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Cluster number counts offer sensitive probes of the dark energy if and only if the evolution of the
cluster mass versus observable relation(s) is well calibrated. We investigate the potential for internal
calibration by demanding consistency in the counts as a function of the observable. In the context
of a constant dark energy equation of state, known initial fluctuation amplitude expected from the
CMB, universal underlying mass function, and an idealized selection, we find that the ambiguity
from the normalization of the mass-observable relationships, or an extrapolation of external mass-
observable determinations from higher masses, can be largely eliminated with a sufficiently deep
survey, even allowing for an arbitrary evolution. More generally, number counts as a function
of both the redshift and the observable enable strong consistency tests on assumptions made in
modelling the mass-observable relations and cosmology.

I. INTRODUCTION

The number density of massive galaxy clusters is expo-
nentially sensitive to the amplitude of initially Gaussian
density fluctuations and has long been recognized as a
sensitive cosmological probe [1]. In particular, the evolu-
tion of the number counts above a given mass threshold
can determine the properties of the dark energy that ac-
celerates the expansion [2, 3, 4].

This potential can only be realized if, in addition
to the cluster redshifts, the cluster masses themselves
are known, at least statistically. Unfortunately the to-
tal mass is not a direct observable and must be in-
ferred through scaling relations with, e.g. the Sunyaev-
Zel’dovich (SZ) flux decrement, the X-ray flux or tem-
perature, weak lensing shear, or optical velocity disper-
sion. Indeed the normalization of the mass-temperature
relation is currently the leading source of ambiguity in
interpreting the local cluster abundance (e.g. [5, 6]). It
compromises dark energy constraints if the cluster mass
selection cannot be defined to a few percent in mass [3].

The mass-observable relation can potentially be cali-
brated within a survey itself if its effect on the number
counts is not degenerate with the cosmology. For ex-
ample, with a single cut on the temperature, the survey
itself can calibrate the mass-temperature normalization
to better than the tens of percent that span the determi-
nations in the current literature, if it does not evolve [7].
However this method fails if the relationship has uncer-
tain evolution that mimics the cosmology [8].

Because the number density of clusters as a function
of mass has a fixed functional form given by cosmolog-
ical simulations (e.g. [9, 10]), cluster number counts as
a function of the observable in principle have the ability
to self-calibrate even an evolving mass-observable rela-
tion. Here we study the potential for internal calibration
and consistency checks in idealized future cluster number
count surveys.

II. STATISTICAL FORECASTS

The cosmological utility of cluster counts stems from
the simulation-based prediction of their comoving differ-
ential number density as a function of mass [9],

dn̄

d ln M
= 0.3

ρm

M

d lnσ−1

d lnM
exp[−| lnσ−1 + 0.64|3.82] . (1)

Here σ2(M, z) is the variance in the linear density field
smoothed with a top hat that encloses M at the mean
matter density today ρm. The cosmological sensitivity
comes from these quantities and the comoving volume
element in a redshift slice and solid angle.

To assess the sensitivity of counts to various cosmo-
logical and mass-observable scaling parameters pα, we
employ the Fisher matrix technique [11, 12]

Fαβ =
∑

ij

∂n̄i

∂pα

(C−1)ij

∂n̄j

∂pβ

, (2)

where the covariance matrix is given by

Cij = (〈ninj〉 − n̄in̄j) + δij n̄i/Vi . (3)

The first term represents sample covariance in the volume
Vi from large-scale structure, calculated as described in
[11], and the second term shot variance. Here the num-
ber density in a bin ni is defined by the redshift interval
∆z around zi and a selection based on some observable
quantity f , such as the SZ flux decrement. Note that
sampling errors for the selections in the same redshift
bin completely covary.

The Fisher matrix is a local approximation to the co-
variance matrix of the parameters

Ctot = (F + C
−1
prior)

−1, (4)

where Cprior is the covariance matrix from prior informa-
tion.
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The Fisher matrix is evaluated around a fiducial choice
of parameters. For the cosmology, we take: the dark en-
ergy density ΩDE = 0.65, equation of state w = −1,
physical matter density Ωmh2 = 0.148, physical baryon
density Ωbh

2 = 0.02, tilt ns = 1, and the initial normal-
ization of the curvature fluctuations δζ = 4.79 × 10−5

at k = 0.01 Mpc−1 [13] (more conventionally: δH =
4.42 × 10−5, σ8 = 0.92, or M∗ = 1.2 × 1013h−1M�).
We will however work in a future context where the
cosmic microwave background (CMB) has constrained
the high redshift universe parameters with 1σ errors of
σ(ln Ωmh2) = σ(ln Ωbh

2) = σ(ns) = σ(ln δζ) = 0.01 (e.g.
[13]) in a flat universe, leaving the dark energy parame-
ters to be determined by the survey.

For the mass-observable relation, we take the form

Mf

M0
= eA(z)

(

f

f0

)p(z)

, (5)

where M0 and f0 are dimensional constants and the nor-
malization parameter A(z) is dimensionless. We take the
scaling parameters as the amplitudes of a piecewise con-
stant form A(zi) and p(zi). Specifically, given a variation
δA(zi) and δ ln p(zi) from the fiducial model, the true
mass is related to the apparent mass as

lnM = lnMf + δA(zi) + δ ln p(zi) ln

(

Mf

Mp

)

, (6)

where Mp = M0e
A is the pivot mass scale that defines a

normalization point for possible external information.
This generalizes previous treatments which have as-

sumed constant normalization [7] and power law evolu-
tion [8]. In the limit of small redshift bins, these simpler
cases can be recovered from our more general treatment
by noting that under a re-parameterization of the space
to the set πµ(pα), possibly of lower dimension, the co-
variance matrix transforms as

Cµν =
∑

αβ

∂πµ

∂pα

Cαβ

∂πν

∂pβ

. (7)

The Fisher matrix definition itself can be so viewed.
In the usual approach (e.g. [3]), all of the clusters in

a given redshift bin above a given observable threshold
are simply binned together. Clearly, allowing for arbi-
trary variations δA(zi) no cosmological information can
be extracted. However the data at a given redshift may
be binned into several apparent mass bins based on the
observable f . The additional information supplied by
multiple bins allows for a breaking of the degeneracy.

Likewise, even if the normalization is fixed by detailed
followup by X-ray or weak lensing measurements at some
mass Mp (e.g. [8, 14]), an uncertain scaling index δp(zi)
would again destroy the cosmological information with
a single bin if Mp 6= Mf,min. Multiple bins again in
principle allow the cosmology and the mass-observable
relations to be jointly determined.

FIG. 1: Consistency test with differential counts. Division of
the number counts into apparent mass bins from a minimum of
log10 Mf,min/h−1M� = 14.2 upwards in steps of 0.2 (outwards in
ellipses) allows several nearly independent constraints on the dark
energy that test consistency with the assumed mass-observable re-
lation. Strong priors are assumed on the high redshift cosmology
(see text).

This treatment ignores intrinsic scatter in the mass-
observable relation as well as measurement error in the
observable. More realistically the selection function is
not sharp in mass but assuming its functional form is well
characterized this does not substantially compromise the
cosmological information [7, 15].

For definiteness, let us take a fiducial cluster survey
with specifications similar to the planned South Pole
Telescope (SPT) Survey for clusters with the SZ effect:
an area of 4000 deg2 survey and a sensitivity correspond-
ing to a constant log10 Mf,min/h−1M� = 14.2 (e.g. [8]).
We divide the number counts into bins of redshift ∆z =
0.1 out to zmax = 3 and ∆ log10 Mf = 0.43∆ lnMf = 0.2.
This crude binning is sufficient to retain the cosmological
information. For illustration purposes, we take a pivot
mass scale of log10 Mp/h−1M� = 14.7 to reflect potential
mass measurement followup on the high mass end.

III. CONSISTENCY AND CALIBRATION

Let us first consider that simulations or mass fol-
lowup with different observables have placed strong pri-
ors on the mass-observable normalization and scaling in-
dex σ(δA(zi)) = σ(δ ln p(zi)) = 0. In this case, the divi-
sion into mass bins yields nearly independent measure-
ments of the dark energy for a consistency check.

In Fig. 1, we illustrate the consistency check in the
(ΩDE, w) plane for individual mass bins of ∆ log10 Mf =
0.2 from log(Mf,min/h−1M�) = 14.2. Although the
strongest constraints do come from the lowest mass bin,
as expected from the increasing rarity of massive clus-
ters at high redshift, the first 6 bins show significant
constraints on the dark energy. This consistency test
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FIG. 2: Normalization self-calibration and the 68% CL dark en-
ergy constraints. Solid curves represent binning as in Fig. 1, dashed
curves represent a single bin with threshold Mf,min. Inner to outer
ellipses: fixed, constant, power law evolution, arbitrary amplitude
δA(zi) (infinite for single mass bin). Strong priors on the scaling
index p are assumed.

demonstrates that there is sufficient information in the
mass binning to attempt some degree of self-calibration
of the mass-observable relations.

Let us next keep the scaling index fixed p(zi) but allow
the normalization A(zi) to vary (see Fig. 2). Solid lines
represent constraints with the 6 mass bins and dashed
lines those with a single mass bin or mass threshold. We
first allow only a redshift-independent normalization fac-
tor δA(zi) = δA0. As shown in [7], even a single mass bin
is sufficient to calibrate the relation to good enough ac-
curacy for dark energy constraints (here σ(δA) = 0.05).
We next employ a power law evolution in the normaliza-
tion δA(zi) = δA0 + na ln(1 + zi). Here errors on the
dark energy parameters degrade substantially with a sin-
gle mass bin [8], but much of the loss is recovered from
the multiple binning. Finally, we take a fully arbitrary
evolution in the redshift bins, i.e. no constraint on the
form of δA(zi). As expected, there is no constraint on
the dark energy with a single mass bin, but with mul-
tiple bins interesting constraints on the dark energy can
still be extracted. The key here is that the dark energy
evolution is assumed to be smooth and parameterized
by two numbers and so cannot compensate an arbitrary
variation in the normalization evolution.

Figure 3 (top) shows the errors on δA(zi) with roughly
10% constraints on the normalization in each redshift
band out to z ∼ 2. Note that the covariance between the
bands is nearly complete so that the overall normaliza-
tion is still only known to ∼ 5% but that the evolution
is highly constrained. Conversely, external information
on the mass-observable normalization would have to be
substantially better than 10% to improve on the internal
results. In the context of our fiducial cosmology, the crit-
ical prior assumption is that the initial amplitude of the
fluctuations is fixed by the CMB. Otherwise what is con-

strained by the multiple mass bins is a degenerate com-
bination of the initial amplitude and the mass-observable
normalization.

We have so far assumed that the scaling index p(z) is
known a priori but of course that too is part of the un-
certain mass-observable relation. Allowing for arbitrary
variations δA(zi) and δ ln p(zi) destroys most of the in-
formation on the dark energy. However in the less drastic
cases of adding a constant δ ln p to a constant δA for a
two parameter model, the additional degradation σ(w) is
a negligible 3% and of the addition of power law varia-
tion in p(z), δ ln p = δ ln p0 + np ln(1 + zi) to power law
variation in δA for a 4 parameter model, a factor of 1.76
for a total of σ(w) = 0.12.

Another interesting case to consider is if some indepen-
dent mass calibration, say from weak lensing or X-ray
temperature followup, normalizes the mass-observable
relation on the high mass end. Extrapolation down to the
survey mass limit can be dangerous due to the uncertain
physics of low mass clusters. For illustrative purposes,
let us take this constraint as σ(A(zi)) = 0.1 at the pivot
mass of log10 Mp/h−1M� = 14.7. Despite the constraint
on the normalization, if we allow for arbitrary variations
in the scaling index and retain only a threshold at > 14.2,
no constraint on the dark energy can be extracted. With
multiple bins, the errors on w are only degraded by a
factor of 1.16 to σ(w) = 0.09 for a completely arbitrary
δ ln p(zi). Furthermore the errors on δ ln p shown in Fig. 3
(bottom) are at the several percent level and would be of
interest in studying cluster physics.

IV. DISCUSSION

As in the case of classical cosmological tests for the
dark energy involving standardized candles and rulers,
e.g. supernovae and the peaks in the CMB power spec-
trum, cluster number count tests require a standardized
mass based on observable quantities. We have demon-
strated that consistency with the well-determined shape
of the mass function from cosmological simulations can
in principle be used to calibrate the survey internally.
Two examples are a normalization that has an arbitrary
evolution in redshift and a scaling from the more easily
calibrated high mass end that has an arbitrary evolution
in the index.

Our study involves a number of idealizations that merit
future study and so internal calibration is best viewed as
a useful check on cross-calibration studies with detailed
multi-wavelength followup (e.g. [8, 16]) and cosmological
simulations. The crucial assumptions are that the sur-
vey be sufficiently deep to explore a substantial dynamic
range in the mass function, the underlying mass function
is known given a cosmology, the mass-observable selec-
tion function is sharp compared with the binning, the
mean mass-observable relation is power law in form, the
high redshift normalization of the fluctuations is fixed by
future CMB data, and the dark energy equation of state
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FIG. 3: Errors on scaling parameters. Top: errors on δA(zi)
assuming fixed scaling index p and the apparent mass divisions
of Fig. 2. Bottom: errors on δ ln p(zi) assuming a prior on the
mass-observable relation σ(δA(zi)) = 0.1 from mass followup at
log10 Mp/h−1M� = 14.7

is constant.
In the fiducial model, a depth comparable to that

planned for the SPT SZ survey is sufficient to make self-
calibration useful but note that the necessary mass limit
scales roughly with the non-linear mass scale M∗. That
depends on the currently uncertain normalization and so
if the normalization is lower than our fiducial choice it
may be beneficial to sacrifice survey width for depth.

While the mass function form is based on simulations
and currently its scaling with cosmology is only known to
the ∼ 10% level [9], determination requires only the well-
understood gravitational physics of the dark matter and
is far more secure than simulation-based mass-observable
relations. In any case, this knowledge is a prerequisite for
any cluster number count study of cosmology.

We have assumed a deterministic mass-observable rela-
tion that makes the selection function sharp in apparent
mass. Gaussian scatter in this relation does not seriously
compromise the cosmological information [7, 15] but long
uncharacterized tails to low mass would, given the steep
mass function. Likewise the cluster physics of preheat-
ing and cooling can enter into the low mass end to make
the mass-observable relations deviate from a power law.
Here the binning serves as a useful consistency test for
the implicitly assumed cluster physics.

The required prior information on the initial normal-
ization is within reach of the upcoming CMB satellite
missions if the extent of reionization can be determined
(e.g. [13, 17]). If not, binning still serves to constrain
the evolution of the mass-observable relation but leaves
a degeneracy between the overall normalization of the re-
lations and the fluctuations which can be fixed, e.g. by
CMB lensing, Lyα forest clustering or even local clus-
ter abundance studies. Conversely, external calibration
of the mass-observable relation at the percent level can
determine the fluctuation normalization at a comparable
level. Binning can then provide tests of the dark energy
model assumptions [18] or other cosmological priors. It
is especially valuable if redshifts are available only locally
(e.g. zmax . 0.6 from current optical surveys).

In summary, utilizing the extra information in counting
clusters as a function of both the redshift and their ob-
servable properties allows for joint solutions to the mass-
observable relations and cosmology, if they are both sim-
ple. If not, it offers valuable internal consistency checks
against overly simplistic assumptions.
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