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We explicate the origin of the temperature quadrupole in the adiabatic dark energy model and
explore the mechanism by which scale invariant isocurvature dark energy perturbations can lead to
its sharp suppression. The model requires anticorrelated curvature and isocurvature fluctuations and
is favored by the WMAP data at about the 95% confidence level in a flat scale invariant model. In
an inflationary context, the anticorrelation may be established if the curvature fluctuations originate
from a variable decay rate of the inflaton; such models however tend to overpredict gravitational
waves. This isocurvature model can in the future be distinguished from alternatives involving a
reduction in large scale power or modifications to the sound speed of the dark energy through the
polarization and its cross correlation with the temperature. The isocurvature model retains the
same polarization fluctuations as its adiabatic counterpart but reduces the correlated temperature
fluctuations. We present a pedagogical discussion of dark energy fluctuations in a quintessence and
k-essence context in the Appendix.

I. INTRODUCTION

The first data release of the WMAP data [1] was on the
whole in spectacular agreement with the ΛCDM model
[2, 3]. However, as originally discovered by COBE, the
measured value of the quadrupole seems low compared
to the model prediction. Originally it was estimated
that the probability of measuring such a low or lower
quadrupole was 0.7% assuming that the ΛCDM model
was correct [2]. However, subsequent studies with more
detailed methods of dealing with foregrounds have es-
timated this probability to be closer to 4% [4–8]. The
alignment of the quadrupole and octopole [8–11] and var-
ious asymmetries in the data [12–17] have also being con-
sidered.

This probability of such a low or lower quadrupole
would not be particularly anomalous if the quadrupole
were treated on par with all other multipoles. Such points
would be expected to occur just by chance in such a large
data set. In fact there are several other equally or more
anomalous multipoles. However the quadrupole is par-
ticularly intriguing in that it represents the largest ob-
servable angular scale and so may be a good probe of new
physical effects. In particular, it is the multipole whose
power has the most significant contribution from length
scales that are on and even above the horizon at dark
energy domination.

Various explanations for the low quadrupole have been
proposed. They include a cut off in the primordial power
spectrum [18–31], a small universe [2, 32–35] and pertur-
bations in the dark energy [36–40]. The cut-off and small
Universe models work by reducing the Sachs Wolfe effect
in the quadrupole. The dark energy perturbation mod-
els work by modifying the Integrated Sachs Wolfe effect
from the dark energy. In this paper we focus on the latter
class and in particular a generalization of the correlated
isocurvature model introduced by [36].

We begin in §II with a general discussion of the origin
of the temperature quadrupole in the adiabatic model

and explore its relationship to the low multipole polariza-
tion. In §III, we show how the properties of the adiabatic
quadrupole point to a specific class of isocurvature mod-
els that can cancel the Sachs-Wolfe contributions to the
quadrupole. We compare and contrast this model with
alternate solutions and show that the polarization will
be in the future a useful discriminator. In §IV we assess
the likelihood of substantial isocurvature perturbations
in light of the WMAP data. We discuss an inflationary
context for such perturbations in §V but show that in the
simplest models gravitational waves are over-predicted.
We also include a pedagogical Appendix on dark energy
perturbations in a quintessence and k-essence context.

II. QUADRUPOLE TRANSFER FUNCTION

In an adiabatic model with dark energy, the CMB tem-
perature quadrupole receives its contributions from two
distinct effects: the (ordinary) Sachs-Wolfe (SW) effect
from temperature and metric fluctuations near recombi-
nation and the Integrated Sachs-Wolfe (ISW) effect from
changes in the metric fluctuations due to the dark en-
ergy. These effects are quantified by the CMB tempera-
ture transfer function.
Let us define the two dimensional CMB transfer func-

tions as the mapping between the power in the initial
curvature fluctuations ζi in the comoving gauge [see Ap-
pendix, Eqn. (A39)]

〈ζi(k)ζi(k′)〉 = (2π)3δ(k − k
′)
2π2

k3
∆2

ζi(k) (1)

and the angular space power spectra

ℓ(ℓ+ 1)CXX′

ℓ

2π
=

∫

dk

k
TX
ℓ (k, η0)T

X′

ℓ (k, η0)∆
2
ζi(k) , (2)

where X,X ′ ∈ Θ, E the temperature fluctuation and E-
mode polarization respectively.
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FIG. 1: The quadrupole transfer function in the fiducial adi-
abatic model (see text). The temperature quadrupole receives
Sachs-Wolfe (SW) contributions peaking around k = 0.0002 Mpc−1

and Integrated Sachs-Wolfe (ISW) contributions peaking around
k = 0.001 Mpc−1 but extending to k ∼ 0.01 Mpc−1. The ISW
effect arises from the dark energy dominated regime z . 1. The
polarization arises through rescattering of quadrupole anisotropies
at z > 1 and hence reflects the SW contributions. The cross corre-
lation is proportional to the product of the transfer functions.

We employ a comoving gauge Boltzmann hierarchy
code [41] for numerical solutions of the transfer function.
These are shown for the temperature and polarization
quadrupole in Fig. 1. Here we have chosen fiducial values
for the cosmological parameters that are near the maxi-
mum likelihood model from WMAP: a dark energy den-
sity relative to critical of ΩQ = 0.73, non-relativistic mat-
ter density Ωmh2 = 0.14, baryon density Ωbh

2 = 0.024,
optical depth to reionization τ = 0.17, dark energy equa-
tion of state wQ = pQ/ρQ = −1 in a spatially flat
universe. The resulting temperature power spectrum is
shown in Fig. 2 compared with the WMAP data for a
scale invariant spectrum of initial perturbations

∆2
ζi = δ2ζi

(

k

0.05Mpc−1

)n−1

(3)

where δζi = 5.07× 10−5 and the tilt n = 1.
Notice that the temperature contributions from the

SW and ISW effects are comparable in magnitude and
well-separated in scale. Hence they add nearly in quadra-
ture in Eqn. (2). In the polarization, the quadrupole
comes mainly from the SW effect as can be seen from its
dependence on the redshift of reionization or equivalently
the cumulative contributions from z < zmax (see Fig. 1b).
The polarization quadrupole gets nearly no contributions
from z < 1 when the dark energy dominates. These prop-
erties are the key to understanding how to construct a
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FIG. 2: Temperature power spectrum in the fiducial model com-
pared with the data from the first year WMAP release [42]. Bands
are 68% and 95% cosmic variance confidence regions (see text).

model with certain desired properties at low temperature
and polarization multipoles.
Since the quadrupoles are dominated by large scale

or low-k fluctuations, it is useful to examine the origin
of these properties with a low-k approximation to the
transfer functions. In this limit, the transfer function
is determined by the Newtonian temperature monopole
Θ, gravitational potential Ψ and curvature fluctuation
Φ [see Eqn. (A41), (A42) for the correspondence to the
comoving gauge]

TΘ
ℓ (k, η0) =

√

2ℓ(ℓ+ 1)

ζi

[

(Θ∗ +Ψ∗)jℓ(kD∗)

+

∫ η0

η∗

dη(Ψ̇ − Φ̇)jℓ(kD)
]

≈ −
√

2ℓ(ℓ+ 1)

ζi

[1

5
ζijℓ(kDm)

+2

∫ η0

ηm

dη Φ̇ jℓ(kD)
]

, (4)

where the subscripts denote evaluation at recombination
for “ ∗ ”, “0” for the present and “m” for some arbi-
trary time well after radiation domination but well before
dark energy domination and overdots represent deriva-
tives with respect to conformal time η =

∫

dt/a. Here
we have assumed a spatially flat universe where the co-
moving distance D = η0 − η. Since Φ ≈ −Ψ when the
anisotropic stress is negligible [see Eqn. (A42)], we loosely
refer to either as the gravitational potential.
The two terms in the second line are the SW and

ISW effects respectively. This approximation accounts
for the small evolution in the gravitational potential be-
tween recombination and full matter domination, some-
times called the “early” ISW effect. Since Dm ≈ D∗,
this effect adds coherently with those at recombination.
In the fiducial cosmology,D∗ ≈ 14Gpc. Since jℓ(x) peaks
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2
in the fiducial adiabatic model compared an adia-

batic plus isocurvature model with Si ≡ δQi/ζi = −15 (A&I; see
§III). (a) k = 0.0002 Mpc−1 SW dominated mode. In the adia-
batic model, the decay of the potential at z . 1 has little effect on
the quadrupole due to the inefficiency in the transfer represented
by j2. A much larger change of ∆Φ ∼ −ζi from the isocurvature
perturbation can cancel the SW quadrupole. (b) k = 0.001 Mpc−1

ISW dominated mode. The adiabatic potential decay transfers ef-
ficiently onto the quadrupole moment. The additional isocurvature
perturbations decay by dark energy domination and have little ef-
fect (see Fig. 4).

at x ≈ ℓ + 1/2, the SW contributions peak at x = 5/2
or k ∼ 0.0002 Mpc in Fig. 1. The temporal evolution for
the potential and quadrupole are shown for this mode in
Fig. 3a.

The ISW effect arises from the change in the gravita-
tional potential due to the dark energy. In the adiabatic
model, the smooth dark energy density accelerates the
expansion without enhancing the density perturbations
and leads to a decay of the potential at z . 1 (see Fig. 3).
Naively, one would suppose that a decay of ∆Φ = −ζi/10
would be sufficient to cancel out the SW effect of ζi/5.
For superhorizon scaled adiabatic fluctuations in a flat
universe the conservation of the comoving curvature im-

plies [43]

∆Φ ≡Φ(k, a = 1)− Φ(k, am)

≈
(

2

5
−H0

∫ 1

am

da′

H

)

ζi , (5)

where the approximation assumes am ≪ 1 is some epoch
near the beginning of matter domination so that contri-
butions near the lower limit of the integral may be ig-
nored. Here H = a−1da/dt is the Hubble parameter. In
the fiducial model ∆Φ ≈ −0.14ζi. However the distance
to z . 1 is much smaller than D∗ and that degrades
the efficiency with which the ISW effect contributes in
Eqn. (4). The efficiency factor j2(kD) implies that one
requires factor of 10 greater change in the potential (or
∆Φ ∼ −ζi) to affect the quadrupole substantially (see
Fig. 3). At the peak of the SW effect in k, the ISW effect
has little effect (see Fig. 1).
Contributions from the ISW effect in the quadrupole

actually originate from scales where kDde ≈ 5/2 where
“de” denotes the epoch of dark energy-matter equality.
Because the distance changes rapidly with redshift lo-
cally, the ISW effect is spread out across over a factor of
ten in physical scale with a peak centered near k = 0.001
Mpc−1 (see Fig. 1a). At this wavenumber j2(kD) has a
peak near z = 1 corresponding to an efficient transfer of
power. Moreover since the decay occurs on the expan-
sion time scale the oscillations in k from jl(kD) in the
ISW integrand of Eqn. (4) are washed out in the trans-
fer function. Physically this reflects the cancellation of
radial modes as photons travel in and out of decaying
gravitational potentials along the line of sight.
To lower the predicted value of the quadrupole, one

can alter the fiducial model to lower the SW effect, the
ISW effect or both. Since both effects contribute nearly
equally, reducing one or the other can at best halve the
power. Of course, due to cosmic variance, it is possible
that the observed quadrupole results from a lack of angu-
lar power in our given realization of the fiducial model.
In Fig. 2 we show the 68% and 95% cosmic variance con-
fidence regions assuming that CΘΘ

ℓ is distributed as a χ2

with 2ℓ+1 degrees of freedom around the fiducial model.
However again, a simple lack of power on large physi-
cal scales for our last scattering (recombination) surface
is not sufficient. Unless our local volume also lacks in-
termediate scale power as well, a chance occurrence of
a low observed quadrupole would result from a chance
cancellation of the SW and ISW effects.
The low multipole polarization and cross spectra pro-

vides key additional information to discriminate between
alternatives. In the large scale limit, it is approximately

TE
ℓ (k, η0) = −3

4

√

(ℓ + 2)!

(ℓ − 2)!

∫ η0

η∗

dητ̇e−τTΘ
2 (k, η)

jℓ(kD)

(kD)2
,

(6)

where τ is the Thomson optical depth as measured from
the observer. Consider the transfer function of the po-
larization quadrupole. Fig. 1 shows that in the fiducial
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model it is generated before the temperature quadrupole
is modified by the ISW effect. Consequently, the transfer
function also peaks near the large scales of the SW peak
of k ∼ 0.0002 Mpc−1. As Eqn. (2) shows this overlap
is also the origin of the temperature-polarization cross
correlation. In Fig. 7, we show the EE and ΘE power
spectra of the fiducial model.
If the explanation of the observed low quadrupole in-

volves the dark energy, either through a dynamical ef-
fect or chance cancellation, one would expect a polariza-
tion quadrupole and hence EE power that is not anoma-
lously low compared with the fiducial model. If on the
other hand it involves an actual lack of predicted long-
wavelength power in the model or by chance, both spec-
tra would be low. Finally, if the explanation involved
only the reduction of the ISW effect and no modification
of long wavelength power, then the predicted ΘE cross
power spectrum would also remain unchanged.

III. DARK ENERGY MODELS

The fact that in the fiducial adiabatic model the tem-
perature quadrupole receives comparable contributions
from recombination and dark energy domination through
the SW and ISW effects raises the possibility that the low
quadrupole originates in the dark energy sector. In the
Appendix we present a detailed treatment of perturba-
tion theory in general dark energy models which provides
the basis for results in this section.
The essential element that defines the ISW effect in the

fiducial model is that the dark energy remains smooth out
to the horizon scale and hence does not contribute den-
sity fluctuations to the gravitational potential. In general
there are two ways to alter this conclusion: modify the
dynamics of the dark energy so that dark matter fluctua-
tions remain imprinted on the dark energy or modify the
initial perturbations in the dark energy sector. Since the
dark energy has made a negligible contribution to the net
energy density until recently, the latter represents con-
tributions from an isocurvature initial condition. That
dark energy isocurvature conditions can help to lower
the quadrupole has recently been shown [36]. Here we
present a general discussion on the requirements of such
a model.
The first requirement is that an initial dark energy

perturbation must survive evolution in the radiation and
matter dominated epoch and must remain correlated
with the perturbations in the dark matter. The latter
condition is required for the dark energy perturbations
to cancel the adiabatic ones.
Let us take the dark energy to be a scalar field Q

with the canonical kinetic term and a potential VQ, i.e.
quintessence. We treat the more general case of k-essence
in the Appendix. Given that a quintessence field has an
effective sound speed ce = 1 [see Eqn. (A28)], coher-
ence well inside the horizon and hence cancellation with
the adiabatic ISW effect is not possible. The dark en-

ergy isocurvature mechanism then must operate on large
scales to cancel the SW effect.
Recall that to achieve a coherent cancellation of the

SW effect in the quadrupole one requires either a change
of ∆Φ ∼ −ζi/10 in the gravitational potential early on
when D ≈ D∗ or a larger change ∆Φ ∼ −ζi at z . 1 to
compensate for the inefficiency of the transfer of power
to the quadrupole. Given that observations require that
wQ ∼ −1 today, the former possibility is excluded unless
wQ evolves substantially from its present value.
In a flat universe the comoving curvature evolves only

in response to stress fluctuations in the combined or to-
tal (“T”) stress energy tensor of the components (see
Eqn. A39)

ζ(a, k) =ζi(k)−
∫ a

0

da′

a′
δpT

ρT + pT

≈ζi(k)−
∫ a

am

da′

a′
δpQ
ρm

, (7)

where the approximation assumes wQ ≈ −1, a ≫ am,
and the radiation and hence the anisotropic stress is neg-
ligible. The generalization of Eqn. (5) for the evolution
in the Newtonian potential is [see e.g. [44] Eqn. (52)]

Φ(a, k) =ζ(a, k)− H

a

∫ a

am

da′

H
[ζ − δpT

ρT + pT
]

≈ζ(a, k)− H

a

∫ a

am

da′

H
[ζ − δpQ

ρm
] . (8)

Thus it requires a substantial pressure fluctuation to
make an order unity change to gravitational potential
during the dark energy dominated regime

δpQ
ρm

(a = 1, k) =
ΩQ

Ωm

δpQ
ρQ

(1, k) = O(ζi) . (9)

Note that in the comoving gauge, adiabatic density fluc-
tuations scale as δ ∼ (kη)2ζi [see Eqn. (A46)] and are
negligible outside the horizon. Furthermore we shall see
below that the order unity coefficient in front of ζi is in
practice substantially greater than unity.
This requirement severely limits the range of

quintessence models which can affect the quadrupole.
As shown in the Appendix, aside from transient initial
condition effects, an isocurvature perturbation to the
quintessence field δQ at best remains constant outside
the horizon and hence one requires a large initial fluctu-
ation to the quintessence field.
A constant superhorizon quintessence field fluctuation

generically occurs if the background field itself is nearly
frozen by the Hubble drag so as to only experience a
range in the potential where

V ′

Q ≡ dVQ

dQ
(10)

can be approximated as constant. More specifically, we
require that the field not be in the tracking regime or
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([45] see also Appendix)

Γ ≡
V ′′

Q

VQ

(

V ′

Q

VQ

)−2

. 1 . (11)

To see the consequences for the energy density and pres-
sure, note that aside from a transient decaying mode the
Klein-Gordon equation (A33) has the solution

dQ

d ln a
≈ − 2

3(3 + wT )

V ′

Q

H2
, (12)

where we have assumed an epoch during which wT =
pT /ρT the equation of state of the background is con-
stant. The dark energy density is the sum of the kinetic
and potential components

ρQ =
1

2

(

H
dQ

d ln a

)2

+ VQ . (13)

Since H2 ∝ ρT decreases with the expansion, if the field
is potential energy dominated today (wQ ∼ −1) then
it is potential energy dominated for the past expansion
history. The combination of Eqn. (12) and (13) shows
that this will be satisfied if the potential satisfies

1

2

(

V ′

Q

VQ

)2
VQ

H2
0

. 1 , (14)

or equivalently with

ǫQ =
1

16πG

(

V ′

Q

VQ

)2

, (15)

and

ΩQ ≈ 8πGVQ

3H2
0

, (16)

the condition becomes

3ΩQǫQ . 1 . (17)

Moreover since the field only experiences a small range
in the potential throughout the whole expansion history,
any underlying form of VQ that satisfies these require-
ments will have the same phenomenology. We find that
in the context of the fiducial model ǫQ . 0.6 is required
for wQ(a = 1) . −2/3.
Given potential energy domination, the energy and

pressure fluctuations are related to the field fluctuations
as

δρQ ≡ δQρQ = −δpQ = V ′

QδQ (18)

and remain nearly constant during the evolution. The
superhorizon evolution of the comoving curvature from
Eqn. (7) is given by

ζ(a, k) = ζi(k) +
1

3
δQ

ΩQ

Ωm
a3 (19)

a
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FIG. 4: Isocurvature dark energy density perturbation evolution
for a nearly frozen background quintessence field (see text). On su-
perhorizon scales the comoving gauge density perturbation remains
frozen at nearly its initial value. On subhorizon scales, the pres-
sure gradients associated with field fluctuations cause the density
perturbation to oscillate and decay. Also shown are the dark en-
ergy equation of state wQ = pQ/ρQ and the adiabatic sound speed
squared c2a = ṗQ/ρ̇Q (not to be confused with the effective sound
speed ce = 1) which indicate the field is Hubble drag dominated
until recently (see Appendix).

and hence from Eqn. (8)

Φ(a, k) =

[

1− H

a

∫ a

am

da′

H

]

ζi

+

[

1− 4
H

a

∫ a

am

da′

H
a′

3
]

1

3
δQ

ΩQ

Ωm
(20)

where the two pieces are the adiabatic term and the
isocurvature term. The integrals in Eqn. (20) can be
expressed in terms of hypergeometric functions. In the
fiducial model

Φ(a = 1, k) = 0.46ζi + 0.12δQ . (21)

Combined with the requirement that ∆Φ ≈ −ζi this re-
lation implies that we should set the initial dark energy
fluctuations to be δQi ≈ −8ζi to cancel the quadrupole
in the fiducial model.
While this condition is roughly correct, the scales

that are responsible for the quadrupole in the SW ef-
fect (k ∼ 0.0002 Mpc−1) are on the horizon scale today.
Since the quintessence field has a sound horizon equal to
the horizon, the fluctuations in these modes will have al-
ready begun to decay from their initial values. In Fig. 4
we show the time evolution of the dark energy density
perturbation. Because the argument above might appear
to require wQ = −1 exactly, we have chosen to illustrate
the behavior in a model with wQ(a = 1) = −0.94 and
ǫQ = 0.18 with the other parameters equal to their fidu-
cial values. Since wQ → −1 rapidly with redshift, the
change in D∗ from the fiducial model is only 0.4%. As



6

k (Mpc-1)

0.010.0010.0001

0.002

0

-0.002

0.2

0

-0.2

T
E 2

T
Θ 2

(a) Temperature

(b) Polarization

A

A

A&I

SW

iISW

A&I

FIG. 5: Quadrupole transfer functions in the fiducial adiabatic
model (“A”) and a model with additional isocurvature perturba-
tions of Si = −15 (“A&I”). The isocurvature ISW effect (iISW)
cancel the SW effect for the temperature quadrupole from large
scales while leaving the polarization nearly unchanged.

the background evolution is nearly indistinguishable from
the true fiducial model, we will employ this choice for the
isocurvature analog of the fiducial model.
In practice we have taken a potential VQ = m2

QQ
2/2

with mQ = 10−42 GeV and an initial position consistent
with ǫQ and dQ/d lna = 0 initially. For scales near the
peak of the SW effect in the quadrupole the density per-
turbation has decayed by about a factor of two by z ∼ 1.
Consequently an initial density perturbation of

Si ≡
δQi

ζi
= −15 (22)

should be optimal for reducing the SW quadrupole. We
call models with this type of fully correlated adiabatic
and isocurvature models “A&I” models.
In Fig. 3 we show the effect of this initial condition

on the gravitational potential. In this case the change in
the gravitational potential ∆Φ ≈ −ζi and one achieves
the desired effect of eliminating the SW effect in the
quadrupole.
The reduction of the SW quadrupole must not come at

the expense of an enhancement in the ISW contributions
to the quadrupole. Fortunately, this is a natural con-
sequence of the effective sound speed of the scalar field
ce = 1. Scales near the peak contribution of the adiabatic
ISW effect are well within the horizon by dark energy
domination. Consequently as can be seen in Fig. 4 any
initial isocurvature perturbation in the dark energy will
have decayed before dark energy domination. In Fig. 3,
we show the evolution of the potential given the initial
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FIG. 6: Temperature power spectrum of the A&I model with sev-
eral choices for the initial isocurvature amplitude compared with
the WMAP data. The shaded region corresponds to the 68% and
95% cosmic variance confidence region of the fiducial A&I model
with Si = −15 (solid line).

conditions of Eqn. (22). Note that despite the large ini-
tial isocurvature perturbation it has almost no effect on
the potential evolution and hence the contributions to
the quadrupole.

In Fig. 5, we show the temperature and polarization
transfer functions of the isocurvature model. The isocur-
vature ISW effect almost perfectly cancels the SW effect
on large scales leaving a quadrupole that consists almost
solely of the adiabatic ISW effect. Note that the isocurva-
ture conditions leave the polarization essentially unmod-
ified as expected since they only change the potentials at
z . 2 in Fig. 3.

In Fig. 6 we show the temperature power spectrum of
this model for several choices of Si with all other param-
eters held fixed. Note that for Si ≈ −15 the suppression
is fairly sharp around the quadrupole in spite of scale
invariance in both the adiabatic and isocurvature initial
conditions. The polarization auto (EE) and cross (ΘE)
spectra are shown in Fig. 7. Notice that although the
EE spectrum remains nearly unchanged, the ΘE spec-
trum has a reduced cross correlation with a sign change
at the quadrupole. (Note that our sign convention for E
is opposite to CMBFAST.) Because the cross spectrum
in the adiabatic case arises from the correlation between
the SW quadrupole and the polarization, it is affected by
the cancellation of the SW quadrupole as the product of
the two transfer functions in Fig. 5 show.

It is interesting to compare the isocurvature method
of lowering the quadrupole to other possible solutions. A
related mechanism involves modifying the sound speed
of the dark energy [37, 39, 46, 47]. Here one retains adi-
abatic initial conditions but modifies the effective sound
speed of the dark energy (see Appendix). The dark en-
ergy then contributes density fluctuations between the
horizon and the sound horizon and reduces the adiabatic
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FIG. 7: The polarization EE and cross correlation ΘE spectra
for the fiducial adiabatic model compared with the fiducial A&I
model of Fig. 6 with Si = −15. Although the EE spectrum re-
mains essentially unchanged, the correlation is modified at the low
multipoles due to the reduction of the large scale contributions to
the quadrupole from the SW effect which are the source of the
correlation in the adiabatic model.

ISW effect by suppressing the decay of the gravitational
potential. In Fig. 8, we show the transfer functions for
a model with wQ = −2/3, ce = 0.03 with ΩQ = 0.37
and Ωmh2 and Ωbh

2 held fixed to the fiducial values such
that D∗ and the shape of the peaks remain the same as
in the fiducial model. Note that unlike in the isocurva-
ture case, the SW contributions to the quadrupole are
unmodified but the adiabatic ISW contributions are re-
duced. The resulting effect on the temperature power
spectrum is shown in Fig. 9. However, like the isocurva-
ture case, the polarization is largely unchanged since the
dark energy again only affects low redshifts. A qualita-
tive difference appears in the cross power spectra, which
remains unchanged in this case (see Fig. 10).
Finally, the quadrupole can be lowered by removing

power on scales associated with the SW effect. Here we
take the model [22]

∆2
ζi(k) =∆2

ζi(k)|fidC(k) ,

C(k) =1− e−(k/kcut)
ncut

, (23)

with kcut = 0.0005 Mpc−1 and ncut = 3.35. The trans-
fer functions for this model are the same as the fidu-
cial model but for illustrative effect we plot them as
Tℓ(k)C

1/2(k) in Fig. 8. Like the isocurvature model, the
quadrupole in Fig. 9 is suppressed due to the elimination
of the SW quadrupole. Unlike the isocurvature case, both
the EE and ΘE spectra are suppressed since the tem-
perature quadrupoles are also absent during reionization

k (Mpc-1)
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FIG. 8: Alternate models for the low quadrupole. The adiabatic
ISW effect may be reduced by lowering the effective sound speed
of the dark energy, here to ce = 0.03. The SW effect can be largely
eliminated through a cut off factor C(k) in the initial adiabatic
power spectrum, here chosen to remove power for k < kcut = 0.0005
Mpc−1. Although the latter does not modify the transfer function,
we have illustrated its effects by showing TℓC

1/2(k). Note that the
cut off affects the polarization whereas the sound speed does not.
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FIG. 9: Temperature power spectra of the sound speed and cut
off models of Fig. 8. The sound speed model lowers the adiabatic
ISW contributions to the quadrupole. The cut off model reduces
the SW contributions to the quadrupole.

(see Fig. 10).

IV. LIKELIHOOD ANALYSIS

In this section we check whether the adiabatic plus
isocurvature (A&I) model of the previous section is fa-



8

l 

10010

-5

0

5

l(
l+

1
)C

l 
 /

2
π 

 (
µK

2
)

Θ
E

0.1

0.2

0.3

0.4

l(
l+

1
)C

l 
 /

2
π 

 (
µK

2
)

E
E

fiducial

sound speed

cut-off

FIG. 10: Polarization spectra for the sound speed and cut off mod-
els of Fig. 8. The sound speed model changes both spectra negli-
gibly whereas the cut off model suppresses power in both spectra
simultaneously.

TABLE I: Scale Invariant ΛCDM Model Parameters: WMAP ΘΘ
& ΘE Data.

Parameter Maximum Likelihood

Matter / Critical Density, Ωm 0.27

Baryon / Critical Density, Ωb 0.046

Hubble Constant, h 0.72

Optical Depth, τ 0.17

Initial Amplitude, δζi 5.07× 10−5

vored by the WMAP data [1]. For simplicity we will
assume a scale invariant spectrum, zero background cur-
vature and zero neutrino mass. Then the maximum like-
lihood fit with no dark energy perturbations is given in
Table I. When the spectral index is fixed the only pa-
rameter with enough freedom to significantly effect the
low multipoles is the optical depth, τ .

Keeping the other parameters in Table I fixed we vary
the magnitude Si of the primordial isocurvature pertur-
bation in dark energy relative to the comoving curva-
ture between −60 < Si < 25 and the optical depth
0 < τ < 0.29 on a 28× 30 grid. The amplitude in Table I
is scaled by exp(τ−0.17); recall that the power spectrum
is scaled as the square of this quantity [see Eqn. (3)].
This is to take into account the well known degeneracy
between τ and the amplitude. For each grid point the
likelihood was evaluated using the software provided by
WMAP [42, 48] and the resulting two dimensional surface
was interpolated. A uniform prior in both parameters
was assumed.

TABLE II: Best fit (assuming scale invariance) χ2 and degrees of
freedom (DOF) values using WMAP data.

Model Data χ2 DOF

Fiducial (Table I) ΘΘ 976 894

ce = 0.03 ΘΘ 973 893

Cut-off (kcut = 0.0005Mpc−1) ΘΘ 972 893

Adiabatic & Isocurvature ΘΘ 972 893

Fiducial (Table I) ΘΘ+ΘE 1430 1343

ce = 0.03 ΘΘ+ΘE 1428 1342

Cut-off (kcut = 0.0003Mpc−1) ΘΘ+ΘE 1428 1342

Adiabatic & Isocurvature ΘΘ+ΘE 1427 1342

τ
0.05 0.1 0.15 0.250.2

-60

-40

-20

0

20

S
i

ΘΘ+ΘΕ

ΘΘ

FIG. 11: Areas enclosing 95% of the probability for the dark en-
ergy isocurvature perturbation (Si) and the optical depth (τ). The
black area is using only the ΘΘ WMAP data and the gray area
uses both the ΘΘ and ΘE WMAP data.

The maximum likelihood points are Si = −15.3 and
τ = 0.16 for WMAP ΘΘ data only and Si = −12.1 and
τ = 0.18 for WMAP ΘΘ and ΘE data. The χ2 for
these parameter values and other models are giving in
Table II. The reduction in χ2 is achieved by only modi-
fying the first few multipoles of the predicted spectrum.
Areas enclosing 95% of the probability with and without
the ΘE data are shown in Fig. 11. The area perime-
ters lie on constant probability contours. As can be seen
from Fig. 11, the weight of the probability distribution
favors Si < 0, i.e. an isocurvature density perturbation
that is negatively correlated with the comoving curva-
ture perturbation, ζi. This preference comes from the
fact that the lowered temperature quadrupole in such a
model better fits the observations. The addition of the
ΘE data reduces the favored magnitude of the isocurva-
ture perturbation Si and slightly increases that of τ as
ΘE is suppressed in the model but not in the data [49].
Note that the restriction to scale invariant models does
not affect the relative improvement that Si makes for a
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FIG. 12: Probability density functions for the dark energy isocur-
vature perturbation using WMAP ΘΘ (solid) and WMAP ΘΘ and
ΘE data (dashed).

given τ since across the scales relevant to the first few
multipoles any nearly scale invariant model will have the
same shape. Allowing the tilt to vary does allow low τ
models if only the ΘΘ data is employed but these are
eliminated with the inclusion of ΘE data (c.f. [2] and
[50]).
One dimensional probability distributions obtained by

integrating out τ are displayed in Fig. 12. The mean and
68% confidence regions for Si are −15.2±8.2 for WMAP
ΘΘ data only and −11.8± 7.1 for WMAP ΘΘ and ΘE
data. The probability of Si > 0 is 0.04 using WMAP
ΘΘ data only and 0.06 using WMAP ΘΘ and ΘE data.
This is in sharp contrast to the estimates of the amount
of totally correlated CDM, baryon or neutrino isocur-
vature perturbation as estimated in [51, 52] where the
probability for a positive isocurvature perturbation was
roughly 50%, i.e. the isocurvature perturbation was not
significantly different from zero. The reason for this is
that correlated non-dark energy isocurvature perturba-
tions have a similar effect on a much larger range of low
ℓ multipoles as they rely on a simple reduction of the
SW effect. The dark energy introduces a scale associated
with the current horizon and so the dark energy isocur-
vature ISW effect can only reduce the SW effect on the
large scales associated with the quadrupole.

V. INFLATIONARY CONTEXT

As we have shown, it is essential that the dark energy
isocurvature perturbation is anti-correlated with the adi-
abatic perturbation so that its ISW effect can coherently
cancel the SW effect. Correlated or anti-correlated adia-
batic and isocurvature perturbations result when the adi-
abatic curvature perturbation itself is generated by the
isocurvature perturbation [53, 54]. Ref. [36] suggested a
three field model based on the curvaton mechanism [55–

57] in order to produce anti-correlated isocurvature dark
energy perturbations.
Another way of establishing the anticorrelation is

through the variable decay mechanism [58, 59] where
there is a second light scalar field during inflation which
determines the decay rate Γ of the inflaton. In this
method, the resulting comoving curvature perturbation
is given by

ζi = −1

6

δΓ

Γ
. (24)

If we associate the variable decay field with the
quintessence field, Q, and take Γ ∝ Q then ζi =
−(1/6)δQ/Q. Then, if we further take the quintessence
potential to be VQ ∝ Q2, we have δQi

= 2δQ/Q. There-
fore

δQi
= −12ζi , (25)

which was the mean value found in §IV when both
WMAP ΘΘ and ΘE data were used.
Unfortunately, a problem with this and other inflation-

ary scenarios arises because of the gravitational waves
generated during inflation. Both the scalar field and
gravitational waves are nearly massless degrees of free-
dom during inflation and hence acquire closely related
quantum fluctuations. The contribution of the gravita-
tional waves to the ΘΘ spectrum for ℓ ≫ 1 is [60]

ℓ(ℓ+ 1)

2π
CΘΘ

ℓ

∣

∣

∣

grav
≈ 2πG

(

Hinf

2π

)2

, (26)

where Hinf is the Hubble parameter during inflation. On
the other hand, Eqn. (4) implies that the curvature fluc-
tuations induce a SW effect of

ℓ(ℓ+ 1)

2π
CΘΘ

ℓ

∣

∣

∣

SW
≈ 1

25
∆2

ζi . (27)

Now ∆2
ζi

is related to the inflationary power spectrum of
δQ,

∆2
δQ =

(

Hinf

2π

)2

(28)

through

−12ζi ≈ δQi ≈
V ′

Q

VQ
δQ

=
√

16πGǫQδQ , (29)

where ǫQ was defined in Eqn. (15). Unlike inflaton cur-
vature fluctuations, these curvature fluctuations are sup-
pressed with a small ǫQ because the cancellation condi-
tion involves the energy density fluctuation in Q. There-
fore

ℓ(ℓ+ 1)

2π
Cℓ

∣

∣

∣

SW
≈ Gπ

225
ǫQ

(

Hinf

2π

)2

. (30)
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The predicted ratio of gravitational wave to SW contri-
butions is r ≈ 450/ǫQ.
As discussed in §III, an equation of state today of

wQ ≈ −1 requires a small slow roll parameter for the
quintessence (ǫQ . 0.6) at the field position today. The
current observational limit is about r < 1 [3]. There-
fore, the isocurvature perturbations in a nearly frozen
field model for the quintessence field could not have orig-
inated from this inflationary mechanism.
Note that the problem of excess gravitational waves is

independent of the precise potential or inflaton decay rate
relation as it arises from the phenomenologically required
condition Eqn. (25). It applies to any model (including
the curvaton model proposed in Ref. [36]) for which the
field fluctuations δQ at dark energy domination are di-
rectly associated with the inflationary fluctuations of a
light canonical scalar field [Eqn. (28)].
The only way to evade this conclusion is for δQ to grow

by a factor of 30 or more between horizon crossing during
inflation and today. It is not clear how to do this for a
canonical scalar field whose perturbations were generated
during inflation.

VI. DISCUSSION

We have explicated the mechanism by which scale in-
variant isocurvature perturbations in the dark energy can
lead to a sharp suppression of the quadrupole tempera-
ture anisotropy [36]. The Integrated Sachs-Wolfe (ISW)
effect in the dark energy dominated epoch can coherently
cancel the Sachs-Wolfe (SW) effect from recombination if
its energy density fluctuations are set to be strongly an-
ticorrelated with the initial curvature fluctuations. We
call these A&I models. Assuming a scale invariant spec-
trum and flat background, we detect the presence of A&I
perturbations at the 95% confidence level.
As is well known [61–63] (see also Appendix), isocurva-

ture modes in the dark energy rapidly decay for tracking
models. Models in which the scalar field and its isocur-
vature perturbations are essentially frozen [62] due to a
shallow potential slope relative to the Hubble parameter
are better suited. We have shown that the requirements
on such a model comes mainly through the quintessence
“slow roll” parameter ǫQ.
As for the origin of the A&I correlation, we can asso-

ciate the dark energy with a variable decay rate of the
inflaton. We find that the right level of isocurvature per-
turbations is naturally predicted. Unfortunately, the re-
quirement of a shallow slope of the potential or small ǫQ
implies too high a level of gravitational waves. For this
model to work some mechanism is required for amplifying
the field fluctuations by a factor of 30 or more between
inflation and dark energy domination.
A&I models should be contrasted with those that in-

troduce a cut off scale to the perturbations. A conceptual
problem of the latter class is that it introduces the sharp
reduction at the quadrupole “by hand”. In other words,

there is a new coincidence problem between the cut-off
or topology scale and the horizon today. There is also no
significant evidence for features at any other scale (e.g.
[64, 65]). Phenomenologically, by eliminating the per-
turbations altogether, the cut off models also eliminate
the source of large angle polarization. Thus, the cut-off
and A&I models are potentially distinguishable from the
polarization autocorrelation (or EE) spectrum. On the
other hand both models predict a reduced temperature
polarization cross correlation.

In principle, these alternatives can also be distin-
guished by large scale measurements of the density field
as a function of redshift and its ISW correlation with the
CMB [66–69], e.g. through high redshift galaxies [70–73]
or cosmic shear [74–76], but measuring the small signals
involved will require exquisite control over systematics in
the surveys.

Both cut off and A&I models operate by reducing
the SW contributions to the quadrupole. Unfortunately,
the SW effect only contributes approximately half of the
quadrupole in adiabatic models with a cosmological con-
stant. The remaining portion comes from the ISW effect
and receives contributions across a wide range of subhori-
zon scales. Neither A&I nor cut off models can suppress
the ISW effect at the quadrupole. In the former, the
high sound speed of the dark energy prevents substantial
density perturbations on subhorizon scales. In the latter,
a cut-off on small enough scales to affect the ISW effect
would remove too much small scale power and distort the
higher ℓ multipoles.

The adiabatic ISW effect can be modified by changing
the dynamics of the dark energy by lowering its effective
sound speed. Alone it only amounts in a fairly small
reduction if the other multipoles are not to be adversely
affected. This model is also distinguished from the A&I
and cut off models in that it affects neither the auto nor
the cross correlation spectra of the polarization. This
is because it is the SW quadrupole that is responsible
for the polarization and hence its correlation with the
temperature.

In combination with an anticorrelated A&I model, a
sound speed modification alters the multipole at which
the SW effect is canceled. We find that the canonical
sound speed ce = 1 is nearly optimal in producing a sharp
suppression at the quadrupole though a slight increase in
the sound speed can actually lead to a slightly sharper
reduction.

Since the first COBE detection, the low quadrupole
temperature anisotropy in the CMB has provided a tan-
talizing hint that new physics may be hovering on the
horizon scale. With upcoming polarization auto and
cross correlation data from WMAP, we may soon more
than double the information on this intriguing problem.
All of the alternatives discussed here have distinct, albeit
cosmic variance limited, predictions for these spectra.
The predictions are especially distinct at the quadrupole
and octopole but it remains to be seen how well these
large-angle polarization fluctuations can be separated



11

from galactic foregrounds and instrumental effects.
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Appendix A: Dark Energy Perturbations

1. Covariant Conservation

Following [43, 77], let us define the most general per-
turbation to the Friedmann Robertson Walker (FRW)
metric as

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

gij = a−2(γij − 2HLγ
ij − 2Hij

T ) , (A1)

where γij is the FRW 3-metric of constant (comoving)
curvature K = H2

0 (ΩT − 1). Likewise let us define the
most general stress-energy parameterization of an energy
density component Q

T 0
0 = −ρQ,

T 0
i = qQ i ,

T i
j = pQδ

i
j +ΠQ

i
j , (A2)

where ρQ is the energy density, qQ i is the momentum
density, pQ is the pressure or isotropic stress and ΠQ

i
j is

the anisotropic stress of Q. The anisotropic stress is de-
fined as the trace free portion of the stress such that
ΠQ

i
i=0. If Q is to dominate the expansion at any time

then qQ and ΠQ must vanish in the background due to
isotropy.

If Q is non-interacting or “dark” then this stress energy
tensor is covariantly conserved. Conservation then leads
to general equations of motion for the stress-energy com-
ponents. Retaining terms linear in the metric fluctua-
tions where they combine with stress energy components
(ρQ, pQ) in the background, we can reduce ∇νT µ

ν = 0 to

[

d

dη
+ 3

ȧ

a

]

ρQ =− 3
ȧ

a
pQ −∇iq

i
Q

− (ρQ + pQ)(∇iB
i + 3ḢL) ,

[

d

dη
+ 4

ȧ

a

]

qQ i =−∇ipQ −∇jΠQ
j
i

− (ρQ + pQ)∇iA . (A3)

The conservation equations represent a general but in-
complete description of the dark energy as they leave the
spatial stresses pQ and ΠQ unspecified.

2. Equation of State

The isotropic stresses may be rewritten in terms of an
equation of state

pQ(η, xi) = wQ(η, xi)ρQ(η, xi) , (A4)

where wQ is in general a function of position and time.
For the scalar degrees of freedom it is useful to recast

Eqn. (A3) in terms of an expansion of the fluctuations
into scalar harmonic modes defined by the complete set
of eigenfuctions Y of the Laplace operator

∇2Y = −k2Y . (A5)

The spatial fluctuations in each mode are given by four
mode amplitudes δQ, δwQ, uQ, πQ as

δρQ ≡δQY ρQ ,

δpQ ≡(wQδQ + δwQ)Y ρQ ,

qQ i ≡uQ(−k−1∇iY )ρQ ,

ΠQ
i
j ≡πQ(k

−2∇i∇jY +
1

3
δijY )pQ . (A6)

Note that for a spatially flat metric Y = eik·x and the
mode amplitudes are the Fourier coefficients of the fields.
In the literature (e.g. [43]), one often defines instead a
quantity VQ, related to the bulk velocity or energy flux,
such that uQ = (1 + wQ)(VQ − B). In Eqn. (A6) and
throughout the remainder of this section ρQ, pQ, and
wQ = pQ/ρQ are to be reinterpreted as the average or
background quantities and depend only on time. Here-
after we will typically omit the spatial harmonics Y by
assuming a harmonic space representation of the pertur-
bations.
The conservation equations then become

δ̇Q =− 3
ȧ

a
δwQ − kuQ − (1 + wQ)(kB + 3ḢL) ,

u̇Q =
ȧ

a
(3wQ − 1)uQ + k(wQδQ + δwQ)

− 2

3
wQ(1 − 3K/k2)kπQ + (1 + wQ)kA , (A7)

where we have used the conservation of energy relation
in the background [see Eqn. (A3)]

ρ̇Q = −3
ȧ

a
(1 + wQ)ρQ . (A8)

Here we have followed the same convention for the
harmonic representation of the metric fluctuations, e.g.
A(η, xi) = A(η, k)Y .
The quantity δwQ represents spatial fluctuations in the

equation of state and specifies the pressure fluctuation as

δpQ = (wQδQ + δwQ)ρQ . (A9)

Equation of state fluctuations can arise from intrinsic
internal degrees of freedom in the dark energy or from
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temporal variations in the background equation of state
through a general coordinate or gauge transformation.
The gauge transformation is defined as a perturbation

in the temporal and spatial coordinates of xµ = x̃µ +
(T, LY i) with respect to the background under which
[43]

A = Ã− Ṫ − ȧ

a
T ,

B = B̃ + L̇+ kT ,

HL = H̃L − k

3
L− ȧ

a
T ,

HT = H̃T + kL , (A10)

for the metric and

δρQ = δρ̃Q − ρ̇QT,

δpQ = δp̃Q − ṗQT,

uQ = ũQ − k(1 + wQ)T , (A11)

for the dark energy variables.
Starting from the uniform density gauge where there is

no dark energy density fluctuation δρ̃Q = 0, there arises a
contribution to the pressure fluctuation under the gauge
transformation [Eqn. (A11)] of

δpQ − δp̃Q = δρQc
2
a , (A12)

where the adiabatic sound speed is

c2a =
ṗQ
ρ̇Q

=
dpQ/d ln a

dρQ/d lna

=wQ − 1

3

d ln(1 + wQ)

d ln a
. (A13)

If in the uniform density gauge the pressure fluctuation
also vanishes (δp̃Q = 0), the dark energy only has adi-
abatic pressure fluctuations and from Eqns. (A9) and
(A12)

δwQ adi =(c2a − wQ)δQ . (A14)

In this case, the pressure fluctuation and gravitational
terms in the momentum conservation equation (A7) be-
come

kc2aδQ + (1 + wQ)kA . (A15)

If the dark energy accelerates the expansion wQ < −1/3.
If wQ is also slowly varying, the adiabatic sound speed
is imaginary: c2a ∼ wQ < 0. In the small scale New-
tonian approximation (and gauge), the Poisson equation
gives A ∼ −δQ/(kη)

2 during the dark energy dominated
epoch. Hence for c2a < 0 pressure gradients would en-
hance potential gradients in generating momentum den-
sity and the dark energy would collapse faster than the
dark matter. Thus for gravitational instability in the
dark energy to be stabilized by pressure gradients a
source of non-adiabatic pressure fluctuations is required.

These can be supplied by internal degrees of freedom in
the dark energy.

Following [46], the role of the background equation of
state parameter as a closure relation between the pres-
sure and density can be generalized for an inhomogeneous
dark energy component. If one requires that the pressure
fluctuation is linear in the energy and momentum density
fluctuations, general covariance [or gauge invariance for
linear fluctuations, see Eqn. (A11)] requires that

δwQ|non−adi ∝ δQ + 3
ȧ

a

uQ

k
. (A16)

We choose to specify the proportionality through an ef-
fective sound speed such that the full equation of state
fluctuation is given as

δwQ =(c2a − wQ)δQ + (c2e − c2a)

(

δQ + 3
ȧ

a

uQ

k

)

. (A17)

Note that c2e = c2a for adiabatic pressure fluctuations.
The quantity c2e may in principle be a function of time
and k.

With this ansatz for δwQ, the covariant conservation
equations (A7) become

δ̇Q =− 3
ȧ

a
(c2e − wQ)δQ − 9

(

ȧ

a

)2

(c2e − c2a)
uQ

k

− kuQ − (1 + wQ)(kB + 3ḢL) ,

u̇Q =
ȧ

a
[3(wQ + c2e − c2a)− 1]uQ + kc2eδQ

− 2

3
wQ(1− 3K/k2)kπQ + (1 + wQ)kA . (A18)

Note that unlike in Eqn. (A15), it is c2e and not c2a that
is the coefficient for δQ in the momentum conservation
equation; hence c2e controls the stability of density fluc-
tuations. More formally in the zero momentum gauge or
rest frame of the dark energy where uQ = 0, Eqns. (A9)
and (A17) imply

δwQ rest = (c2e − wQ)δQrest ,

δpQ rest = c2eδρQrest , (A19)

so that c2e is the sound speed in the rest frame. This
property is useful in the calculation of c2e for a given dark
energy model.

Likewise, a closure relation between the anisotropic
stress πQ and the energy and momentum density can also
be supplied through a generalized equation of state [46].
However unlike the non-adiabatic stress, a non-vanishing
value is not required for stability by wQ < −1/3. We
shall see now that for scalar field dark energy candidates
it in fact does vanish in linear theory.
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3. Quintessence and k-Essence Fields

The stress-energy tensor for a scalar field Q with a
Lagrangian F (X,Q) is [78]

T µ
ν =

∂F

∂X
∇µQ∇νQ+ Fδµν , (A20)

where the kinetic term

X = −1

2
∇µQ∇µQ . (A21)

For the case of a canonical kinetic energy term

F (X,Q) = X − VQ , (A22)

where VQ(Q) is the scalar field potential. Q is then called
the quintessence field. For the case F (X,Q) = −X−VQ,
the dark energy is called a phantom field (e.g. [79]) and
for a more general modification of the kinetic term, a
k-essence field [80].
Matching terms between Eqn. (A2) and (A20), and

dropping contributions that are second order in the spa-
tial gradients of the field

ρQ = 2
∂F

∂X
X − F ,

pQ = F ,

qQ i = − ∂F

∂X
a−2Q̇∇iQ ,

ΠQ
i
j = 0 . (A23)

In particular the density and pressure fluctuations be-
come

δρQ =(2
∂2F

∂X2
X +

∂F

∂X
)δX +

(

2
∂2F

∂Q∂X
X − ∂F

∂Q

)

δQ ,

δpQ =
∂F

∂X
δX +

∂F

∂Q
δQ , (A24)

where

δX = a−2(Q̇ ˙δQ−AQ̇2) . (A25)

Note that under a gauge transformation Q transforms
as a scalar

δQ = δQ̃ − Q̇T , (A26)

and

ρQuQ =
∂F

∂X
a−2Q̇kδQ . (A27)

Hence the uniform field gauge where δQ = 0 coincides
with the rest gauge uQ = 0. Since this is the gauge in
which c2e = δpQ/δρQ, the effective sound speed of a scalar
field is [78],

c2e =
∂F/∂X

2(∂2F/∂X2)X + (∂F/∂X)
. (A28)

For a scalar field with the canonical kinetic term in
Eqn. (A22), c2e = 1. More generally, to achieve a con-
stant c2e one requires

∂F

∂X
=

(

X

VK

)

1−c
2
e

2c2
e

, (A29)

where VK is a constant with dimensions of energy density.
If for simplicity one further assumes that the kinetic and
potential terms are additive ∂F/∂Q = −∂VQ/∂Q and

F =
2c2e

1 + c2e

(

X

Vk

)

1+c
2
e

2c2
e

Vk − VQ . (A30)

The effective sound speed of Eqn. (A28) along with
wQ in the background closes the evolution equations
Eqn. (A18) once the metric fluctuations are specified by
the Einstein equations (see §A5). The evolution of dark
energy density perturbations is then completely defined
by a choice of initial conditions for δQ and uQ.

4. Background Evolution

To obtain the background evolution of the dark energy,
one begins with the energy density conservation equation
(A8) in terms of the field variables

Q̈+ (3c2e − 1)
ȧ

a
Q̇+ c2ea

2

(

∂F

∂X

)

−1
∂ρQ
∂Q

= 0 (A31)

or

d2Q

d ln a2
+

3

2
(2c2e − 1− wT )

dQ

d ln a
+

c2e
H2

(

∂F

∂X

)

−1
∂ρQ
∂Q

= 0 .

(A32)

For the canonical kinetic term,

d2Q

d ln a2
+

3

2
(1− wT )

dQ

d ln a
+

1

H2

dVQ

dQ
= 0 , (A33)

where wT = pT /ρT is the equation of state for the sum of
all components. Note that wT depends on Q and hence
in practice it is more convenient to solve a set of coupled
first order differential equations in Q and HdQ/d lna =√
2X. Likewise, since 1 + wQ appears in the evolution

equations, one calculates this quantity directly as

1 + wQ =
2(∂F/∂X)X

2(∂F/∂X)X − F
. (A34)

Combined with Eqn. (A29), this relation implies that if
the field is potential energy dominated wQ → −1 and if
it is kinetic energy dominated wQ → c2e.
With equation (A32), the expression for the adiabatic

sound speed becomes

c2a = c2e +
c2e∂ρQ/∂Q− ∂F/∂Q

3H2(∂F/∂X)(dQ/d lna)
. (A35)



14

The adiabatic sound speed takes on a specific form in
the case where the Hubble drag inhibits the motion of
the field. In this case ∂ρQ/∂Q is nearly constant. If wT

is constant, dQ/d ln a reaches a “terminal velocity” that
is independent of the initial conditions and scales with
H . Utilizing the constant effective sound speed form for
F in equation (A30), the equation of motion (A32) can
be written in the form of the Bernoulli equation and the
adiabatic sound speed becomes

c2a = c2e −
1

2
(c2e + 1)(3 + wT ) . (A36)

For the case of a canonical kinetic term c2a = −2 − wT

[62] (see also Fig. 4).
On the other hand, if the Hubble drag is negligible

dQ

d ln a
∝ a−3(2c2

e
−1−wT )/2 , (A37)

and assuming kinetic energy domination wQ = c2a = c2e.

5. Initial Conditions and Evolution

We numerically solve the dark energy evolution equa-
tions in comoving gauge where the total momentum den-
sity vanishes

ρTuT ≡
∑

i

ρiui = 0 . (A38)

Here i runs over all species of energy density. We define
the total density and pressure fluctuation similarly. The
auxiliary condition HT = 0 completely fixes the coordi-
nate freedom. We call the remaining metric degrees of
freedom ζ ≡ HL, ξ ≡ A and VT ≡ B, where VT also has
the interpretation of the total momentum weighted ve-
locity [see [43] and the discussion below Eqn. (A6)]. The
Einstein equations become

ζ̇ +
K

k
VT =

ȧ

a
ξ

=
ȧ

a

1

ρT + pT

[

−δpT +
2

3

(

1− 3K

k2

)

pTπT

]

,

VT =(Φ− ζ)k

(

ȧ

a

)

−1

(A39)

where recall K is the background spatial curvature. The
continuity equation for the total density perturbation
completes the basic equations

δ̇T = −3
ȧ

a
δwT − (1 + wT )(kVT + 3ζ̇) , (A40)

as the momentum conservation equation was used to re-
late ξ to the stresses in Eqn. (A39). In that equation

(k2 − 3K)Φ = 4πGa2ρT δT (A41)

and is equal to the curvature fluctuation in the Newto-
nian or longitudinal gauge Φ ≡ HL|Newt. For reference,
the Newtonian potential Ψ ≡ A|Newt employed in §II is

Ψ = −Φ− 8πGa2pTπT /k
2 , (A42)

and the total velocity obeys an auxiliary relation

V̇T +
ȧ

a
VT = −k(ξ −Ψ) (A43)

that is useful for checking numerical solutions.
Equation (A39) implies that the curvature fluctuation

ζ changes only in response to stress fluctuations. As in
the discussion of dark energy perturbations above, the
evolution equations are closed through an assumption
for the stress perturbations. In practice, for numerical
solutions that extend to subhorizon scales, we replace
Eqn. (A40) with the conservation equations for the indi-
vidual energy density species to implicitly solve for δwT .
For the initial conditions, assuming nearly adiabatic

stresses
∣

∣

∣

∣

δpT − ṗT
ρ̇T

δρT

∣

∣

∣

∣

≪ |δpT | (A44)

and a closure relation for the anisotropic stress of the
neutrinos which comes from the Boltzmann equation [e.g.
[46] Eqn. (12)]

πν =
4

5
kηVT , (A45)

we obtain the solution to the evolution equations in the
radiation dominated regime

δT =
4

9

1 + 3αν

1 + 2αν
(1− 3

K

k2
)(kη)2ζi ,

VT =− 1

3

1

1 + 2αν
(kη)ζi , (A46)

where αν = 2ρν/15ρr accounts for the anisotropic stress
of the neutrinos

πT =
ρν
ρr

πν

= − 2αν

1 + 2αν
(kη)2ζi . (A47)

Here ρr = ργ + ρν , the total radiation density and
we have kept only leading order terms in power of kη.
Given that the stress perturbation δpT /(ρT + pT ) =
O[(kη)2]ζi, Eqn. (A39) shows that the curvature per-
turbation is nearly constant for superhorizon adiabatic
stresses ζ(k, ηi) = ζi(k) [43].
The dark energy perturbations associated with the cur-

vature fluctuation can then be related to the total density
perturbation by substituting these relations back into the
Einstein equations (A39) for ζ̇ and ξ and employing them
in the conservation equations (A18). The result is

δQ = Aδ(1 + wQ)δT ,

uQ = Au(1 + wQ)(kη)δT , (A48)
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where assuming a radiation dominated initial condition

Au =
3c2e + (1 + 6αν)(3c

2
a − 2)

4(1 + 3αν)[8 + 6c2e − 12c2a]
,

Aδ =
3

4

1− 6(c2e − c2a)Au

1− 3(c2a − c2e)/2
. (A49)

We have here assumed that wQ and c2a are nearly constant
compared with the expansion time but have allowed (1+
wQ) to vary as appropriate for a scalar field under the
Hubble drag by factoring this quantity out of Eqn. (A48).
The curvature initial conditions for the dark energy

take on this rather intricate form involving Au in the
relation for Aδ since the internal non-adiabatic stress of
the dark energy cannot be neglected even though its con-
tribution to the total non-adiabatic stress in Eqn. (A44)
can be ignored. In general, the curvature mode always
carries non-adiabatic stresses beyond the leading order
in (kη) and ρi/ρr where i 6= γ, ν. Formally these vanish
if the initial conditions are taken to ηi → 0.
Deviations in the initial conditions for the dark en-

ergy from these relations represents an isocurvature mode
since the dark energy is assumed to carry a negligible
fraction of the net energy density at the initial condi-
tions so that the radiation density fluctuation δr = δT .
If we also assume that the relative deviations are large
δQ(ηi, k) ≫ (1 + wQ)δT (ηi, k) then the dark energy-
radiation entropy fluctuation

(1 + wQ)SQr ≡δQ − 1 + wQ

1 + wr
δr ,

≈δQ , (A50)

which corresponds to the usual definition of the isocur-
vature mode as being generated by SQr. The distinction
here is that the adiabatic mode has SQr = O(δT ) 6= 0
due to the intrinsic entropy of Q and evolution of wQ.
Neglecting the metric fluctuations generated by the

dark energy fluctuations, we find that the the evolution
equations (A18) are solved by a linear combination of the
adiabatic mode and

δQ = Iδ(kη)
p ,

uQ = Iu(kη)
p+1 , (A51)

where

Iδ
Iu

=

[

p+
3(1 + wT + 2c2a − 2c2e − 2wQ)

1 + 3wT

]

c−2
e

(A52)

and p solves the equation
[

p+
6

1 + 3wT
(c2e − wQ)

]

Iδ
Iu

= −9

(

2

1 + 3wT

)2

(c2e − c2a) .

(A53)

For initial conditions in the radiation dominated era, the
solutions to this quadratic equation are

p = −1− 3

2
c2a + 3wQ ±

√

(1 + 3c2a/2)
2 − 6c2e . (A54)

These solutions in fact apply for essentially all gauges
until the epoch of dark energy domination. The only
exceptions are those that place explicit conditions on the
dark energy fluctuations such as δQ = 0 or uQ = 0.
It is instructive to consider the two limiting cases of

Hubble drag domination and negligible Hubble drag or
kinetic energy domination in Eqn. (A36). In the former
case,

p = 0,
3

1 + 3wT
(−2 + c2e + c2ewT ) . (A55)

In terms of the field variables, the constant mode cor-
responds to an initial condition where δX = 0, i.e. the
kinetic energy terms in Eqn. (A24) for the density per-
turbation vanish. Therefore the potential energy fluctu-
ation remains constant. Note that in spite of this the
momentum density does not vanish. The second mode
corresponds to an initial conditions with comparable ki-
netic and potential energy (δQ terms) in the perturba-
tion. An arbitrary initial condition can be decomposed
into a superposition of the modes. Note that the second
mode is decaying for c2e < 2/(1 + wT ) and growing for
c2e > 2/(1+wT ). For a canonical kinetic term, this is a de-
caying mode for all wT < 1. Nonetheless, if 2 > c2e > 3/2
a small initial density or field fluctuation will be am-
plified during radiation domination and freeze in during
matter domination even though the background field is
potential energy dominated during the whole expansion
history wQ ≈ −1.
The existence of this mode could potentially allow a

solution to the gravitational wave problem of §V by am-
plifying the field fluctuations from their initial conditions.
However the amount of amplification is dependent on the
initial ratio of kinetic to potential energy in the fluctua-
tion. It also depends on the ratio in the background since
the fractional fluctuation in the kinetic energy density (as
opposed to the total energy density) must also remain
small for the mode analysis to remain valid. Finding an
explicit model that satisfies these conditions is beyond
the scope of this work.
In the opposite regime of kinetic energy domination,

the two solutions become

p = 0,
3(2c2e − 1− wT )

1 + 3wT
. (A56)

The p = 0 solution corresponds to a kinetic energy dom-
inated perturbation where δX scales with X . The other
solution corresponds to a pure velocity isocurvature mode
where uQ/(kη) ≫ δQ ≈ 0. Note that uQ grows if
c2e > 1/3 as is the case for the canonical kinetic term.
In the field representation, this mode represents a case
where the density perturbation is dominated by the po-
tential energy and hence negligible in the kinetic energy
dominated regime. The field fluctuation δQ then remains
constant but the momentum density uQ in Eqn. (A27)
grows due to the redshifting of ρQ in the background. If
the field later exits from kinetic energy domination, the
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field fluctuation then becomes an energy density fluctu-
ation.
Finally, there is the well-studied tracking regime where

1+wQ ∝ 1+wT . Then 1+wQ is approximately constant
and Eqn. (A13) gives c2a ≈ wQ. The two solutions become

p =− 3

2(1 + 3wT )

(

1− 2wQ + wT

±
√

(1 + 2wQ + wT )2 − 8c2e(1 + wT )
)

. (A57)

The index p is maximized by maximizing wQ. The
maximum wQ = c2e for a kinetic energy dominated
field and hence the fastest growing modes are given by
Eqn. (A56). By further requiring the tracker condition
wQ < (1 + wT )/2 [45], we see that Re(p) < 0 and there

are again no growing modes. The field fluctuations then
“track” and lose their dependence on the initial isocur-
vature perturbation as is well known. Note that for the
canonical kinetic term in the tracking regime, the pro-
portionality is [45]

1 + wQ ≈ 1 + wT

2Γ− 1
(A58)

where Γ was defined in Eqn. (11). The perfect tracker is
attained at the limiting case of 1 + wQ = 1 + wT or Γ =
1 which is acheived for an purely exponential potential
VQ ∝ e−CQ where C is constant [63]. Here the dark
energy remains a constant fraction of the total energy
density.
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