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We present an exact solution to the equations of massive gravity that display cosmological
constant-like behavior for any spherically symmetric distribution of matter, including arbitrary
time dependence. On this solution, the new degrees of freedom from the massive graviton generate
a cosmological constant-like contribution to stress-energy that does not interact directly with other
matter sources. When the effective cosmological constant contribution dominates over other sources
of stress energy the cosmological expansion self-accelerates, even when no other dark-energy-like
ingredients are present. The new degrees of freedom introduced by giving the graviton the mass do
not respond to arbitrarily large radial or homogeneous perturbations from other matter fields on
this solution. We comment on possible implications of this result.

I. INTRODUCTION

More than seventy years have elapsed since Pauli and
Fierz made the first attempt at writing a theory of grav-
ity with a massive graviton [1]. In the intervening years,
daunting challenges to realizing such a theory have been
found, including the scylla of incompatibility with Solar
System tests [2, 3] and the charybdis of ghost-like de-
grees of freedom [4]. Recently, de Rham, Gabadadze, and
Tolley have constructed a theory of massive gravity [5–7]
that evades these dangers [8, 9]. This theory also contains
a vacuum solution that recovers exactly a Schwarzschild-
de Sitter solution [10, 11]. Moreover, in the flat matter
dominated limit, the theory has a solution that responds
to the presence of matter by producing an effective cos-
mological constant contribution to the stress tensor at
the cost of introducing inhomogeneous solutions for the
Stückelberg fields that describe the new degrees of free-
dom that come from massive gravity [12]. For an open
universe, a related solution has been explicitly shown to
evolve into self-acceleration [13].
In this paper, we generalize considerations in [12, 13]

to an arbitrary spatially isotropic metric. We find cos-
mological constant type solutions in the presence of any
isotropic distribution of matter. Such solutions connect
the perturbative flat matter dominated solution [12] to
the de Sitter solution [10, 11] allowing a cosmological ex-
pansion history identical to the ΛCDM model even in the
presence of spherically symmetric matter perturbations.

II. MASSIVE GRAVITY

The covariant Lagrangian density for a theory of mas-
sive gravity will have, in addition to the usual Einstein-
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Hilbert term, a mass term, which we write as the poten-
tial U ,

LG =
M2

pl

2

√
−g

[

R− m2

4
U(gµν ,Kµν)

]

. (1)

M2
pl = 1/8πG and ~ = c = 1 throughout. Kµν is a

tensor that characterizes metric fluctuations away from
a fiducial (flat) space time. At the linearized level, the
potential must take on the Fierz-Pauli structure to be
ghost free; but any purely linear theory will exhibit the
vDVZ discontinuity [2, 3], where an additional helicity
mode couples to matter even in the m → 0 limit. Non-
linear extensions to the Fierz-Pauli potential can evade
this problem via a strong coupling phenomenon known as
the Vainshtein mechanism [14], where the extra coupling
is suppressed near matter sources. However, these exten-
sions typically contain an unhealthy ghost-like degree of
freedom [4].

For a theory of massive gravity to be free from this
ghost, the potential term must take a special form built
out of expressions that have the form of total derivatives
in absence of dynamics [7]. These can be written as con-
tractions of the tensor

Kµ
ν = δµν −

√
Σ

µ

ν . (2)

The matrix
√
Σ is understood to denote

√
Σ

µ

α

√
Σ

α

ν ≡
Σµ

ν . The potential-generating matrix is defined as

Σµ
ν ≡ gµα∂αφ

a∂νφ
bηab ≡ gµαΣαν , (3)

where φa are the 4 Stückelberg fields introduced to re-
store diffeomorphism invariance. The φa fields transform
as scalars, while Σ,

√
Σ and K transform as tensors under

general coordinate transforms.
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In matrix notation, the potential can be written [5–7]

−U
4

= [K]2 − [K2]

+ α3

(

[K]3 − 3[K][K2] + 2[K3]
)

+ α4

(

[K]4 − 6[K]2[K2] + 8[K][K3]

+ 3[K2]2 − 6[K4]
)

, (4)

where brackets denote traces, [A] ≡ Aµ
µ, and α3, α4

are free parameters. Using Eq. (2), we can reexpress the

potential in terms of traces of products of
√
Σ

U
4

= −12 + 6[
√
Σ] + [Σ]− [

√
Σ]2

+ α3

(

−24 + 18[
√
Σ]− 6[

√
Σ]2 + [

√
Σ]3

− 3[Σ]([
√
Σ]− 2) + 2[Σ3/2]

)

+ α4

(

−24 + 24[
√
Σ]− 12[

√
Σ]2 − 12[

√
Σ][Σ]

+ 6[
√
Σ]2[Σ] + 4[

√
Σ]3 + 12[Σ]− 3[Σ]2

− 8[Σ3/2]([
√
Σ]− 1) + 6[Σ2]− [

√
Σ]4

)

. (5)

Variation of the action with respect to the metric yields
the modified Einstein equations

Gµν = m2T (K)
µν +

1

M2
pl

T (m)
µν , (6)

where Gµν is the usual Einstein tensor and T
(m)
µν is the

matter stress energy tensor. Here

T (K)
µν =

1√−g

δ

δgµν
√
−g

U
4

(7)

=− 1

2

{U
4
gµν − 2Σµν − 2(3− [

√
Σ])

√
Σµν

+ α3

[

− 3
(

6− 4[
√
Σ] + [

√
Σ]2 − [Σ]

)√
Σµν

+ 6
(

[
√
Σ]− 2

)

Σµν − 6Σ3/2
µν

]

+ α4

[

− 24
(

Σ
2
µν − ([

√
Σ]− 1)Σ3/2

µν

)

− 12
(

2− 2[
√
Σ]− [Σ] + [

√
Σ]2

)

Σµν

−
(

24− 24[
√
Σ] + 12[

√
Σ]2 − 4[

√
Σ]3

−12[Σ] + 12[Σ][
√
Σ]− 8[Σ3/2]

)√
Σµν

]}

is the dimensionless effective stress energy tensor pro-
vided by the mass term. Note that this effective stress
energy depends explicitly on the metric itself. To solve
the modified Einstein equation, we first parameterize the
metric and then solve for the joint effect of the matter
and mass term.

III. EXACT SOLUTION

Generalizing [12, 13], we consider an arbitrary spatially
isotropic metric,

ds2 = −b2(r, t)dt2 + a2(r, t)(dr2 + r2dΩ2). (8)

We correspondingly take a spherically symmetric ansatz
for the Stückelberg fields:

φ0 = f(t, r),

φi = g(t, r)
xi

r
, (9)

and look for solutions to the functions g(t, r) and f(t, r).
The potential matrix (3) then takes the form

Σ =























ḟ2 − ġ2

b2
ḟf ′ − ġg′

b2
0 0

ġg′ − ḟ f ′

a2
−f ′2 + g′2

a2
0 0

0 0
g2

a2r2
0

0 0 0
g2

a2r2























, (10)

where primes denote derivatives with respect to r and
overdots with respect to t.
The resulting, rather involved, calculation is made eas-

ier by isolating the upper-left-hand 2 × 2 submatrix of
Σ and using the Cayley-Hamilton theorem, which states
that a matrix solves its own characteristic polynomial.
For a 2× 2 matrix A, this means

[A]A = A
2 + (detA) I2,

where I2 is the 2 × 2 identity matrix. We can then use
that detAn = (detA)

n
to find the square root of Σ2,

the upper-left-hand 2× 2 submatrix of Σ:

√

Σ2 =
1√
X

[Σ2 +W I2] , (11)

where

X ≡
( ḟ

b
+ µ

g′

a

)2

−
( ġ

b
+ µ

f ′

a

)2

,

W ≡ µ

ab

(

ḟg′ − ġf ′
)

, (12)

and µ = sgn(ḟ g′ − ġf ′).
With Eq. (11), traces of Σn become

[
√
Σ] =

√
X +

2g

ar
, (13)

[Σ] = X − 2W +
2g2

a2r2
,

[Σ3/2] = X3/2 − 3W
√
X +

2g3

a3r3
,

[Σ2] = X2 − 2W (2X −W ) +
2g4

a4r4
,
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and the potential is given by

U
4

= P0

( g

ar

)

+
√
XP1

( g

ar

)

+WP2

( g

ar

)

, (14)

where the Pn polynomials are

P0(x) = −12− 2x(x− 6)− 12(x− 1)(x− 2)α3

− 24(x− 1)2α4,

P1(x) = 2(3− 2x) + 6(x− 1)(x− 3)α3 + 24(x− 1)2α4,

P2(x) = −2 + 12(x− 1)α3 − 24(x− 1)2α4. (15)

Varying the action with respect to f and g yields the
Stückelberg field equations

∂t

[

a3r2√
X

( ḟ

b
+ µ

g′

a

)

P1 + µa2r2g′P2

]

(16)

− ∂r

[

a2br2√
X

(

µ
ġ

b
+

f ′

a

)

P1 + µa2r2ġP2

]

= 0,

and

−∂t

[

a3r2√
X

( ġ

b
+ µ

f ′

a

)

P1 + µa2r2f ′P2

]

+ ∂r

[

a2br2√
X

(

µ
ḟ

b
+

g′

a

)

P1 + µa2r2ḟP2

]

= a2br
[

P ′
0 +

√
XP ′

1 +WP ′
2

]

, (17)

where P ′
n(x) ≡ dPn/dx = ar∂P/∂g. By inspection, we

find that a solution to the f equation of motion, Eq. (16),
is given by P1(x0) = 0, or

x0 =
1 + 6α3 + 12α4 ±

√

1 + 3α3 + 9α2
3 − 12α4

3(α3 + 4α4)
, (18)

and hence g = x0ar. Note that if α3 = α4 = 0, P1(x)
becomes linear and g = 3ar/2 is the solution.
The equation of motion for g evaluated on the solution

provides a constraint on f

√
XP ′

1 =

(

2P2

x0
− P ′

2

)

W − P ′
0, (19)

where the Pn functions are evaluated at x0 and we have
used the fact that

W =
µ

b

(

ḟ +
a′

a
rḟ − ȧ

a
rf ′

)

x0. (20)

An explicit solution for f is not required for the compu-
tation of the stress energy tensor. After straightforward
but tedious algebra, we find that its nonzero components
are:

TK
00 =

1

2
P0(x0)b

2,

TK
rr = −1

2
P0(x0)a

2,

TK
θθ =

TK
φφ

sin2 θ
= −1

2
P0(x0)a

2r2. (21)

The TK
00 = −TK

rr pieces can be easily checked from
Eq. (14) by direct variation with respect to gtt and grr,
noting that the polynomial pieces come from the angular
metric. The angular pieces can be similarly analyzed by
separately tracking the equal θ and φ contributions to
2(g/ar)n terms in the traces of Eq. (13). Their separate
variations can then be reduced with Eq. (19).
Hence, the effective energy density and pressure are

(m2M2
pl)T

µ(K)
ν =







−ρK 0 0 0
0 pK 0 0
0 0 pK 0
0 0 0 pK






, (22)

where

ρK = −pK =
1

2
m2M2

plP0(x0). (23)

This shows that a cosmological constant type solution
exists for general isotropic metrics. Conversely, the mod-
ified Einstein equation for arbitrary spherically symmet-
ric distributions of matter becomes the ordinary Einstein
equation plus a cosmological constant on this solution.
For example, the spatially flat FRW space-time is a

subset where a(r, t) = a(t) is the scale factor, b(r, t) = 1
and the modified Einstein equation (6) just becomes the
usual Friedmann equation

(

ȧ

a

)2

=
1

3M2
pl

(ρK + ρm). (24)

The open or closed FRW space-time is also included with
a suitable conformal factor a(r, t) 6= a(t). Note that for
the FRW metric, this solution applies for radiation and
matter domination as well as for a self-accelerated epoch
where the massive graviton itself provides the cosmologi-
cal constant-like dark energy. It also allows for arbitrary
isotropic perturbations around the FRW metric with

a2(r, t) =a2(t)[1 + 2Φ(r, t)],

b2(r, t) =[1 + 2Ψ(r, t)]. (25)

Thus the solution remains of the cosmological constant
type for arbitrary spherically symmetric matter distribu-
tions. Furthermore, the matter only sees the effects of
the mass term as a cosmological constant with no direct
coupling to the Stückelberg fields on the exact solution.

It is straightforward to verify that in vacuum (T
(m)
µν =0)

our solution recovers exactly the static Schwarzschild-
de Sitter solution from [10, 11] and is in agreement
with the approximate self-accelerating solution found in
the decoupling limit [15]. It is also similar to other
Schwarzschild-de Sitter [16, 17] and open universe [13]
solutions.

IV. DISCUSSION

The solution we have found is a perfect analog for a
cosmological constant. Because the solution exists for
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any isotropic distribution of matter, it recovers static so-
lutions like Schwarzschild-de Sitter in vacuum and gener-
alizes them to dynamical cases such as the FRW cosmol-
ogy. In each of these cases, the presence of other isotropic
sources of stress-energy does not alter the cosmologi-
cal constant-like behavior of massive gravity. Hence,
we can have a truly self-accelerating gravitational back-
ground that coexists peacefully with a standard cosmo-
logical history; the self acceleration begins in precisely
the same manner as cosmological-constant-driven accel-
eration would begin, only here the size of the apparent
cosmological constant is set by the graviton mass and the
other free parameters of the theory (α3 and α4).

In this paper, we have restricted ourselves to isotropic
situations. Note that although we have assumed our
Stückelberg fields to be in a radially symmetric configura-
tion, their effective center in space disappears in their ef-
fective stress energy, which is homogeneous and isotropic.
Indeed, we can recover fully homogeneous background
solutions supported by the Stückelberg fields. This sug-
gests that perhaps even more general inhomogeneity in
the matter fields does not drive inhomogeneity in the ob-
servable effective stress energy of the Stückelberg fields.

On general solutions of massive gravity, we expect the
new degrees of freedom present in the Stückelberg fields
to “mix” with the usual gravitational degrees of freedom.
That is, we would expect to find cross-talk between the
helicity-2 parts of the graviton and the helicity-0 part
of the graviton. Since we are working in Jordan frame
in this paper, this mixing would result in a direct cou-
pling between the new degrees of freedom and matter
sources in Einstein frame. However, on the background
solution we have found, this mixing vanishes, despite the
presence of arbitrarily large radial perturbations in the
metric. This result appears to be a generalization of a
similar finding for perturbations around the vacuum self-

accelerating solutions in the decoupling limit [15]. The
physical upshot of this finding is that the new gravita-
tional degrees of freedom captured by the Stückelberg
fields do not interact directly with radial perturbations
in matter sources. In the decoupling limit, where these
perturbations are easier to study, this lack of interaction
extends to all first order perturbations. In practice, this
suggest that there may be no easily measurable devia-
tions from GR around these self-accelerating solutions –
the gravitational-strength fifth forces that usually appear
in modifications to gravity are absent here.
Moreover, on our solution the Stückelberg fields do not

appear to have any kinetic terms in their action. Indeed,
we have found our solution (Eq. 18) precisely by demand-
ing that the prefactor of the kinetic energy terms in the
action vanish. If we look to the decoupling limit results
for guidance, we might expect that this lack of a kinetic
term will not persist when we study arbitrary perturba-
tions around our solution. However, general scalar per-
turbations around the related self-accelerating solutions
found in [13] are also found to have no kinetic terms
in [18]; see also [19]. In light of these considerations, a
careful study of general anisotropic perturbations to this
solution will be an important area for future work.
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