modes
approaches zero for z →∞ due to the redshifting masses amh and ams in comoving coordi-
nates. As it can be seen in the left panel of Fig. 14, the time delay may saturate at values
smaller than the duration of the signal, which implies that unless the second mode is sup-
pressed by the mixing angle, one should have already seen these echoes in the LIGO/Virgo
data for this parameter value.

It is also useful to compare the broadening and coherence timescales, in order to identify
if the distortions happen when the two eigenstates are propagating coherently or incoherently.
We plot zbroad,2 (since that is the only one that exhibits distortions) according to Eq. (4.8) as

9Similarly, during a given observational campaign detectors are not always online. In general, constraints
using the echo time delays should take into account the duty cycle.
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Figure 14: On the left, time delay between the propagation eigenstates in our example
mass mixing theory for a non-spinning, equal mass binary with redshifted chirp mass Mz =
26.1M� as a function of the source redshift z. The blue line correspond to the time delay
as a function of redshift. The solid line represents when the time delay is positive and the
dashed-dotted line when it is negative. The dashed gray line indicates the duration of the
original signal. For reference, we also display in orange the duration of the massive eigenstate.
Echos are produced when ∆η > 0, in the region which is not shaded in gray. On the right,
comparison of the mixing time scale zmix, the broadening zbroad and coherence zcoh over
a wide range of masses. We see that distortions like broadening of the second eigenmode
become relevant before the two eigenstates reach the decoherence regime.

well as zcoh, which corresponds to the limiting case when ∆η = 0.10 The results for massive
gravity are shown in the right panel of Fig. 14, where we see that zbroad < zcoh for any value
of mg, confirming that in this model broadening will always happen before decoherence is
reached. In other words, case 4 of Table 2 will never happen in this model. We therefore
expect considerable phase distortions of the total GW signal during coherence, as we will
confirm next. For completeness we also present the mixing redshift, evaluated at kmin, which
determines when the two eigenstates begin interfering during the inspiral.

We emphasize that here we have exemplified the timescales for GWs observed by LIGO-
type detectors. However, since propagation distortions depend on the frequency, different
detectors may be more sensitive to these modified gravity effects. For instance, in this
example of massive bigravity where the group velocity of the second eigenmode is inversely
proportional to the wavenumber k, then low-frequency GWs detectors like LISA are expected
to constrain better the parameter mg. In addition, next generation GW detectors will be
more sensitive, and thus make more precise observations and detect objects that are further
away so that propagation effects accumulate more. For these two reasons, next generation
detectors are expected to constrain modified gravity better by a few orders of magnitude.
This has been found to be the case for the propagation distortions for a single massive
graviton, where it has been found that the constraints on mg are expected to improve at
least by 2 orders of magnitude for a single event detected with third-generation detectors
[72, 73], compared to current LIGO constraints [74]. Combining population observations
may increase these constraints further by other couple of orders of magnitude, since third-

10Our calculation for zcoh in bigravity generalizes the Lcoh of [22] to cosmological set-ups.
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generation ground-based detectors like Einstein Telescope and Cosmic Explorer are expected
to detect more than 104 binary black holes per year [75].

Waveform distortions. Next, we illustrate the distortions that a GW signal will exhibit
due to the modified propagation of Eq. (4.20). Fig. 15 shows the propagation of GWs in
the mass mixing model in the case of maximal mixing angle Θg = π/4, and graviton mass
mg = 10−21eV/c2 (blue curves), and a comparison with the waveform expected in GR (grey
curves). Here we make the same choice of binary system, detector orientation, and plot
conventions as in Fig. 13. We plot the waveform that would be detected by a LIGO-type
ground-based single detector, when the source is located at redshifts z = 0.005, 0.02, 0.1,
and 5.

The top panel of Fig. 15 shows the regime zmix < z < zcoh, zbroad for the parameter
values chosen, where a low-redshift source would have a single detected signal with a short
mixing scale that induces modulations in the overall amplitude of the signal as well as phase
shifts, that would otherwise not be present in GR for this source. Thus, this corresponds to
case 2b in Table 2. We can see explicitly the mixing between the two eigenstates in the inset
of the panel at z = 0.005. Here we see that the phase difference between the two eigenstates
varies across the signal due to its k dependence. Due to this variation, sometimes the two
eigenstates are in phase and sometimes out of phase, leading to the amplitude modulations
and shifts of peaks and troughs observed in the total blue signal. For low enough masses
mg, the mixing timescale would grow to be longer than the duration of the signal and there
will not be visible modulations to the waveform, and the signal will become indistinguishable
from GR for this source. For small enough mixing angles, the second eigenstate would get
suppressed and the first one enhanced, so that in this case the signal would again become
indistinguishable from GR, given that the first eigenstate propagates in the same way as in
GR.

The second panel, at z = 0.02, shows a highly distorted GW signal in the regime of
case 3 where zbroad,2 . z . zcoh (note that the first eigenstate propagates as in GR, and
hence does not exhibit broadening distortions). In this case, the two eigenstates are in the
transition from coherence to decoherence regime (yet still overlapping), and the waveform
h2 contributed by the second eigenstate is getting squeezed as it propagates, as it can be
explicitly seen in the inset. This happens because typical coalescence GW waveforms have
a frequency evolution that grows with time, and therefore the mass term mg makes low
frequency modes to propagate slower so that in the time domain the waveform squeezes.
This can be seen from the group velocity in Eq. (4.19). However, if the wave propagates for
long enough, the whole waveform of the second eigenstate can be inverted in such a way that
the high frequency merger reaches the observer before than the low frequency inspiral signal.
This is what can be seen in the third panel from top to bottom. In this panel z & zcoh and we
see that the two eigenstates have reached the limit of decoherence where they have a small
(∼ 10−2sec) temporal separation. In this model, one then has that decoherence is reached
after distortions in the second eigenstate become relevant (case 5 of Table 2). Note that for
large enough masses mg, the inversion of the second eigenstate’s waveform would happen
earlier, even for much lower redshift sources. After this waveform inversion happens, the
waveform tends to stretch instead of squeeze with time, as seen in the bottom panel. In this
panel we have that zbroad,2, zcoh � z and thus the two propagating states have fully decohered
and reached the maximum time delay shown in Eq. (4.23). In this model, this maximum time
delay is shorter than the detected signal itself, and thus we expect both of the eigenmodes to
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Figure 15: GW signal observed by ground-based GW detectors, coming from a non-
spinning equal-mass black hole binary system. The four panels show the distortions of the
signal suffered during propagation in a mass mixing model, in the case of sources with four
different redshifts. At the top, we have a nearby source such that the two propagating
eigenstates are in the fully coherence regime, whereas the bottom panel shows a far away
source such that both eigenstates are in the fully decoherence regime. In the top two panels
we also show the two independent eigenstates in insets. ∆t = 0 is set by the arrival time of
the frequency of coalescence traveling at the speed of light.

be always detected in this case (provided the correct waveform templates are used to extract
the signal from the noise). In addition, since the first eigenstate propagates in the same way
as in GR, its waveform looks exactly like in GR in this regime, except for an overall change
on its amplitude that can be easily mimicked by changes in the intrinsic parameters of the
source in GR. On the contrary, the waveform of the second eigenstate is completely distorted
in this decoherence regime, and cannot be mimicked by any GR waveform since the merger
seems to arrive even before the inspiral.

Although a detection analysis is beyond the scope of this paper, we note that in Fig. 15
we have compared the massive bigravity waveform to that in expected in GR from the same
source, and striking differences are observed. A detailed detection analysis would compare
the received signal to any GR waveform template, potentially including spin, eccentricity, etc.
This may in practice make more difficult to distinguish modified gravity effects from GR, as a
different choice of source parameters in GR may mimic some of the modified gravity effects.
For instance, oscillatory modulations of the amplitude such as the ones seen in the first
panel of Fig. 15 are also expected in GR waveforms of sources with precession. These source
parameter changes in the waveform will have to be taken into account when quantifying how
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well a given modified gravity waveform can be realistically distinguished from GR.
Finally, our results for mass mixing generalize previous studies of the waveform distor-

tions during the coherence phase in bigravity [8, 11, 23] by including both the amplitude
modulation and phase distortions. These effects are particularly relevant in the coherence
regime and the transition to decoherence as shown in Fig. 15. Due to these distortions, it
is possible to impose constraints on this mass mixing model with current and future GW
observations. Previous analyses in massive bigravity in the coherence regime have ignored
the change in the phase shifts across the frequency range of the signal, and therefore the
constraints and forecasts previously obtained must be revisited in light of this mixing ef-
fect. GW detectors will however not be able to constrain graviton masses at the level of
mg = 10−33eV/c2 that have been suggested to explain the late-time cosmic acceleration [76]
since in order for the exponent of Eq. (4.20) to be order 1 one would need to detect frequencies
of order ck ∼ H0 ∼ 2 · 1018Hz. This is far beyond any planned facility.

Biased parameter estimation. Here we discuss whether there is a regime, in this mass
mixing model, in which the waveform distortions are either suppressed or mimicked by a
change in GR waveform parameters, but there still can be measurable amplitude changes in
the signal. If this were to happen, a data analysis would bias the luminosity distance inferred
from a detected event, when using GR waveform templates.

We find that this will not happen in the coherence regime in massive bigravity, since
∆ω scales similarly with z and k, and therefore if time variations of the overall amplitude
are visible, then the waveform distortions due to the k dependence in ∆ω will also become
visible. We can see this explicitly by noting that in the mass mixing GW signal (4.20) both
GW oscillations and waveform distortions enter through the exponent

1

2

(
mg

H0

)2(H0

ck

)∫ z

0

H0dz

H(z)(1 + z)2
, (4.24)

which we have factored here into three dimensionless terms. Since the integral is an order 1
quantity, one needs a large (relative to H0) mass in order to compensate for the H0/ck term
and have sizable amplitude modulations. At the same time, however, any order 1 change in
the frequency of the signal will introduce waveform distortions. This sets a no-go for mass
mixing in the coherence regime:

A redshift modulation of the GW luminosity distance without waveform dis-
tortions can only occur if the relative frequency range of the signal is small,
∆f/f � 1.

This last frequency condition is not the case of coalescence binaries detected by present
ground-based detectors. This implies that during coherence, mass mixing modifications will
be seen through waveform distortions rather than in the luminosity distance, contrary to what
was expected in [8, 11, 22], and therefore previous constraints and forecasts obtained in the
coherence regime must be revisited. Including the waveform distortions will likely improve
the constraining power since GW detectors are more sensitive to the phase evolution than the
amplitude changes. Note that this no-go also extends to mass mixings scenarios where the
tensor modes have different speeds, ∆c2 6= 0, and the mixing is proportional to m2

hs ∼ ∆c2k2
∗

for a given frequency k∗ of the order of the frequencies of the signal. This is because although
in this scenario it is possible to have zcoh < zbroad (differently to the model of Fig. 14), the
mixing angle becomes frequency dependent introducing distortions in both echoes.
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In mass mixing models with ∆c2 = 0, such as the one in Fig. 14, a GR waveform template
will only fit well the detected signal of the first eigenmode after decoherence11. From Eq.
(4.20) we see that for this first eigenmode the luminosity distance will be miscalculated
according to:

dGW
L

∣∣
1
→ dL/ cos2 Θg , (4.25)

where we see that dGW
L will always be biased towards larger values, since the detected am-

plitude of the signal will be smaller because the first eigenstate carries only a fraction of the
total energy of the GW signal. This is in agreement with the low-redshift calculation of [23].
A bias in dL will in turn lead to biases towards higher source redshifts and, consequently,
lower source masses. Such constant re-scaling of the amplitude can be constrained with indi-
vidual multi-messenger events (as it has been illustrated in [40, 42] and others) or analyzing
the population of compact binaries [62].

4.4 Friction mixing

Next, we analyze a friction model, analogous to the one in Sec. 3.4.1, in which both eigenstates
propagate coherently all the time. Only cases 0-3 of Table 2 are thus possible. We consider
the following EoM:[

Î

(
d2

dη2
+ (ck)2

)
+

(
0 −2ᾱH(η)

2ᾱH(η) 0

)
d

dη

](
a(η) · h(η, k)
a(η) · s(η, k)

)
= 0 , (4.26)

where ᾱ is assumed to be constant and dimensionless in this case. Note that actual models
with friction mixing may not necessarily have the time dependence assumed here, but for
concreteness we assume an H dependence in order to introduce an explicit hierarchy between
the mixing interactions and the frequency of the signal. Similarly to the previous mixing
examples, this equation is satisfied for the renormalized fields a ·h and a · s, and the diagonal
mass-like terms of order the Hubble rate that would appear due to this renormalization are
neglected when compared to the friction matrix. Note that they will have a negligible effect
even when ᾱ ∼ O(1) since these mass terms will lead to a correction in the phase that
is suppressed by k−1 compared to the leading-order term coming from the friction matrix.
Therefore, we can safely neglect Hubble-order mass terms whenever H � ck, which will
hold for current and foreseen GWs detected by ground and space-based detectors, since
H ∼ 10−18Hz, and LIGO-type GWs have frequencies ck ∼ 102Hz, whereas LISA-type GWs
have ck ∼ 10−2Hz.

In this example, the eigenfrequencies are analogous to those given by Eq. (3.29)-(3.30)
with an extra time dependence. Explicitly, we find that the eigenfrequencies are real and
given by ω1(η) =

√
c2k2 + (Hᾱ)2−Hᾱ, and ω2(η) =

√
c2k2 + (Hᾱ)2+Hᾱ. In this case, both

eigenstates have the same group velocity and hence both eigenstates propagate coherently
all the time and have the same broadening timescale. They propagate slower than the speed
of light, at a group velocity vg = c2k/

√
c2k2 + (Hᾱ)2.

We proceed to calculate the first-order WKB solution, according to the procedure de-
scribed in Section 2.1.1. We find that the mixing matrix Û is constant, and that ÂWKB is
diagonal. Explicitly, for an initial condition where only h is non-vanishing, we obtain Eq.

11The signal could technically also fit GR well if all the GR deviations in amplitude and frequency are
highly suppressed, when z � zmix, but this is an uninteresting case that we ignore.
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(4.1) for h+ and h×, with polarization-independent functions f1,2 given by:

f1(k, η) =
1

2
e
−

∫ η
ηe

ω′1
2(ω1−Hᾱ)

dη′
, f2(k, η) =

1

2
e
−

∫ η
ηe

ω′2
2(ω2+Hᾱ)

dη′
, (4.27)

where ω′1,2 denote derivatives with respect to conformal time of ω1,2, and both polariza-
tions (+,×) propagate in the same way. In this example, the mixing angle is maximal
(i.e. tan2 Θg = 1), so that the two propagating eigenstates have the same amplitude ini-
tially. However, their relative amplitudes evolve in time, due to the real exponential terms
in Eq. (4.27). At linear order in α, we find that

∫
dηω′1/(ω1 − Hᾱ) ≈ −Hᾱ/(2c|k|), and∫

dηω′2/(ω2 + Hᾱ) ≈ Hᾱ/(2c|k|). Therefore, as long as ᾱH0/(ck) � 1, their relative time
and frequency evolutions will be negligible, and we can approximate f1,2 ≈ 1/2. Under this
assumption, the solution h+,× can be rewritten in a simpler way as:

h+,×(k, η) ≈ hfid+,×(η, k)

2
e−i

∫ η
ηe

∆ω1(η′,k)dη′
[
1 + e−i

∫ η
ηe

∆ω(η′)dη′
]

≈ hfid+,×(η, k)

2
e−i

∫ η
ηe

∆ω1(η′,k)dη′
[
1 + e−2iᾱ log[(1+ze)/(1+z)]

]
,

(4.28)

where in the second equality we have used that ∆ω(η) = ω2 − ω1 = 2Hᾱ, and ze is the
redshift at emission. We emphasize that ∆ω does not depend on k, and therefore the terms
in the square brackets will induce a temporal modulation on the overall amplitude and
phase of the signal, but will not introduce distortions to the GW phase evolution in Fourier
space, for the simple waveforms analyzed here coming from nearly-equal mass binaries in
orbits without precession. Frequency-dependent distortions will only come from the phase
correction ∆ω1 = ω1 − ck.

Time scales. Since in this scenario there is no decoherence, there will be no echoes. The
relevant time scales are thus given by the mixing and the broadening redshifts. The mixing
scale is governed by the difference in the dispersion relations, ∆ω = 2ᾱH. We can solve Eq.
(4.7) analytically to obtain

zmix ∼ eπ/ᾱ − 1 . (4.29)

In the limit of ᾱ � π, one simply has zmix ≈ π/ᾱ and the mixing could start at very low-
redshifts if ᾱ� 1. On the other hand, the broadening redshift of this model can be obtained
solving

σt ∼
(

ᾱ2

2c2k2
max

− ᾱ2

2c2k2
min

)∫ zbroad

0

H(z)dz

(1 + z)2
, (4.30)

which shares the same frequency dependence that our previous mass mixing example but
a different time evolution. We plot the behavior of these two time scales in Fig. 16. For
ᾱ < 1010 there will be no broadening of the waveform for redshifts that will be reached with
current and next-generation GW detectors. By the fact that zbroad > zmix, we see that case
1 of Table 2 will not be achieved in this example.

Waveform distortions. We take the same initial waveform and source location/orientation
as in the previous mixing example and apply the modified propagation with friction mixing
in (4.28), choosing ᾱ = 1011. Such large coupling compared to the Hubble rate (ᾱ = α/H) is
necessary in order to have detectable waveform distortions for LIGO-type detectors. Later
we will show that when ᾱ ∼ 1 − 10 there will be no distortions but instead oscillations in
the GW luminosity distance. The results are plotted in Fig. 17. To consider a representative
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ᾱ

10−11

10−9

10−7

10−5

10−3

10−1

101

103

z

m1z = 30M�, fmin = 30Hz

zmix

zbroad

Figure 16: Comparison of the mixing time scale zmix and the broadening zbroad for friction
mixing scenarios over a wide range of parameters ᾱ and source redshift z. In this scenario
both eigenstates always propagate coherently so that zcoh →∞.

sample of the different propagation periods we choose the source redshifts to be 0.01, 0.1,
1 and 5 from top to bottom. Since the eigenstates propagate coherently, we always see one
signal in the four panels.

In the top two panels of Fig. 17, we represent a period where there is mixing but not
broadening (zmix � z < zbroad, case 2a), and we can observe that the amplitude oscillates
with redshifts and that there is a global phase shift of the signal. The amplitude is always
suppressed (or equal) to that of the GR signal, which happens because the two eigenstates
have a phase difference that changes in time and therefore sometimes they are in phase
(leading to a signal with the same amplitude as in GR) and sometimes out of phase (leading
to a suppressed amplitude). This is explicitly seen in the inset of the panel at z = 0.1, where
there is nearly destructive interference between the two propagating eigenstates, with mild
distortions caused by the MDR since in this case z . zbroad.

Similarly to the waveform distortions of the second mode in mass mixing, in this friction
scenario the group velocity is such that low-frequency modes propagate slower squeezing
the waveform initially and then inverting it. In the limit of small ᾱ, one finds vg ≈ c −
ᾱ2H2/(2c2k2). At z = 1.0, we see in the inset how both propagating eigenstates are getting
squeezed and distorted due to their MDR since z > zbroad. Note that even though the only
difference between the two eigenstates is a k-independent phase shift in Fourier space, this
phase shift does create distortions of the waveform in real space, analogous to what has been
shown to happen with the constant phase shifts induced by lensing in [49]. At this redshift,
the waveform is highly squeezed having multiple frequency components at a given time, and
the same phase shift to all of these frequency components leads to distortions. This is why
in the inset at z = 1 we see that the detected eigenstates h1 and h2 have different waveforms.
This panel corresponds to case 3 of Table 2.

At redshift z = 5 we see that the phase distortions have accumulated for long enough
that the waveform has been inverted, with the signal coming from the inspiral arriving after
that coming from the merger. On top of the distortions due to the dispersion relations, in
the bottom two panels we also have the same modulations of the amplitude in time due to
∆ω because of the two modes interfering. However, since ∆ω also introduces a frequency-
independent phase shift to the signal in Fourier space, more complicated waveforms (coming
from unequal masses, or precessing binary orbits) would have exhibited additional phase
distortions in time domain. In this last panel we also explicitly see that this signal propagates
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Figure 17: GW signal observed by ground-based GW detectors, coming from a non-
spinning equal-mass black hole binary system. The four panels show the distortions of the
signal suffered during propagation in a friction mixing model, in the case of sources with four
different redshifts. The two eigenstates propagate coherently all the time at a group velocity
slower than the speed of light. In the top three panels we also present the two independent
eigenstates. In all panels ∆t = 0 is set by the arrival time of the frequency of coalescence
traveling at the speed of light. The accumulated time delay at z = 5 is 7ms.

slower than the speed of light, as it arrives after the signal expected in GR. In particular, the
time delay of the coalescence frequency in the blue curve is 7ms compared to the grey curve
(that by construction has an arrival time ∆t = 0 in this plot).

Biased parameter estimation. The case of friction mixing is fundamentally different
to the mass mixing model, because here ∆ω does not vary in k across the detected signal.
Indeed, in the coherence regime one can rewrite the solution (4.28) in the following way:

hp(η, k) ≈ hfid p(η, k)√
2

√
1 + cos ∆φI e

iθ′(η)e−i
∫ η
ηe

∆ω1(η′,k)dη′ , (4.31)

where ∆φI = −2ᾱ log[(1 + ze)/(1 + z)], and tan θ′ = sin ∆φI/(1 + cos ∆φI). Here we see that
only ω1 may introduce frequency-dependent phase shifts to the waveform, depending on how
it evolves with frequency. However, in this model ω1 can be approximated to:

ω1(η, k)− ck ≈ −Hᾱ+
(Hᾱ)2

2ck
+O(k−3), (4.32)

where we see that the leading-order deviation from GR does not depend on k, and is effectively
constant during the detection of the signal since H variations during detection are negligible.
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Such a constant phase shift is degenerate with the source parameters for the simple waveforms
analyzed here, where the binary is assumed to be of equal mass and move in a nearly circular
orbit. The same happens with the phase shift θ′ in (4.31), since it only varies on cosmological
timescales and it is k independent. In this scenario, then one can choose ᾱ small enough such
that the k-dependent terms in (4.32) are suppressed but Hᾱ and ∆φI are non-negligible. In
such a case, the detected signal will look like a GR waveform with an overall phase shift and
a different amplitude, and it will correspond to an example of case 2a in Table 2. When
using GR waveform templates to describe this detected signal, the amplitude will get biased
in such a way that:

dGW
L → dL/

√
(1 + cos ∆φI)/2 , (4.33)

which will be subject to the propagation time, in an oscillatory way. Fig. 18 shows the time
variations of dGW

L in a model with ᾱ = 10. Here we see that the oscillations are determined
by ∆φI , which evolves more quickly for low redshift values. Importantly, in this mixing
scenario the tensor h can be completely converted into the tensor s at certain redshifts, and
therefore the luminosity distance displays poles [11]. These can be easily computed from the
above formula:

zpoles = e
π
2ᾱ

(1+2n) − 1 , (4.34)

where n is a positive integer number.
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Figure 18: Modified luminosity distance during the coherence period for a friction mixing
scenario. We plot the ratio of the GW and EM luminosity distance as a function of the source
redshift z. In GR dGW

L /dL = 1. The ratio of the luminosity distances diverges at certain
redshift when the GW signal is completely converted into the additional tensor field s. This
example corresponds to ᾱ = 10.

Finally, we emphasize that since the dGWL oscillations only depends on ᾱ and not on k,
the results found in this section are valid for any ground or space-based detector as long as
the source is nearly circular equal-mass binary (recall that here we also find a constant phase
shift that would introduce phase distortions for unequal-mass binaries or precessing orbits).

4.5 Chiral mixing

Lastly, we study a chiral mixing scenario, analogous to that in subsec. 3.5.1, with time-
dependent coefficients in the equation of motion, and apply the WKB formalism to realistic
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waveforms. We consider the following EoM:[
Î

(
d2

dη2
+ (ck)2

)
±
(
µ̄h γ̄
γ̄ µ̄s

)
H(η)ck

](
a(η) · hL,R(η, k)
a(η) · sL,R(η, k)

)
= 0, (4.35)

where, for concreteness, we again assume an H time dependence of the mixing interactions,
and µ̄s, µ̄h and γ̄ are assumed to be dimensionless constants. Here, the ± signs indicate
the interaction sign of left and right polarizations, respectively. Similarly to the previous
mixing examples, here we assume that the equations hold for the renormalized fields a · hL,R
and a · sL,R, and neglect the Hubble rate mass terms that appear as a consequence. Notice
that, similarly to the previous friction example, these Hubble-order mass terms can be safely
neglected even if the chiral coefficients are of order γ̄, µ̄h,s ∼ O(1). This is due to the fact
that the corrections these mass terms bring to the eigenfrequencies are suppressed by k−1

compared to the leading-order corrections coming from chiral interactions.
The eigenfrequencies of the two propagating eigenstates are given by the WKB solution

at lowest order, and have analogous expressions to those found in Eq. (3.73)-(3.74), rescal-
ing the chiral mixing coefficients by the Hubble rate. Explicitly, the four eigenstates are
characterized by the following eigenfrequencies in the large-k limit:

ω1;L,R ≈ ck ±
1

4
Hµ̄tot ±

1

4
H
√

4γ̄2 + ∆µ̄2 − H
2

32ck

(
µ̄tot +

√
4γ̄2 + ∆µ̄2

)2
+O(k−2), (4.36)

ω2;L,R ≈ ck ±
1

4
Hµ̄tot ∓

1

4
H
√

4γ̄2 + ∆µ̄2 − H
2

32ck

(
µ̄tot −

√
4γ̄2 + ∆µ̄2

)2
+O(k−2) , (4.37)

where µ̄tot = µ̄h + µ̄s, and ∆µ̄ = µ̄s − µ̄h. Here we have assumed that ∆µ̄ 6 0 so that in
the no-mixing limit of γ̄ → 0, ω1 and ω2 describe the propagation of h and s, respectively.
Contrary to the mass mixing model, here all eigenmodes have non-trivial dispersion relations.
For the group velocities, we obtain at leading and sub-leading order that:

vg1;L ≈ vg1;R ≈ c+
H2

32ck2

(
µ̄tot +

√
4γ̄2 + ∆µ̄2

)2
+O(k−3), (4.38)

vg2;L ≈ vg2;R ≈ c+
H2

32ck2

(
µ̄tot −

√
4γ̄2 + ∆µ̄2

)2
+O(k−3). (4.39)

Note that regardless of the parameter values, the eigenstates propagate faster than the speed
of light. Furthermore, low-frequency modes propagate faster than high-frequency modes, and
therefore one expects to observe a waveform that elongates in time. In addition, as discussed
in subsec. 3.5, a GW signal may be generically composed by the four different eigenstates,
and after coherence the signal reaches a regime with two separate wavepackets containing the
modes {ω1;L, ω1,R} and {ω2;L, ω2;R} due to the coincident group velocities in (4.38)-(4.39).
After this 2-echo decoherence is reached, the signal may split into four echoes, each one with
purely right and left-handed polarization.

Next, we use the WKB approach to obtain the solution for h, which gives us separately
the behavior of the signal for left and right-handed polarizations. Explicitly, we calculate
the first-order WKB solution, and obtain that the mixing matrix Û is constant, and thus
the WKB correction matrix simplifies to ÂWKB = θ̂−1θ̂′/2. Therefore, the solution for the
GW signal can be generically expressed as Eq. (4.1) for each component hL and hR, with
polarization-dependent functions fA;L,R given by:

f1;p(k, η) =
cos2 Θgp√

ω1p(η)/ω1p(ηe)
, f2;p(k, η) =

sin2 Θgp√
ω2p(η)/ω2p(ηe)

, (4.40)
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where p = L,R, and the mixing angles Θg;L,R are constants given by Eq. (3.82). In order
to obtain the total GW strain we must take into account the polarization-response of the
detector as in Eq. (4.4), which can be rewritten in terms of left- and right-handed polarizations
using Eq. (3.70). From Eq. (4.38)-(4.39) we see that effectively the left-handed first eigenmode
h1L propagates coherently with the right-handed first eigenmode h1R, and similarly for the
left-handed second eigenmode h2L and the right-handed second eigenmode h2R. It is then
useful to group the solution of the GW signal in terms of two net propagating states, given
by h1L + h1R and h2L + h2R, as

hs(η, k) =e−i
∫
ηe

∆ω1Rdη
(
FRhfid;R(η, k)f1;R(k, η) + FLhfid;L(η, k)f1;L(k, η)e−i

∫
ηe

∆ω1dη
)

+ e−i
∫
ηe

∆ω2Ldη
(
FLhfid;L(η, k)f2;L(k, η) + FRhfid;R(η, k)f2;R(k, η)e−i

∫
ηe

∆ω2dη
)
,

(4.41)

where ∆ωA;L,R = ωA;L,R − ck, ∆ω1(η) = ω1;L − ω1;R ≈ H(µ̄tot +
√

4γ̄2 + ∆µ̄2)/2, ∆ω2(η) =

ω2;R−ω2;L ≈ H(−µ̄tot +
√

4γ̄2 + ∆µ̄2)/2, and both are approximately independent of k, with
corrections of order O(k−2). In this chiral mixing example, it is important to identify the
fiducial GR waveforms hfid;L for left and hfid;R for right-handed polarizations separately, as
they will propagate differently. Similarly to the previous mixing examples, in practice, we will
neglect the WKB first-order corrections to the amplitude functions fA;L,R since |ω(η)/ω(ηe)−
1| � 1 whenever H0|µ̄tot ±

√
4γ̄2 + ∆µ̄2|/(ck)� 1.

From Eq. (4.41) we see that distortions in the detected signal may be caused by how
the propagating modes get individually distorted due to their non-trivial dispersion relations,
how the modes interfere with each other, and how the two polarization modes interfere with
each other for a given detector orientation.

Time scales. Since left and right-handed polarizations propagate independently, we define
two mixing scales associated to ∆ωL = ω2;L − ω1;L and ∆ωR = ω2;R − ω1;R. At leading
order for large k, both of these quantities have the same absolute value, −∆ωL = ∆ωR ≈
H
√

4γ̄2 + ∆µ̄2/2. Therefore, there is only one relevant scale when mixing between propa-
gating eigenmodes becomes relevant, which is given by:

zmix ∼ e4π/
√

4γ̄2+∆µ̄2 − 1. (4.42)

In addition, we define the relevant time delay as the one between the two net propagating
eigenstates h1L + h1R and h2L + h2R, which propagate with group velocities given by Eq.
(4.38) and (4.39), respectively. Their time delay defines a two-echo decoherence regime and
from Eq. (4.5) we find that it is explicitly given by:

∆η(z) ≈ −σt +


(√

4γ̄2 + ∆µ̄2 + µ̄tot

)2

32c2k2
max

−

(√
4γ̄2 + ∆µ̄2 − µ̄tot

)2

32c2k2
min

∫ z

0

H(z)dz

(1 + z)2
. (4.43)

in the case of µ̄tot > 0. In the high k limit, four-echo decoherence is achieved at timescales
that are orders of magnitude longer than the two-echo decoherence timescale (recall example
in subsec. 3.5.1). For this reason, we do not analyze this four-echo decoherence regime here.

In the left panel of Fig. 19 we show the time delay |∆η| between the two net eigenstates,
and compare them to the duration of the detected eigenstates h1L and h2L (since due to Eq.
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(4.38)-(4.39) that duration will be the same as the duration of the net eigenstates themselves),
for the same binary system detected by LIGO/Virgo as in the previous examples. For the
parameter values chosen in this example, we find that the time delay is short compared
to the duration of both eigenstates (i.e. in most cases the signal will be in the coherence
regime 3 of Table 2), and thus only very high redshift sources may be able to achieve this
two-echo decoherence regime. It is to be noted that when two-echo decoherence is achieved,
the fastest net eigenstate has suffered very large distortions due to its MDR (case 5), which
can be seen by the large duration of the signal h1L. Similarly, the time delay between
the fastest net eigenstate and a possible counterpart propagating at the speed of light is
always parametrically smaller than its duration for merging binaries, scaling as (fmax/fmin)2,
implying that waveform distortions would be the dominant effect. For example, the multi-
messenger time delay for GW170817 would be ∼ 1 sec for γ̄ ∼ 1014. However, for such
couplings the duration of h1L would be already ∼ 104 times the original one.
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Figure 19: On the left, time delay between the propagation eigenstates in our chiral mixing
example as a function of the source redshift z. We use the same notation as in the mass
mixing in Fig. 14. In this case, although the slowest mode duration increases, decoherence is
eventually reached at high redshift. Note that at such redshifts the fastest mode is orders of
magnitude longer than the initial signal (gray dashed line). Moreover, the duration of h1L is
the same as h1R and similarly for h2L and h2R. This left panel corresponds to µ̄h = 1.5 ·1012,
µ̄s = 0.5 · 1012 and γ̄ = 1012. On the right, relevant redshifts for mixing, broadening and
coherence. The mixing scales of left and right modes are approximately the same, while the
broadening time of the fastest (h1L and h1R) and slowest (h2L and h2R) net eigenstates are
different. We have chosen µ̄h = 1.5 · γ̄ and µ̄s = 0.5 · γ̄.

We also compare the different time scales as a function of the parameters of the mixing
in the right panel of Fig. 19, when assuming that µ̄h = 1.5γ̄ and µ̄s = 0.5γ̄. As shown in
Eq. (4.42), there is a single mixing redshift since left and right eigenstates start to mix at
approximately the same time. For the parameters of this figure, mixing happens at very low
redshifts. In addition, we see that the fastest net eigenstate broadens parametrically earlier
than the slowest one due to their difference in the group velocity. Finally, in the plot we can
see that, for ∼ 30M� binaries, only for large enough values of γ̄, decoherence can be reached
for the redshifts that will be probed by the next-generation of GW detectors.
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Waveform distortions. We show the observed signal due to chiral interactions in Fig.
20 for the same binary system as in the previous examples, but with a different orientation.
In particular, we choose an edge-on binary so that the source only emits h+ polarization.
We keep the detector orientation to be only sensitive to this polarization fixing F+ = 1 and
F× = 0. In this case, the GW strain (4.41) simplifies to:

hs(η, k) ≈ hfid+(η, k)

2
e−i

∫
ηe

∆ω1Rdη
(

cos2 ΘgR + cos2 ΘgLe
−i

∫
ηe

∆ω1dη
)

+
hfid+(η, k)

2
e−i

∫
ηe

∆ω2Ldη
(

sin2 ΘgL + sin2 ΘgRe
−i

∫
ηe

∆ω2dη
)
. (4.44)

We also choose the parameters such that tan2 Θg;L,R = (3−
√

5)/2 and hence we do not have
maximal mixing as in the previous friction and mass mixing examples. In the top panel, at
z = 0.1, we see that the total signal is in the mixing regime where zmix � z < zcoh, zbroad.
Here we see that, due to the mixing, there is a frequency-dependent modulation of the
amplitude of the signal in addition to phase differences (case 2b). As the GW propagates,
its polarization composition (h+,×) will vary due to the different propagation equations for
hL,R. In the inset of the top panel we see that the signal has developed a non-vanishing
× polarization during propagation. In general, the frequency of this polarization rotation
is determined by the order of magnitude of the couplings. In this case, with γ̄ ∼ 1011, the
frequency is very high and this is why in the second panel we need to fine-tune the redshift
to capture this specific rotation of the polarization. At this redshift, the signal is mostly h×
as shown in the inset plot. This can be contrasted with the polarization composition of the
first panel, which was still mostly + polarized.

In the third panel, at z = 1.5, we observe the mixing effects in the total signal in addition
to distortions due to the dispersive group velocities. This is confirmed in the inset, where we
show the two net propagating eigenstates separately: h1 contains the modes {ω1;L, ω1;R} and
h2 contains {ω2;L, ω2;R}. For this redshift, we have that zmix, zbroad,2 < z � zbroad,1, zcoh,
where zbroad,A is the broadening timescale of the net propagating mode hA (both left and
right handed have the same timescale, so we do not make a polarization distinction here).
Therefore, the mode h2 exhibits considerable elongation in the duration of its signal. Since
h2 is broader than h1, both net wavepackets only mix on a partial section of the total signal.
Note that each net wavepacket h1 and h2 exhibit also distortions due to interference since
they are both composed by the superposition of two propagating eigenmodes with different
phases. If analyzed independently, h2 will correspond to case 3, while h1 to case 2b.

At z = 10, we have that zmix, zbroad,2 � z � zbroad,1, zcoh, and thus the dispersion
relation of h2 has made the total signal elongate more than twice the duration expected in
GR. Note that for this example, the time delay between the fastest mode and the GR signal
at the frequency of coalescence is smaller than 12ms for sources below z = 10. This time
delay can be seen clearly in the inset of the bottom panel, where the modified gravity signal
is seen to arrive before the GR one.

Overall, from this example we observe that although the group velocity of the two
net eigenstates are different, there is never decoherence because the time delay between the
eigenstates is smaller than the duration of the slowest mode, h2. However, other parameter
choices may achieve decoherence at z < 10.

Next, we provide another example of chiral interaction where we discuss in more de-
tail how the polarization rotates from emission to detection, and how this rotation can be
degenerate with source parameters of GR waveforms templates.
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Figure 20: GW signal observed by ground-based GW detectors, coming from a non-spinning
equal-mass black hole binary system when there is chiral mixing. The binary system is edge-
on with h+ only being emitted, and the detector is oriented to detect only this polarization
(F+ = 1, F× = 0). The four panels show the distortions of the signal suffered during
propagation at four different redshifts. The two eigenstates propagate coherently all the
time as the waveform gets elongated. The two upper inset plots display the polarization
composition (h+ and h×) of the signal, while the lower two inset plots show the individual
eigenstates that are composed respectively of h1L and h1R, and h2L and h2R. The combination
of h1L and h1R is the fastest one and elongates more. The time delay between this net
eigenstate and the GR signal at the frequency of coalescence reaches 12ms at z = 10. In all
the panels ∆t = 0 corresponds to the arrival time of the frequency of coalescence traveling
at the speed of light.

Biased parameter estimation. Finally, we analyze scenarios in which individual events
with chiral mixing could still mimic GR waveforms. In the coherence regime, this can indeed
happen for appropriate parameter values that suppress the k dependence of the phase shifts
of the waveform. More explicitly, we see in Eqs. (4.36)-(4.37) that in the high-k limit the
leading-order deviations from GR of the eigenfrequencies are constant in k, and distortions
are suppressed by a factor of order k−1. Furthermore, these leading-order deviations will
typically vary on cosmological timescales, which are much longer than the duration of the
signal, so these deviations are effectively constants in time as well for individual events. In
addition, the mixing scale determined by ∆ω is also constant at leading order, and thus one
can write a similar solution to the one in (4.31) for friction interactions.

In a case with initially only left-handed polarization, as it is the case of a circularly
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polarized face-on (ι = 0) source where |h+| = |h×|, the polarization state will be preserved
through the propagation. In this scenario, the strain is given by:

hs(η, k) ≈ hfid;L(η, k)FL cos2 ΘgL

√
1 + tan4 ΘgL + 2 tan2 ΘgL cos(∆φIL)e−iθ

′
Le−i

∫
∆ω1Ldη,

(4.45)
where FL describes the antenna response to left-handed polarization. Here, we also have
that ∆φIL =

∫
∆ωLdη, such that ∆ωL = ω2;L − ω1;L ≈ H

√
4γ̄2 + ∆µ̄2/2 + O(k−1). Also,

tan θ′L = (tan2 Θg;L sin ∆φIL)/(1 + tan2 Θg;L cos ∆φIL). Here we have again neglected the
amplitude corrections caused by the terms

√
ω(η)/ω(ηe) ≈ 1 + O(k−1). When all the k−1

distortions are negligible, the leading term in ∆φIL can still become relevant and induce
visible distortions to the GW amplitude such that a single event would have an apparent
luminosity distance given by:

dGW
L → dL/

[
cos2 ΘgL

√
1 + tan4 ΘgL + 2 tan2 ΘgL cos(∆φIL)

]
. (4.46)

For a population of events at different redshifts, the modulation of the GW luminosity dis-
tance for this example is presented in the left panel of Fig. 21, in a model where γ̄ ∼
µ̄s ∼ µ̄h ∼ O(1 − 10). In the chiral model considered in this section, Θg;L is exactly
constant, but since ∆φIL varies in time, there will be an oscillatory behavior of the bi-
ased luminosity distance that we see in Fig. 21. We emphasize that the same result will
be obtained for any initial emitted polarization, if we define the luminosity distance as
(dGW
L )−2 ∝ |h+|2 + |h×|2 = |hL|2 + |hR|2. From Eq. (4.46) (and its analogous solution

for hR) we explicitly obtain that(
dL

dGW
L

)2

=
|hL|2 + |hR|2

|hfid;L|2 + |hfid;R|2
=
|hL|2

(
1 + r2

)
|hfid;L|2

(
1 + r2

0

)
≈ cos Θ4

gL

[
1 + tan Θ4

gL + 2 tan Θ2
gL cos(∆φIL)

] (
1 +O(k−1)

)
, (4.47)

where r2
0 = |hfid;R/hfid;L|2 and r2 = |hL/hR|2, and in the last line we have made a large-k

approximation. From here we see that, at leading order, the evolution of dGW
L is the same

for any initial polarization as that for an initially circularly polarized wave, according to Eq.
(4.46). For chiral interactions comparable to the Hubble scale, this is always the case. In
comparison with our friction mixing example in Fig. 18, the chiral mixing does not display a
maximal mixing and, therefore, the luminosity distance does not have poles. From Eq. (4.45)
we also see that the phases θ′L and

∫
∆ω1;Ldη will induce a k-independent phase shift to the

total signal, which will be degenerate with source parameters of GR waveforms, for simple
signals coming from nearly-equal mass non-precessing binary systems.

In addition to a change in the luminosity distance, chiral mixing induces a change in
the polarization of the signal, which can be observed if multiple GW detectors are present.
As illustrated for a toy Gaussian wavepacket in Section 3.5.1, we can use two angles β and
χ to describe the state of the detected polarization (see also Appendix C), and analyze how
much it changed from emission to detection. The evolution of these angles as a function
of redshift is displayed in the right panels of Fig. 21, in three scenarios where the initial
polarization was circular with (β, χ) = (π/4, 0), linear with (β, χ) = (0, 0) and elliptical with
(β, χ) = (π/4.64, 0). In general, a change in the angle χ will bias the detected orientation
angle of the LIGO-type antenna pattern function in Eq. (4.4), such that ψ → ψ + ∆χ.
In addition, the angle β will be degenerate with the inclination of the source ι, for GW
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Figure 21: Modified GW luminosity distance (left) and polarization angles β and χ (right)
during the coherence period for a chiral mixing scenario with different initial polarizations, as
a function of the source redshift z. We consider circular (h+ = h×, hL = 0 for face-off), linear
(h× = 0, hL = hR) and elliptic (h+,× 6= 0, hL,R 6= 0) initial polarization. The oscillations
of dGW

L are the same for all initial states. The polarization state described by β remains
the same, regardless of the initial polarization of the signal, since variations are suppressed
by 1/ck. The polarization orientation angle χ however rotates for an initially linearly or
elliptically polarized signal. This example corresponds to µ̄h = 15, µ̄s = 5 and γ̄ = 10.

binary signals dominated by a (2,2) spherical harmonic mode (analogous to what is found
in dynamical Chern-Simons theories [64]). In these simple cases, the observed angle β (that
describes the initial emitted polarization in addition to changes suffered during propagation)
will be related to the observed inclination ι by:∣∣∣∣hR(η, k)

hL(η, k)

∣∣∣∣ =
1 + tanβ

1− tanβ
=

(1− cos ι)2

(1 + cos ι)2
. (4.48)

However, for GW binary sources that emit higher spherical harmonics, either because they
have unequal masses or because they exhibit precession due to misaligned spins or orbital
eccentricity, the angle β will not be degenerate anymore with ι if multiple detectors can
measure the polarization of each individual spherical harmonic. This is because GR predicts
fixed relationships between the ratios |hR/hL| for each harmonic given a value of ι, but
changing the angle β will break these fixed relationships.

One can see in Fig. 21 that, independently to the initial polarization of the wave, the
signal does not exhibit amplitude birefringence, with β remaining constant. However, the
polarization orientation χ of the linearly and elliptically polarized wave rotates during the
propagation. Because of this change in the polarization orientation χ, a given detector might
not detect signals that would be detectable in GR at certain redshifts, and vice-versa. For
example, if the source-detector geometry is such that F+ = 1 and F× = 0, an initially linearly
polarized GW h+ will be missed by the detector at the redshifts in which the polarization has
been transformed to linear h×, that is, whenever χ changed from 0 at emission to χ = π/4
at detection. Moreover, the evolution of χ is determined by Eq. (3.92) if one substitutes
∆η by log(1 + z)/H. We emphasize that the general behavior found here for β and χ is
model dependent, since other theories with chiral interactions may for instance predict large
variations of β [64].
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5 Discussion

Gravitational waves (GWs) from a compact binary coalescence are excellent targets to test
cosmology, since they have well-modelled signals whose propagation is sensitive to the back-
ground expansion and field content of the Universe. In this paper we have developed a
general parametrized approach (agnostic to specific modified gravity theories) to analyze the
propagation of GWs over cosmological backgrounds in scenarios where GWs interact with an
additional tensor mode. Due to these interactions, even if the emission is not modified w.r.t.
general relativity (GR) (as assumed in this work), the extra tensor mode will be generated
during propagation. As a result, GWs will have a non-trivial propagation that can lead to
changes in the amplitude, phase, and polarization of the emitted GW signal. We summarize
our main results as follows:

• Due to the interactions between the spacetime metric and the additional tensor mode,
GWs are given by a superposition of signals—the propagating eigenstates—, whose
wavepackets can propagate coherently and interfere with each other at the detector, or
propagate decoherently and lead to echoes in the detector. We parametrize the possible
tensor interactions, and apply the WKB formalism to obtain the general detected GWs
as the superposition of eigenstates (see Sec. 2). We discuss how these eigenstates
may have modified dispersion relations that cause the effect of decoherence and induce
amplitude and phase distortions of GWs.

• We introduce three main timescales characterizing the general propagation of these
models with interacting GWs—mixing, decoherence, and broadening—, determining
respectively when the interference between the eigenstates evolves between emission
vs. detection, when they split and can be detected as separate GW signals, and when
frequency-dependent phase distortions induce considerable changes in the duration of
the signal from inspiral to merger. A summary of the different timescales and associated
observable effects is presented in Table 2 and Fig. 12.

• We clarify that the group velocity of each eigenstate is what determines the detected
phase at a given frequency and hence the phase distortions of the waveform. This is in
contrast with treating GWs as an ensemble of particles traveling at the particle velocity
[26, 27]. Moreover, we show how our WKB propagation approach can be applied to any
initial GW signal, independently of the complexity of the source (whether the binary
has unequal mass components, or the orbit exhibits precession or eccentricity).

• We confirm our analytical predictions with a numerical analysis of a toy gravitational
Gaussian wavepacket, for models with velocity, mass, friction and chiral tensor inter-
actions (see Section 3), and illustrate the varied phenomenology that can happen in
these models. We discuss the behavior of the amplitude of the Gaussian, its distortion
and polarization content.

• We consider realistic GWs from a back hole binary coalescence and explore the obser-
vational effects of the modified GW propagation in single events and discuss population
analyses with present and future GW detectors (see Section 4). We conclude that:

– Waveform distortions can appear due to 1) modifications in each eigenstate’s dis-
persion relations, 2) interference among the eigenstates, or 3) frequency and time
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dependent amplitude modulations (for example if there is a frequency dependent
mixing angle), although in many cases only the first two effects will be detectable.

– In a number of scenarios, a detected single GW may look like a GR waveform,
but with different source parameters. This could induce a bias in the luminosity
distance, coalescence phase, inclination and orientation of the source. However, a
population analysis may help disentangle some of these propagation effects. For
instance, the biased GW luminosity distance may oscillate with redshift, which
would induce an astrophysically unexplained oscillation on the redshift distribution
of GWs sources.

– If decoherence is achieved at a redshift zcoh within the sensitivity of the GW
detector, a population analysis would find that high-redshift events (z > zcoh)
split into sub-populations (echoes) that fit waveforms with different dispersion
relations. Counting echoes constraints the number of additional tensor fields that
may be interacting with the spacetime metric.

– In the case of mass interactions (e.g. massive bigravity theories), we find the follow-
ing No-go: redshift or frequency-dependent amplitude changes of a chirping GW
signal are always accompanied by phase distortions. As a result, phase distortions
cannot be neglected in these models.

– In the case of chiral mixing, we characterize the effects of amplitude and phase
birefrigence. In the specific model analyzed here, amplitude birefringence was
found to be suppressed for high-frequency GWs, while phase birefringence was
relevant, leading to a rotation of the polarization during propagation.

Due to the rich phenomenology of deviations from GR that can be typically expected in
models with tensor interactions, a numerical analysis using the current GW events detected
by LIGO/Virgo may already place stringent constraints on specific modified gravity theories,
although this is left for future work. In the case of massive bigravity, some current GW events
were used to constrain the theory parameters [23] and forecasts were performed for LISA [8],
however these are conservative constraints since they neglected the phase distortions of the
waveform discussed in this paper. Similarly, constraints and forecasts from populations of
GW events are left for future work. Furthermore, predictions on the expected energy spec-
trum of a stochastic GW background that include these tensorial cosmological interactions
could be performed in the future, using the results found in this paper on how the amplitude
(and thus intensity) of GW events changes due to modified gravity.

In this paper we have assumed that the emitted signal was the same as that in GR, but
this could be generalized to include also modifications at emission. The approach we used
straightforwardly allows for the implementation of arbitrary initial conditions. However, we
emphasize that modifications at emission are fundamentally different to those during propa-
gation, since propagation modifications accumulate over time as the GW signal propagates,
leading for instance to completely different observed signals from the same source at low and
high redshift. The same is not the case for distortions during emission only.

Beyond the homogeneous and isotropic cosmological backgrounds analyzed here, GWs
can mix with other types of fields, not just tensor modes. An example of this occurs when
studying GW lensing around massive objects [10, 77]. Our analysis could be extended to
study the propagation of GWs across inhomogeneous backgrounds, and applying our tech-
niques to environments exhibiting a screening mechanism. Note that screening can also have
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an effect, albeit small, even if there is no lensing, if the interactions between GWs and the
extra field are suppressed near the source and observer [73].

Since in this paper we have studied a few limited examples to illustrate some of the effects
of tensor interactions, we may have not exhausted all possible observable effects. However, the
approach used here is general and can be straightforwardly extended to include other types
of interactions (such as those involving higher spatial derivatives), multiple interactions at
the same time, any cosmological time evolution of the free parameters in the tensor equations
of motion, and even more than two interacting tensor fields. Therefore, the work done here
develops all the basic ingredients to analyze more generally the propagation of GWs in any
modified gravity theory in the future.
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A Properties of the eigenfrequencies

In this appendix we provide further details about the eigenfrequencies of the propagation
eigenstates. We consider first the simpler case without friction and then move to the general
result.

Without friction. Regarding the eigenfrequencies, if there is no friction then the eigen-
values satisfy the following equation:

θ4 − θ2Tr(Ŵ ) + det(Ŵ ) = 0, (A.1)

whose roots are given by

θ2 =
1

2

[
Tr(Ŵ )±

√
Tr(Ŵ )2 − 4 det(Ŵ )

]
. (A.2)

For a symmetric Ŵ matrix (which can always be achieved by field renormalizations), θ2 is
always real. In addition, if det(Ŵ ) > 0 and Tr(Ŵ ) > 0 (i.e. Ŵ has two positive eigenvalues)
then θ2 will also be positive definite. Note that in order to have stable tensor perturbations
we expect Ŵ to have positive eigenvalues. We thus conclude that in realistic scenarios, if
friction is not present, then there will always be four real eigenfrequencies of the form ±θ1

and ±θ2, with θ1,2 real.
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With friction. Regarding the eigenfrequencies, if ν̂ is antisymmetric and Ŵ is symmetric,
then θ will satisfy:

θ4 − θ2
[
Tr(Ŵ ) + det(ν̂)

]
+ det(Ŵ ) = 0 (A.3)

where det(ν̂) > 0. Similarly to the non-friction case, if det(Ŵ ) > 0 and Tr(Ŵ ) > 0, then the
θ2 roots will be real and positive definite, leading to four real eigenfrequencies related by ±
signs. Explicitly, we obtain:

θ2 =
1

2

[
Tr(Ŵ ) + det(ν̂)±

√[
Tr(Ŵ ) + det(ν̂)

]2
− 4 det(Ŵ )

]
. (A.4)

Next, we study the general case when ν̂ can have on-diagonal terms. In that case, θ
must satisfy the following equation:

det(Ŵ ) + iθ(W11ν22 +W22ν11)− θ2[Tr(Ŵ ) + det(ν̂)]− iθ3Tr(ν̂) + θ4 = 0 . (A.5)

As usual, there are four different solutions, but in this case the frequencies may be complex
and generically expressed as θ = ω + iΓ, with ω,Γ real. In the high-k limit, separating this
equation into real and imaginary components, we obtain that, if ω 6= 0 (as is the case at high
k for all models), it will always appear with even powers, whereas Γ will appear with both
odd and even powers. Therefore ω 6= 0 solutions always come in ±ω pairs of the same Γ. In
particular, when solving for the real component of Eq. (A.5), we find that the possible values
of ω2, given a value of Γ, are:

ω2 =
1

2

[
Tr(Ŵ ) + det(ν̂)− 3ΓTr(ν̂) + 6Γ2 ±

{(
Tr(Ŵ ) + det(ν̂)− 3ΓTr(ν̂) + 6Γ2

)2

−4 det(Ŵ ) + 4Γ(W11ν22 +W22ν11)− 4(Tr(Ŵ ) + det(ν̂))Γ2 + 4Tr(ν̂)Γ3 − 4Γ4
}1/2

]
,

(A.6)

where a solution must satisfy this equation with either + or − but not necessarily both.
Therefore, any real value of Γ satisfying the equations of motion will lead to a pair complex
eigenvalues of the form θ± = ±ω + iΓ satisfying Eq. (A.5). Since this eigenvalue equation is
quartic, we then expect to have four eigenvalues that can be generically expressed as:

θ1± = ±ω1 + iΓ1; θ2± = ±ω2 + iΓ2. (A.7)

In the large-k limit (when ν̂ is small compared to Ŵ ), one will find that one ω2 eigenvalue
is obtained from Eq. (A.6) with a + sign in front of the square root, and the other with a
− sign, with Eq. (A.4) as the limiting solution when Γ/ω → 0. Since the real component of
the eigenfrequencies determine the phase evolution of the waves, we conclude that the waves
will have only two independent oscillatory solutions (and others related by ± signs), similar
to the non-friction case. Each one of these two independent solutions will have an additional
exponential suppression determined by Γ1,2. Note that the values of Γ may be negative, and
conditions on the determinant and trace of the mixing matrices will need to be imposed to
ensure stability.
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B Frequency vs Momentum space initial wavepacket

In this appendix we discuss what the appropriate initial conditions for the two eigenstates are
for realistic GW emissions, focusing on comparing them in momentum and frequency space.
If one considers waves from a compact binary coalescing, the non-trivial emission temporal
profiles of GWs and possible additional fields is expected to be determined by the binary’s
dynamical motion, since the binary is typically assumed to be the only source present in
the system (see for instance examples of scalar-tensor gravity theories with scalar radiation
[78–80]). Regardless of the kind of interactions between the metric and new fields, we then
expect the binary’s angular velocity to determine the frequency of both the GWs and the
additional fields12. In addition, the emission of energy in the form of additional fields can
change the initial condition for GWs compared to that of GR since it will affect the binary’s
dynamical motion. However, in this paper we assume that the interactions between the
metric and the additional field are suppressed in the strong field regime, and therefore the
GW waveform emitted is approximately given by that in GR. Taking all these aspects into
consideration, we therefore conclude that it is appropriate to assume that both eigenstates
have approximately the same profiles for their initial conditions in frequency space, which is
that of GR.

We emphasize that even if it is appropriate to assume the same initial frequency profiles
for both eigenstates, we have worked throughout this paper in momentum space. We find,
however, that the same initial conditions can also be given in momentum space as long
as both dispersion relations are such that h0(ω) ≈ h0(k) and h0(ω1(k)) ≈ h0(ω2(k)). In
order to see this explicitly, consider the toy model of constant coefficients, which is a system
diagonalizable for left and right propagating waves separately, and the solutions are thus
simple plane waves ei(kx±ωη) in the absence of friction interactions. If we impose an initial
condition in k-space h0(k, η0) then, as shown in Section 2, both eigenmodes will have the
same profile in momentum space. The particular solution is given by Eq. (2.22). If we then
transform this solution to ω-space, we find:

h(ω, x) =
1

1− Ê12Ê21

(
e−ik1(ω)xh0(k1(ω))− Ê12Ê21e

−ik2(ω)xh0(k2(ω))
)
. (B.1)

From here we see that the frequency profiles of both eigenmodes now differ from each other.
This result would have been equivalent to imposing a single initial condition h0(ω, x0) in ω
space, as long as:

|h0(k1(ω))− h0(k2(ω))|/|h0(k1(ω))| � 1. (B.2)

for a range of relevant values of ω. This is because, if there is no friction, the solutions are
simple plane waves and therefore one could have found solutions directly in temporal Fourier
space by solving Eq. (2.8) for k as a function of ω, instead of ω as function of k. Note that
the condition in Eq. (B.2) only requires k1 ≈ k2 for the initial amplitude, but not for the
phase since the phase difference has a cumulative effect during propagation. Finally, if the

12Mathematically, in the radiation zone, one assumes that GWs and the additional field are described by
linear perturbations around a flat spacetime. If the additional fields do not couple directly to matter, and
only indirectly through the metric, then the EoM are expected to have a single source term from the binary,
whose structure is that one of GR since the metric is minimally coupled to matter. The time evolution of this
single source term is determined by the binary’s angular velocity Ω, which in turn will then determine the
frequency of all the fields. For instance, for a source term given by the quadrupole mass of the binary, the
GW and additional field emission frequency will be given by 2Ω.
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deviations from general relativity are small, we can also approximate h0(k(ω)) by h0(ω) and
assume the profile expected in GR.

For the toy models of Section 3, if the initial amplitudes were Gaussian wavepackets,
Eq. (B.2) yields

[−(k1 − k0)2 + (k2 − k0)2]/(2σ2
k)� 1. (B.3)

If one has that k2 = k1 + ∆k, then we need

∆k

σk

(∆k + 2(k1 − k0))

σk
� 1. (B.4)

This condition can easily be satisfied in the limit k → ∞ as long as the phase and group
velocities of the two eigenstates are similar.

More realistically, the emission of GWs in GR has frequency profiles during the binary’s
inspiral given by h0 ∝ ω−7/6. In this power-law case the condition (B.2) translates simply
into:

|∆k1(ω)−∆k2(ω)|/|ω| � 1, (B.5)

where the two eigenstates have dispersion relations kA = ω + ∆kA(ω). For velocity mixing
this condition would be satisfied if c(vg,2− vg,1)/(vg,1vg,2)� 1, whereas other mixing models
would have additional requirements of high k.

The previous results can be generalized to the case with friction interactions and con-
stant coefficients, where the solutions of the eigenstates were found to have exact solutions
of the form HA ∝ e±iωA(k)ηe−ΓA(k)ηeikx, where both eigenstates were assumed to have the
same k because we were working in momentum space. One could have also solved exactly
the equations assuming the same ω for both eigenmodes. The general relationship between ω
and k is discussed in Appendix A, where we showed that the EoM lead to 3 set of equations
of the form Γ1(k), Γ2(k) and ω2(k,Γ). From here we can then obtain two solutions of k as
function of ω by solving ω2(k1,Γ1(k1)) and ω2(k2,Γ2(k2)). For the two results k1,2(ω2) we
then obtain Γ1(k1(ω2)) and Γ2(k2(ω2)). In this case, we have two eigenmodes that have the
same ω but different Γ and k: HA ∝ eiωηe−ΓA(ω)ηeikA(ω)x. The matrix of eigenvectors now
takes an analogous form to the one obtained in Eq. (2.17):

Ê±(ω) =

 1 − Ŵ12(k2)+iν̂12(±ω+iΓ2)

Ŵ11(k2)−(±ω+iΓ2)2+iν̂11(±ω+iΓ2)

− Ŵ21(k1)+iν̂21(±ω+iΓ1)

Ŵ22(k1)−(±ω+iΓ1)2+iν̂22(±ω+iΓ1)
1

 . (B.6)

On the other hand, the exact solutions HA ∝ eiωηe−ΓA(ω)ηeikA(ω)x can be transformed to
frequency-domain by using the SPA assuming that Γ � ω, and hence assuming that the
amplitude e−Γη is effectively constant for the relevant timescales. Therefore, in order to
have an equivalence of the initial conditions in k and ω space we require the same condition
Eq. (B.2). The same will be valid for systems with slowly varying coefficients, compared to
the scales associated to k and ω.

C GW polarization parameters

The most general polarization state for a monochromatic plane GW propagating along the
ẑ axis can be expressed as:

hij(η) = <{A+e
−i(ωη−φ+)e+,ij +A×e

−i(ωη−φ−)e×,ij}, (C.1)
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where ω is the frequency of the wave, e+,ij = ((1, 0), (0,−1)) and e×,ij = ((0, 1), (1, 0)) are
the polarization tensor basis, and the four real constant parameters A+,×, φ+,× fully deter-
mine the amplitude and phase of each polarization component. However, a more physically
intuitive set of four real parameters that describe that signal can be used instead. These
parameters are {A, φ, β, χ}, where A and φ describe the global amplitude and phase of the
GW signal, whereas the angles β and χ characterize the relation between the two polariza-
tion components. In particular, β informs us about the degree of circular polarization that
is present, and χ the orientation of the linear polarization, or more generally the semi-major
axis of elliptical polarization. In terms of these new four parameters, the GW signal is given
by:

hij(η) = A<
{
e−i(ωη−φ) (cosβ cos 2χ+ i sinβ sin 2χ) e+,ij+

e−i(ωη−φ) (cosβ sin 2χ− i sinβ cos 2χ) e×,ij

}
. (C.2)

The explicit relation between {A, φ, β, χ} and {A+, A×, φ+, φ×} is then determined by:

A+ cos(φ+ − φ) = A cosβ cos(2χ), (C.3)

A× cos(φ× − φ) = A cosβ sin(2χ), (C.4)

A+ sin(φ+ − φ) = A sinβ sin(2χ), (C.5)

A× sin(φ× − φ) = −A sinβ cos(2χ). (C.6)

From here we see that one can identify unambiguously the amplitude of the signal A, calcu-

lated as A =
√
|h+|2 + |h2

×| =
√
A2

+ +A2
×. Therefore, this is the appropriate definition of

GW amplitude that we will be using in this paper. In the context of the main text, changes
after propagation in the angle χ describes a general rotation of the polarization axes, and
is equivalent to a shift of the orientation angle of the LIGO-type antenna pattern function:
ψ → ψ + χ. Equivalently, with the shift χ the polarization components of the signal get
rotated according to for + and ×:

h+ → h+ cos 2∆χ− h× sin 2∆χ, (C.7)

h× → h× cos 2∆χ+ h+ sin 2∆χ. (C.8)

Finally, the angle β describes the relative amplitude between the + and × polarization
components, and therefore whether the wave is linearly, elliptically, or circularly polarized.
In general, in analogy with an electromagnetic wave, in a transformed coordinate frame where
the ‘semi-major’ and ‘semi-minor’ axes of the polarization are aligned with the a linear basis
e′+,ij and e′×,ij , the polarization can be written as [81]:

h′ij = A cosβe−i(ωη−φ)e′+,ij − iA sinβe−i(ωη−φ)e′×,ij , (C.9)

where tanβ gives the ratio between the semi-major and minor axes. Equivalently, in the
circularly-polarized basis, we can generically describe the difference between hL and hR with
two real free parameters as:

hR = hL re
4iχ; hL = ALe

−i(ωη−φL), (C.10)

where hL,R = (h+±ih×)/
√

2. Here, χ describes a general rotation of the basis, and r describes
the ratio between the semi-major and semi-minor axes of a general elliptical polarization, and
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is related to β by (1−r)/(1+r) = − tanβ or, equivalently, r = (cosβ+sinβ)/(cosβ− sinβ).
Here we assume r to be positive definite, and hence β ∈ [−π/4, π/4], and the phase shift
exp{4χ} can take any value, and thus we assume that χ ∈ [−π/4, π/4]. Linear polarization
corresponds to β = 0, with special cases where with only h+ if χ = 0 or only h× if χ = ±π/4.
On the other hand, a right-handed circular polarization has β = +π/4 and a left-handed has
β = −π/4.
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isopérimètres, Mem. Acad. St. Petersbourg 6 (1850) 385–517.

[32] R. P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia 10 (2015)
32243, [1506.02210].

[33] L. Lombriser and A. Taylor, Breaking a Dark Degeneracy with Gravitational Waves, JCAP
1603 (2016) 031, [1509.08458].

[34] A. Nishizawa, Constraining the propagation speed of gravitational waves with compact binaries
at cosmological distances, Phys. Rev. D 93 (2016) 124036, [1601.01072].

[35] D. Bettoni, J. M. Ezquiaga, K. Hinterbichler and M. Zumalacrregui, Speed of Gravitational
Waves and the Fate of Scalar-Tensor Gravity, Phys. Rev. D95 (2017) 084029, [1608.01982].

[36] E. Belgacem, Y. Dirian, S. Foffa and M. Maggiore, Gravitational-wave luminosity distance in
modified gravity theories, Phys. Rev. D97 (2018) 104066, [1712.08108].

– 80 –

http://dx.doi.org/10.1063/1.532116
http://dx.doi.org/10.1063/1.532116
https://arxiv.org/abs/gr-qc/9610026
http://dx.doi.org/10.1088/1475-7516/2017/11/041
http://dx.doi.org/10.1088/1475-7516/2017/11/041
https://arxiv.org/abs/1706.03402
http://dx.doi.org/10.1088/1475-7516/2004/07/007
https://arxiv.org/abs/astro-ph/0405267
http://dx.doi.org/10.1007/JHEP03(2015)154
http://dx.doi.org/10.1007/JHEP03(2015)154
https://arxiv.org/abs/1408.6871
http://dx.doi.org/10.1103/PhysRevD.94.084041
http://dx.doi.org/10.1103/PhysRevD.94.084041
https://arxiv.org/abs/1609.05870
http://dx.doi.org/10.1016/j.physletb.2017.03.002
http://dx.doi.org/10.1016/j.physletb.2017.03.002
https://arxiv.org/abs/1610.08960
https://arxiv.org/abs/1712.06601
http://dx.doi.org/10.1103/PhysRevLett.119.111101
http://dx.doi.org/10.1103/PhysRevLett.119.111101
https://arxiv.org/abs/1703.07785
http://dx.doi.org/10.1103/PhysRevD.94.063005
https://arxiv.org/abs/1604.08939
https://arxiv.org/abs/1802.07371
http://dx.doi.org/10.1103/PhysRevD.57.2061
https://arxiv.org/abs/gr-qc/9709011
http://dx.doi.org/10.1103/PhysRevD.85.024041
https://arxiv.org/abs/1110.2720
http://dx.doi.org/10.1103/PhysRevD.101.024002
https://arxiv.org/abs/1909.10887
http://dx.doi.org/10.1016/j.physrep.2009.07.002
http://dx.doi.org/10.1016/j.physrep.2009.07.002
https://arxiv.org/abs/0907.2562
http://dx.doi.org/10.1103/PhysRevD.82.064017
http://dx.doi.org/10.1103/PhysRevD.82.064017
https://arxiv.org/abs/1005.3310
http://dx.doi.org/10.4249/scholarpedia.32243
http://dx.doi.org/10.4249/scholarpedia.32243
https://arxiv.org/abs/1506.02210
http://dx.doi.org/10.1088/1475-7516/2016/03/031
http://dx.doi.org/10.1088/1475-7516/2016/03/031
https://arxiv.org/abs/1509.08458
http://dx.doi.org/10.1103/PhysRevD.93.124036
https://arxiv.org/abs/1601.01072
http://dx.doi.org/10.1103/PhysRevD.95.084029
https://arxiv.org/abs/1608.01982
http://dx.doi.org/10.1103/PhysRevD.97.104066
https://arxiv.org/abs/1712.08108


[37] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller and I. Sawicki, Strong constraints on
cosmological gravity from GW170817 and GRB 170817A, Phys. Rev. Lett. 119 (2017) 251301,
[1710.06394].

[38] J. M. Ezquiaga and M. Zumalacrregui, Dark Energy After GW170817: Dead Ends and the
Road Ahead, Phys. Rev. Lett. 119 (2017) 251304, [1710.05901].

[39] Z. Haiman, Electromagnetic chirp of a compact binary black hole: A phase template for the
gravitational wave inspiral, Phys. Rev. D 96 (2017) 023004, [1705.06765].

[40] M. Lagos, M. Fishbach, P. Landry and D. E. Holz, Standard sirens with a running Planck
mass, Phys. Rev. D99 (2019) 083504, [1901.03321].

[41] A. Bonilla, R. D’Agostino, R. C. Nunes and J. C. N. de Araujo, Forecasts on the speed of
gravitational waves at high z, JCAP 03 (2020) 015, [1910.05631].

[42] S. Mastrogiovanni, D. Steer and M. Barsuglia, Probing modified gravity theories and cosmology
using gravitational-waves and associated electromagnetic counterparts, Phys. Rev. D 102
(2020) 044009, [2004.01632].

[43] CANTATA collaboration, E. N. Saridakis et al., Modified Gravity and Cosmology: An Update
by the CANTATA Network, 2105.12582.

[44] N. Yunes, K. Yagi and F. Pretorius, Theoretical Physics Implications of the Binary Black-Hole
Mergers GW150914 and GW151226, Phys. Rev. D 94 (2016) 084002, [1603.08955].

[45] LIGO Scientific, VIRGO collaboration, B. P. Abbott et al., GW170104: Observation of a
50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118 (2017)
221101, [1706.01812].

[46] A. G. Cohen, S. L. Glashow and Z. Ligeti, Disentangling Neutrino Oscillations, Phys. Lett. B
678 (2009) 191–196, [0810.4602].
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