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Self-accelerating Massive Gravity: Bimetric Determinant Singularities
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The existence of two metrics in massive gravity theories in principle allows solutions where there
are singularities in new scalar invariants jointly constructed from them. These configurations occur
when the two metrics differ substantially from each other, as in black hole and cosmological solutions.
The simplest class of such singularities are determinant singularities. We investigate whether the
dynamics of bimetric massive gravity – where the second metric is allowed to evolve jointly with
the spacetime metric – can avoid these singularities. We show that it is still possible to specify
non-singular initial conditions that evolve to a determinant singularity. Determinant singularities
are a feature of massive gravity of both fixed and dynamical metric type.

I. INTRODUCTION

Massive gravity is a theory with two metrics. In the
simplest version, only the usual spacetime metric is dy-
namical; the second metric is taken to be static and typ-
ically flat [1–3]. When the spacetime metric evolves to
a point where it deviates far from the second metric,
massive gravity enters an interesting regime where sin-
gularities in scalar invariants built from the two metrics
can arise. By allowing the second metric to evolve with
its own dynamics in the so-called bimetric or bigravity
theory [4], it is possible that the character of these sin-
gularities can change.
These issues have been explored in detail for black hole

solutions [5–10]. Indeed, the bimetric theory allows a dif-
ferent class of solutions from those of the flat metric the-
ory [11], where the two metrics are simultaneously diag-
onalizable and horizons coincide. Being static solutions,
it is however unclear as to whether dynamical systems
evolve into these or other solutions.
A simpler case in which a singularity arises dynami-

cally was studied for the fixed flat metric case in Ref. [12].
Here, the spacetime metric evolves from non-singular ini-
tial conditions to a determinant singularity in unitary
gauge where the flat metric is in standard Minkowski
form. This implies the presence of a coordinate invariant
singularity in the ratio of determinants of the two met-
rics. Although the theory is formally undefined at this
point, one can smoothly join solutions on either side of
the singularity with the help of vielbeins, or equivalently
Stückelberg fields.
In this Brief Report, we study the impact of bimetric

dynamics on determinant singularities. We begin in §II
with a brief review of the bimetric theory and continue
in §III with the construction of exact isotropic solutions.
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We address the determinant singularity in §IV and dis-
cuss these results in §V.

II. BIMETRIC MASSIVE GRAVITY

The Boulware-Deser ghost-free bimetric massive grav-
ity Lagrangian is [4]

LG =
M2

pl

2

√
−g

[

R−
m2

4
U (γ) +

√

−Σ

−g

R
ε

]

, (1)

where R is the Ricci scalar for the g metric to which
matter is coupled and R is that of the second metric
Σ. Here Mpl = (8πG)−1 is the reduced Planck mass
and ε allows for the second metric to have a different
Planck mass. The massive gravity potential term U is
constructed from the square root matrix γ

(g−1Σ)µν ≡ (γ2)µν = γµ
αγα

ν (2)

such that

U
4

=
4

∑

k=0

βk

k!
Fk, (3)

where [1, 2]

F0(γ) = 1,

F1(γ) = [γ],

F2(γ) = [γ]2 − [γ2], (4)

F3(γ) = [γ]3 − 3[γ][γ2] + 2[γ3],

F4(γ) = [γ]4 − 6[γ]2[γ2] + 3[γ2]2 + 8[γ][γ3]− 6[γ4],

and [ ] denotes the trace of the enclosed matrix. To avoid
confusion, we refrain from raising and lowering indices
where possible; hence g−1 rather than gµν .

http://arxiv.org/abs/1309.5947v1
mailto:pgratia@uchicago.edu
mailto:whu@background.uchicago.edu
mailto:markwy@oddjob.uchicago.edu


2

The bimetric theory is parameterized by a graviton
mass m, the ratio of squared Planck masses ε and

β0 = −12(1 + 2α3 + 2α4),

β1 = 6(1 + 3α3 + 4α4),

β2 = −2(1 + 6α3 + 12α4), (5)

β3 = 6(α3 + 4α4),

β4 = −24α4,

or equivalently {α3,α4}. Varying the action with respect
to each of the metrics gives two Einstein equations

Rµ
ν −

1

2
Rδµν = m2T µ

ν +
1

M2
pl

T (m)µ
ν ,

Rµ
ν −

1

2
Rδµν = εm2T µ

ν , (6)

where the potential term supplies an effective stress en-
ergy for both metrics, whereas the matter stress energy
T (m) is coupled only to g. The construction of T µ

ν out
of γ is given in Eq. (7) of Ref. [13] and the stress-tensor
source for Σ is given by [14]

T µ
ν = −

√

−g

−Σ

[

T µ
ν +

U
8

δµν

]

. (7)

Interestingly, this relation between the stress-tensors in-
volves the ratio of metric determinants, which can be-
come singular. Nonetheless, as we shall see next, for
self-accelerating solutions both stress tensors are simply
constants given by the parameters of the theory.

III. EXACT BI-ISOTROPIC SOLUTIONS

Exact self-accelerating solutions of bimetric massive
gravity can be constructed when the two metrics are si-
multaneously isotropic

gµνdx
µdxν = −b2(r, t)dt2 + a2(r, t)(dr2 + r2dΩ2), (8)

fabdx
adxb = −β2(g, f)df2 + α2(g, f)(dg2 + g2dΩ2),

where fab is the representation of Σ in the so-called uni-
tary gauge and f(r, t) and g(r, t), not to be confused with
the determinants of the respective metrics, give the trans-
formation between this coordinate system and the one
used for g. Note that they represent auxiliary Stückel-
berg fields

φ0 = f(t, r), φi = g(t, r)
xi

r
, (9)

such that the second metric in the same coordinate sys-
tem as g is

Σµν = ∂µφa∂νφbfab. (10)

In general, the number of gravitational degrees of free-
dom is 7 – the 5 polarization states of one massive gravi-
ton, together with 2 polarizations of one massless gravi-
ton. In this representation, the extra polarization states

of massive gravity are carried by the Stückelberg fields.
While there are 4 Stückelberg fields, the ghost-free con-
struction eliminates one degree of freedom and the as-
sumption of bi-isotropy eliminates two more [15] leaving
the pair of Stückelberg fields as a single degree of freedom
on top of the two usual tensor degrees of freedom of the
two metrics.
Bi-isotropy allows us to express the potential as [13, 16]

U
4

= P0

(αg

ar

)

+
√
XP1

(αg

ar

)

+WP2

(αg

ar

)

, (11)

where the Pn polynomials are

P0(x) = −12− 2x(x− 6)− 12(x− 1)(x− 2)α3

− 24(x− 1)2α4,

P1(x) = 2(3− 2x) + 6(x− 1)(x− 3)α3 + 24(x− 1)2α4,

P2(x) = −2 + 12(x− 1)α3 − 24(x− 1)2α4. (12)

Here

X(r, t) =

(

β

b
ḟ + µ

α

a
g′
)2

−
(

α

b
ġ + µ

β

a
f ′

)2

,

W (r, t) = µ
αβ

ab

(

ḟg′ − ġf ′
)

, (13)

are related to the t − r block of γ as
√
X = [γ2] and

W = detγ2 whereas

γ
2 =























β2ḟ2 − α2ġ2

b2
β2ḟf ′ − α2ġg′

b2
0 0

α2ġg′ − β2ḟf ′

a2
−β2f ′2 + α2g′2

a2
0 0

0 0
α2g2

a2r2
0

0 0 0
α2g2

a2r2























.

The branch choice in the solution to the matrix square
root of γ2 specifies µ = ±1 which remains constant even
if W changes sign [12] (cf. [17]). Varying the action with
respect to the Stückelberg fields gives the equations of
motion for f and g. For any bi-isotropic pair of metrics,
these equations are exactly solved by P1(x0) = 0 yielding

x0 =
1 + 6α3 + 12α4 ±

√

1 + 3α3 + 9α2
3 − 12α4

3(α3 + 4α4)
, (14)

and
αg

ar
= x0. (15)

Note that as α3 → −4α4 one branch of Eq. (14) remains
finite. On both, this consistency condition (15) for self-
accelerating solutions requires that the respective radial
coordinates are algebraically related.
The stress-energy source for the g metric is then a

cosmological constant [13, 16]

T µ
ν = −

1

2
P0(x0)δ

µ
ν . (16)
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Since this relation holds for any isotropic metric, the in-
teraction potential term acts as a cosmological constant
for any isotropic distribution of matter, not just vacuum
or homogeneous ones.
Moreover, since

√

−Σ

−g
= detγ = x2

0W, (17)

the stress tensor source to the second metric

T µ
ν = −

√

−g

−Σ
W

P2(x0)

2

= −
1

x2
0

P2(x0)

2
δµν (18)

is also a constant [14, 18, 19]. Note that the stress tensor
remains constant even through a determinant singularity
where

√

g/Σ → ∞. Given the identity

1

2
P0(x) +

1

2
P2(x) + P1(x) + (x− 1)2 = 0 (19)

and P1(x0) = 0, if one metric has a positive cosmologi-
cal constant, the other has a negative one [14] but both
metrics may have a negative cosmological constant.
Since there is no matter source to Σ, the second Ein-

stein equation (6) is then solved by a de Sitter metric in
isotropic coordinates

α(g) =
1

1 + λ(g/x0)2/4
,

β(g) =
1− λ(g/x0)2/4

1 + λ(g/x0)2/4
, (20)

where

λ =
εm2

6
P2(x0). (21)

Of course, as ε → 0, so does λ, and the second metric
takes the Minkowski form of the original massive gravity
theory in unitary gauge [1, 2].
Note that these results are independent of the solu-

tion for f which relates unitary or isotropic Σ-time to
isotropic g-time. There are in fact many solutions for
this relation that give the same stress tensor and metric
structure individually. They are specified by solving the
second equation of motion [12, 15]

P ′
1(x0 +

W

x0
−
√
X) = 0. (22)

Aside from the special parameter choice of P ′
1(x0) = 0,

where 12α4 = 1 + 3α3 + 9α2
3, this equation governs the

evolution of f . Importantly, it remains non-singular as
the determinant W goes to zero. For the special param-
eter choice, more static solutions exist [20] but the initial
value problem in f, g is then ill-posed [12].

Using Eq. (13) and (15), we can see that Eq. (22) is a
nonlinear partial differential equation for f whose solu-
tions are specified by boundary conditions such as f(0, t)
[15]. Note that for a fixed λ, both f and g ∝ x0 and so
a solution for a single set of massive gravity parameters
α3, α4 but arbitrary λ can be scaled to any choice [15].
The determinant singularity we discuss next is related to
a specific choice of f(0, t) in the solution to Eq. (22).

IV. DETERMINANT SINGULARITY

Given that metric determinants appear in the Einstein
equations (6) through (7), it is interesting to examine
whether the nature of determinant singularities in fixed
metric massive gravity changes when the second metric
becomes dynamical. One might expect that a singularity
that impacts the equations of motion would be dynam-
ically avoided. We shall see that none of them exhibit
singular behavior at a determinant singularity.
In the fixed flat metric theory, we can easily construct

solutions that evolve from non-singular initial conditions
to a determinant singularity. By a coordinate transfor-
mation, this singularity can be hidden from either metric
individually but not both simultaneously. The simplest
example is that of an open FRW universe in the g metric
[21] with a negative cosmological constant term from the
interaction potential [12]. Here, the singularity occurs
when an initial expansion turns to contraction because
of the presence of negative stress-energy.
Now let us consider how the dynamics of the second

metric alter this singular solution. The open FRW space-
time metric in isotropic coordinates is given by

ds2 = −dt2 +

[

aF (t)

1 +Kr2/4

]2

(dr2 + r2dΩ2), (23)

where the scale factor aF obeys the ordinary Friedmann
equation with spatial curvature K < 0

(

ȧF
aF

)2

+
K

a2F
=

ρ(m)

3M2
pl

+
m2

6
P0(x0). (24)

By choosing α3 and α4 appropriately, we can make P0 <
0 and hence the g metric evolves to a point where ȧF = 0.
We next solve Eq. (22) for the relationship between the

two time coordinates f and t. Transforming the isotropic
radial coordinate r to the dimensionless angular diameter
distance

y =

√
−Kr

1 +Kr2/4
, (25)

we obtain

y2
[

1− (λ/K)a2F
]

ḟ2 − 2y(1 + y2)
ȧF
aF

ḟ
∂f

∂y

−
1 + y2

a2F
[K + y2(λa2F − ȧ2F )]

(

∂f

∂y

)2

= x2
0y

2K − λa2F + ȧ2F
K + λa2F y

2
. (26)
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First note that as λ → 0, we recover the solution for a
fixed flat second metric [12]

lim
λ→0

f ≡ f0 = x0aF

√

1 + y2

−K
, (27)

with the boundary condition f(0, t) ∝ aF (t). The deter-
minant singularity appears since both f0 and g ∝ aF and
thus W = 0 when ȧF = 0 by virtue of Eq. (13).

Now let us check what happens for λ '= 0. Since λ = 0
and f = f0 represents a determinant singularity, the sim-
plest test for whether bimetric dynamics automatically
avoids determinant singularities is to solve Eq. (22) per-
turbatively for a finite λ/K ( 1. Even in this limit,
there are many solutions to this equation corresponding
to different choices of the perturbed boundary condition
f(0, t). The simplest choice is

f(y, t) = f0
[

1−
1

6
(−1 + 2y2)(λa2F /K)

+
1

40
(3 − 4y2 + 8y4)(λa2F /K)2 + . . .

]

(28)

Since α(g)g ∝ aF , Eq. (13) implies that this solution
retains a determinant singularity at ȧF = 0. Other so-
lutions can alter the time at which the determinant be-
comes singular as a function of radius. Nonetheless a de-
terminant singularity must appear in all solutions since f
remains perturbatively close to f0. W changes sign dur-
ing the evolution through turnaround and must there-
fore pass through zero. Likewise, since neither the stress
source (18) nor the Stückelberg field equations (22) be-
come singular for W = 0, we expect that the inability of

bimetric dynamics to prevent a determinant singularity
is not limited to models with ε ( 1.

V. DISCUSSION

While the bimetric theory of massive gravity allows the
second metric to evolve in response to the first, it does
not automatically resolve issues arising from the very ex-
istence of two metrics that may evolve to become very
different from each other. We have explicitly shown here
that it is still possible to construct solutions where a de-
terminant singularity arises from the evolution of non-
singular initial conditions.
This singularity cannot be removed by a coordinate

transformation but the non-singular equations of motion
imply that solutions can be matched on either side of the
singularity. The curvature of both metrics remains finite
through the singularity and its presence is hidden from
observables in the matter sector. Hence the existence
of determinant singularities is a peculiar but perhaps not
pathological feature of both fixed and dynamical bimetric
massive gravity theories.
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