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The recent BICEP2 detection of degree scale CMB B-mode polarization, coupled with a deficit
of observed power in large angle temperature anisotropy, suggest that the slow-roll parameter εH ,
the fractional variation in the Hubble rate per efold, is both relatively large and may evolve from an
even larger value on scales greater than the horizon at recombination. The relatively large tensor
contribution implied also requires finite matching features in the tensor power spectrum for any
scalar power spectrum feature proposed to explain anomalies in the temperature data. We extend
the generalized slow-roll approach for computing power spectra, appropriate for such models where
the slow-roll parameters vary, to tensor features where scalar features are large. This approach also
generalizes the tensor-scalar consistency relation to be between the ratio of tensor and scalar sources
and features in the two power spectra. Features in the tensor spectrum are generically suppressed
by εH relative those in the scalar spectrum and by the smoothness of the Hubble rate, which must
obey covariant conservation of energy, versus its derivatives. Their detection in near future CMB
data would indicate a fast roll period of inflation where εH approaches order unity, allowed but not
required by inflationary explanations of temperature anomalies.

I. INTRODUCTION

The recent detection of inflationary tensor modes from
B-mode polarization of the cosmic microwave back-
ground (CMB) by the BICEP2 experiment imply a large
scalar to tensor ratio r ≈ 0.2 [1] while also hinting at
a violation of ordinary slow-roll prediction of a nearly
scale-free curvature power spectrum. The latter is as-
sociated with the deficit rather than increment in the
large angle Planck temperature power spectrum (e.g. [2–
6]) which would imply r < 0.11 (95% CL) in the standard
cosmological constant, cold dark matter ΛCDM model
[7]. Other hints of transient violations include glitches
in the low multipole temperature spectrum [8] and high
frequency oscillations in the high multipole temperature
spectrum [7, 9, 10].

Such violations also leave imprints on the tensor power
spectrum. Generically tensor features require changes
in the Hubble rate H during inflation while scalar fea-
tures only require changes in its derivatives or the inflaton
sound speed. Order unity features would require order
unity changes in H and hence typically an interruption
of inflation. Just like the tensor-scalar ratio itself, tensor
features are suppressed relative to scalar features by a
factor of the slow-roll parameter εH , the fractional evo-
lution of the Hubble parameter per efold (e.g. [11, 12]).
On the other hand the relatively large r implied by BI-
CEP2 now requires a finite rather than infinitesimal εH .
It is therefore timely to develop general tools for the pre-
diction of tensor features and study their consistency re-
lation to scalar features.

The generalized slow-roll (GSR) approach was intro-
duced in Ref. [13–15] to compute power spectra for mod-
els where the ordinary slow-roll parameters vary strongly
with time but the background remains close to de Sitter.
It was subsequently extended for order unity scalar power

spectrum features [16], for general single-field inflation
[17] and for the curvature bispectrum [18, 19].

Here we further develop these techniques for tensor
power spectrum features and explore their relation to
scalar power spectrum features in the limit that the latter
are large. In §II, we extract the common mathematical
structure of the GSR approach that is applicable to both
scalars and tensors. In §III, we highlight the consistency
relation, similarities and differences between scalar and
tensor features. We provide examples in §IV motivated
by anomalies in the temperature power spectrum and
discuss these results in §V.

II. GENERALIZED SLOW ROLL

We begin by extracting the mathematical content of
the GSR technique which is common to both scalar and
tensor modes. As we shall see in §III, scalar curvature
fluctuations and tensor gravitational waves satisfy a com-
mon evolution equation for their modefunctions y

d2y

dx2
+

(
1− 2

x2

)
y =

(
f ′′ − 3

f ′

f

)
y

x2
, (1)

from Bunch-Davies initial conditions

lim
x→∞

y = eix. (2)

Here ′ = d/d lnx where x is the time variable which for
scalars will be associated with the sound horizon and
for tensors the horizon; for both x runs from infinity to
zero as inflation progresses. Likewise scalars and tensors
will have a different source of excitations from pure de
Sitter conditions characterized by the time evolution of
the function f . We shall see that f in each case is related
to the slow-roll parameters.
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The GSR technique assumes that the excitations in
the modefunctions are small rather the derivatives of f
itself, thus allowing the latter to evolve strongly due to
inflationary features. Under this assumption, the mode-
function equation can be solved iteratively by first setting
the rhs of Eq. (1) to zero to obtain the de Sitter mode
functions

y0 =

(
1 +

i

x

)
eix, (3)

then replacing y → y0 in the rhs to solve for the first
order correction y1. This process may be repeated to
arbitrary order. Iteration to second order yields for the
superhorizon power

∆2 ≡ lim
x→0

∣∣∣∣xyf
∣∣∣∣2

≈ eI0
[(
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I21 +

1

2
I2

)2
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1

2
I21

]
. (4)

Here the leading order term is

I0 = G(lnxmin) +

∫ ∞
xmin

dx

x
W (x)G′(lnx), (5)

where xmin � 1 and

G = −2 ln f +
2

3
(ln f)′ (6)

with ′ = d/d lnx. The window function

W (x) =
3 sin(2x)

2x3
− 3 cos(2x)

x2
− 3 sin(2x)

2x
(7)

determines how the deviations from de Sitter freeze out.
Note that this construction introduces G′ in place of
f ′′ − 3f ′/f for these deviations so as to preserve the
constancy of |xy/f | above the horizon order by order,
regardless of the size of G′. Furthermore, in the ordinary
slow-roll approximation, where G is taken to be nearly
constant |xy/f |2 → eG ≈ 1/f2, consistent with de Sit-
ter modefunctions where y0 → i/x. Thus we shall see
that 1/f2 is associated with the scalar and tensor power
spectra ∆2 in the ordinary slow-roll approximation.

The second order corrections are

I1 =
1√
2

∫ ∞
0

dx

x
G′(lnx)X(x),

I2 = −4

∫ ∞
0

dx

x
[X +

1

3
X ′]

f ′

f
F2(x), (8)

with

X(x) =
3

x3
(sinx− x cosx)2, (9)

and

F2(x) =

∫ ∞
x

du

u2
f ′

f
. (10)

The validity of the GSR expansion can be checked by
calculating these corrections and ensuring that they are
small compared with the leading order term.

III. TENSORS VS. SCALARS

Now let us review the application of the GSR technique
to scalar or comoving curvature fluctuations R and then
apply it to tensors. The curvature modefunctions obey
the evolution equation

d

dη

(
a2εH
c2s

dR
dη

)
+ a2εHk

2R = 0, (11)

where cs is the propagation or sound speed of the scalar
fluctuations and can differ from unity if there are non-
canonical kinetic terms in the inflaton Lagrangian. De-
viations from a pure de Sitter expansion H = const. are
characterized by the slow-roll parameter

εH = −d lnH

dN
. (12)

The curvature modefunction equation (11) can be
mapped onto the GSR modefunction equation (1) with
the association [17]

R ≡
√

2π2

k3
xRyR
fR

. (13)

To distinguish scalar and tensor quantities, we append
a subscript R to GSR variables involving scalars. Here
xR = ks where

s(N) =

∫ 0

N

dÑ
cs
aH

(14)

is the sound horizon at an efold N = ln(a/aend) from the
end of inflation and

f2R =
8π2εHcs
H2

(
aHs

cs

)2

. (15)

The GSR source for Eq. (5), G′R, is a function of ln s
independent of the wavenumber and ′ = d/d lnxR =
d/d ln s. The curvature power spectrum is defined as

∆2
R = lim

ks→0

k3

2π2
|R|2 = lim

xR→0

∣∣∣∣xRyRfR

∣∣∣∣2 , (16)

and so Eq. (4) says that to leading order

ln ∆2
R(k) ≈ GR(ln smin)+

∫ ∞
smin

ds

s
W (ks)G′R(ln s). (17)

Note that in the ordinary slow-roll approximation

G′R ≈ const. ≡ 1− nS (SR), (18)

and

ln ∆2
R(k) ≈ GR(ln smin) + (nS − 1)[ln(ksmin)−C] (19)

consistent with a tilt of nS − 1 = d ln ∆2
R/d ln k where

C = 7/3 − γE − ln 2 with γE as the Euler-Mascheroni
constant.
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Next consider the tensor fluctuations which represent
gravitational wave amplitudes h+,×. Their modefunction
equation, for either polarization and wavenumbers much
smaller than the curvature scale, is

d2h

dη2
+

2

a

da

dη

dh

dη
+ k2h = 0, (20)

where

η(N) =

∫ 0

N

dÑ
1

aH
(21)

is the horizon measured from the end of inflation. The
gravitational wave modefunction is related to yh through
canonical normalization

h ≡
√

2π2

k3
xhyh
fh

, (22)

with [15]

f2h =
2π2

H2
(aHη)

2 ∝ (aη)2, (23)

which transforms Eq. (20) into the modefunction equa-
tion Eq. (1) with the association

f ′′h − 3
f ′h
fh

=
η2

a

d2a

dη2
− 2. (24)

Thus the tensor power spectrum in each polarization
state is

∆2
+,× = lim

kη→0

k3

2π2
|h|2 = lim

x→0

∣∣∣∣xhyhfh

∣∣∣∣2 (25)

and Eq. (4) determines how deviations in the source func-
tion G′h freeze out. Explicitly, to leading order

ln ∆2
+,×(k) ≈ Gh(ln ηmin) +

∫ ∞
ηmin

dη

η
W (kη)G′h(ln η),

(26)
where in distinction to scalars ′ = d/d lnxh = d/d ln η
and

G′h = −2(1− aHη)− 2

3
aHη (1− aHη + aHη εH) . (27)

In the ordinary slow-roll approximation aHη ≈ 1 + εH
and hence

G′h ≈ 2εH = −nT (SR), (28)

which yields

ln ∆2
+,×(k) ≈ Gh(ln ηmin) + nT [ln(kηmin)− C] (29)

consistent with nT = d ln ∆2
+,×/d ln k as the tensor tilt.

Note that even beyond the constant εH approximation

(1− aHη) = O(εH), (30)

and hence G′h = O(εH).
There are several similarities and difference between

scalars and tensors in the context of inflationary features
that are worth highlighting. In place of the direct consis-
tency relation between the tensor-scalar ratio and the tilt
of the tensor power spectrum is a relationship between
the GSR source functions

rf ≡ 4
f2R
f2h

= 16εHcs

(
s

csη

)2

. (31)

Recall that in the slow-roll approximation 1/f2 is directly
related to the corresponding power spectrum and s ≈ csη
so that

rf ≈
4∆2

+,×

∆2
R
≡ r ≈ 16εHcs (SR), (32)

which in turn is related to the tilt of the tensor spectrum
in slow roll through Eq. (28). Beyond the ordinary slow-
roll limit of constant G′, the consistency relation (31) still
implies that the GSR f sources, and hence power spec-
trum features, are related. However their appearance in
the respective power spectra goes through the freezeout
integrals over G′ rather than simply the tensor tilt.

Freezeout occurs at different epochs for tensors than
scalars. For example a feature at some common efold Ns
induces changes to the R and h modefunctions if k &
1/η(Ns) for tensors but only if k & 1/s(Ns) for scalars.
Hence for cs � 1, there is a range of wavenumbers where
a feature can impact tensors while not affecting scalars
which have already passed through the sound horizon.

Next only features in the evolution of H or equivalently
εH affect tensors whereas features in cs also affect scalars.
Moreover, features in εH impact scalars more than they
do tensors as long as εH � 1, the requirement of a near
de Sitter expansion which is at the heart of both the or-
dinary and generalized slow-roll approximations. Energy
conservation guarantees that H evolves continuously and
energy loss to the expansion can only occur on the efold
time scale.

The tensor GSR sources therefore yield O(∆εH) frac-
tional effects on top of the slow-roll power spectrum
through G′h, whereas the scalar GSR sources produce
O(∆εH/εH) fractional effects. Thus we generically ex-
pect tensor power spectrum features to be suppressed
relative to scalar power spectrum features by at least a
factor of εH .

The BICEP2 result suggests that tensor to scalar ratio
r ≈ 0.2 and so εH ∼ 0.2/16cs during the slow-roll period.
For canonical sound speed models cs = 1 and we gener-
ically expect features in the tensor sector to be percent
level for order unity scalar features. For low sound speed
models, the effect can be larger but only at the expense
of making εH larger which in turn limits the number of
efolds that slow-roll inflation can proceed. Thus tensor
features that are comparable to scalar features typically
require a short duration fast roll period of inflation where
εH itself reaches order unity. While a truly fast roll
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period would also suppress scalar fluctuations on large
scales and assist in reconciling the BICEP2 result with
upper limits on r from Planck, we shall show in the next
section it is not required to resolve this tension.

IV. EXAMPLES

Features in the scalar and tensor power spectra arise
from the evolution of εH and cs which excite the scalar
and tensor modefunctions from their de Sitter forms. We
have seen in the previous section that tensor features are
generically small so long as the background is nearly de-
Sitter or εH � 1, even if the evolution of εH is strong
enough to induce large scalar features ∆εH/εH = O(1).
In this section we quantify this expectation with concrete
models that are motivated by features in the observed
CMB temperature power spectrum [3, 20].

These models involve sharp steps in for example the
potential or warp factor of DBI inflation, including its
cs → 1 limit of a canonical scalar field inflaton. Fol-
lowing [20, 21], the evolution of εH and cs is generically
quantified by the change in their values from before (“b”)
to immediately following the step (“i”), as determined by
energy conservation, and then their decay back to their
inflationary attractor values (“a”) several efolds after the
step. It is convenient to normalize the former quantities
to the values εHa and csa after the step leaving the free
parameters

eb =
εHb
εHa

, ei =
εHi
εHa

,

cb =
csb
csa

, ci =
csi
csa

. (33)

Let us represent the step itself with the function F , which
takes on the value −2 before the step N < Ns and 0 after
the step N > Ns. Then the evolution across the step
becomes

cs
csa

(N) =1 +
1− cb

2
F +

ci − 1

2
(F + 2)e3(Ns−N), (34)

εH
εHa

(N) =1 +
1− eb

2
F +

ei − 1

2
(F + 2)e3(Ns−N).

G′R and G′h can then be computed by taking derivatives
and integrals of these fundamental quantities. By defin-
ing H through the integral of εH we guarantee energy
conservation which is crucial in establishing its continu-
ous evolution in the presence of the step.

To leading order, the change in the scalar power spec-
trum due to the step is [21]

∆ ln ∆2
R =C1W (kss) + C2W

′(kss) + C3Y (kss), (35)

where

Y (x) =
6x cos(2x) + (4x2 − 3) sin(2x)

x3
, (36)

and [20]

C1 = − ln cbeb,

C2 = −2

3

ci − cb
ci + cb

+
2

3

ei − eb
ei + eb

,

C3 = 2
(1− cb) + (ci − 1)/4

ci + cb
, (37)

and we have assumed εHa � 1. The W term represents a
step in the scalar power spectrum due to change in εHcs.
The W ′ term produces constant amplitude ringing in the
power spectrum as the transfer of an infinitely sharp step.
The Y term alters the spectrum around kss = 1 by en-
hancing the sharpness of the step.

For the tensor spectrum, a similar series of calculations
yields

∆ ln ∆2
+,× =B1W (kηs) +B2V (kηs) +B3Y (kηs), (38)

where

V (x) =

∫ ∞
x

dx̃

x̃
W (x̃)

=
(1 + x2) sin(2x)− 2x cos(2x)

2x3
− Ci(2x), (39)

with Ci as the cosine integral and

B1 =
8

3

[
(1− eb) +

1

4
(ei − 1)

]
εHa,

B2 = 2(eb − 1)εHa,

B3 =

[
(1− eb) +

1

4
(ei − 1)

]
εHa. (40)

Note that in comparison with the Ci scalar amplitudes,
the Bi tensor amplitudes are all suppressed by a factor
of εHa as discussed in the previous section.

The new V term here has the limit

lim
x→0

V (x) = C − lnx, (41)

where C was defined in Eq. (19) and induces an effect
similar to a change in the tensor tilt since dV/d ln k =
dV/d lnx. Indeed the difference between εHb and εHa
represented by a finite eb − 1 changes the tensor tilt ac-
cording to Eq. (28) in the slow-roll attractors away from
step. While it induces a similar effect on the scalar spec-
trum, the other Ci effects are zeroth order effects in εHa
whereas all tensor Bi effects begin at first order.

Finally for a finite width step, the oscillatory features
in both spectra are damped at high wavenumbers due
to the fact that the W window function oscillates many
times while the step is being traversed. In the sharp step
limit where this duration is still much less than an efold
xd ≈ 1/δN � 1, the ∆ ln ∆2 power spectrum deviations
of Eq. (35) and (38) are multiplied by a damping envelope
D(x/xd) which for a Tanh step is [10]

D(y) =
y

sinh y
. (42)
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FIG. 1. Examples of scalar and tensor features. Left: extremely sharp potential step that fits high frequency oscillations in
the Planck temperature anisotropy data. Right: warp step that fits the scalar suppression implied by the BICEP2 B-mode
detection and the Planck large angle temperature power spectrum. In both cases, tensor features are suppressed by a factor of
εH � 1 and oscillations are further suppressed by the relative smoothness of the tensor source due to energy conservation.

For explicit examples, we first take the sharp step in
the potential at ss = ηs = 3696.9Mpc with xd � 1 that
fits high frequency oscillations in the Planck temperature
power spectrum at high multipole from Ref. [20]. For
simplicity we take the limit of a canonical scalar field
cs = csa = 1 and a tensor-scalar ratio r = 0.2 after the
step as consistent with BICEP2. Hence

εHa =
0.2

16
= 0.0125, (43)

and for the best fit amplitude

ei = 1.254,

cb = ci = eb = 1. (44)

Note that for a potential step, εH returns to the same
value to leading order well after the step (eb = 1).

The scalar and tensor power spectrum features for this
model are shown in Fig. 1 (left). Since cs = 1, ηs = ss
and the location of the features align but the maximum
amplitude of the tensor relative to the scalar features
scales as εHa. Moreover, the tensor features lack the high
k constant oscillations from W ′ that make the scalars
observable given the decrease in the associated cosmic
variance. Despite the sharp step in the potential, energy
conservation forbids a sharp step in H and hence unlike
the scalars there is no ringing out to high k.

In fact, oscillatory features at high k in tensors are even
further suppressed in the observable CMB B-mode polar-
ization due to the much broader projection of power from
k to multipole ` associated with B-mode tensor polar-
ization as compared with temperature or E-mode scalar
perturbations [22]. Combined these facts imply that the
tensor features associated with this model are too small
to be observed.

Next consider a step in the DBI warp that causes a
similar step in the quantity εHcs and consequently the

scalar power spectrum. The implied reduction of large
scale scalar power fits the Planck temperature anisotropy
data while allowing a large r = 0.2 tensor contribution to
explain the BICEP2 result [3]. For simplicity, we again
take csb = cbcsa = 1 and choose parameters to fit the
amplitude and shape of the required reduction

csa = 1/cb = 0.856,

εHa =
0.2

16csa
= 0.0146,

xd = 1.43. (45)

Note that this small an xd does not represent a step that
is traversed in much less than an efold making the sharp
step assumption in evaluating GSR integrals only ap-
proximate; however comparisons with the exact scalar
calculation show that this approximation suffices for the
description here since even without damping, tensor os-
cillatory features are suppressed relative to scalars as we
have seen in the previous example. This model deter-
mines the evolution of cs and εH by setting

cb = eb ≈ 1/csa = 1.168,

ci = 0.988,

ei = 1.078. (46)

Fig. 1 (right) shows the associated scalar and tensor
features. Again the overall scale of tensor feature is re-
duced by εH compared with the scalar feature. In this
case, εH itself undergoes a step-like change across the
feature and hence the logarithmic rise at small k in the
tensor spectrum is due to the change in tensor tilt in the
slow-roll regime before the feature. However the cosmic
variance of low k modes and the finite size of the cur-
rent horizon prevents this effect from being measurable.
In this case the large width of the step, represented by
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xd, damps oscillatory features in both scalars and ten-
sors. Note that the location of oscillatory features are at
slightly smaller k since ηs > ss. Again the combination
of these facts imply that tensor features associated with
this model are too small to be observable.

The common feature of these two examples is that
while the ordinary slow-roll approximation (εH ≈ const.)
is strongly violated, slow roll itself is never violated
(εH � 1). Thus they illustrate the fact that large and
potentially observable tensor features requires a fast roll
period of inflation.

V. DISCUSSION

In this work, we have developed the generalized slow-
roll formalism for tensor power spectrum features from
transient violations of the ordinary slow-roll approxima-
tion. Here the slow-roll parameters are not assumed to
be constant and only the background expansion is as-
sumed to be nearly de Sitter or time translation invari-
ant. Generally, features in the scalar power spectrum
imply a corresponding set of features in the tensor power
spectrum governed by a generalized consistency relation
between their sources. However, the amplitude of tensor
features is suppressed by the slow-roll factor εH relative
to scalar features and also do not generate as large oscil-
latory features at high wavenumber since the evolution
of H is governed by energy conservation and smoother
than its derivatives.

As an illustration of this behavior, we considered in-
flationary features that are motivated by anomalies the
CMB temperature data, namely high frequency varia-
tions at high multipole moment in the Planck data and
a step suppression of power at low multipoles. Prefer-

ence for the latter is substantially strengthened by the
BICEP2 detection of tensor contributions to B-mode po-
larization. While explanations of either anomaly imply
a matching set of tensor features, neither require a fast
roll period where εH = O(1) and in the absence of such a
period, tensor features are greatly suppressed compared
with scalar features.

A fast roll period is nonetheless possible if confined to
efolds just prior to when the current horizon exited the
horizon during inflation. For example, these efolds could
represent the end of a prior period of kinetic energy dom-
ination [23, 24]. Hence the observation of tensor features
could provide support for such models and distinguish
them from slow-roll alternatives that similarly suppress
large scale temperature power.

More generally, model independent reconstruction of
the scalar and tensor source functions G′R and G′h could
test the consistency of slow-roll inflation more generally
than the ordinary slow-roll consistency relation [25]. Ob-
servable deviations from constant G′h require substan-
tial evolution in the Hubble rate, a violation of time-
translation invariance, from a relatively fast roll period.
The GSR approach should be useful for calculating the
tensor spectrum of such models out to scales approach-
ing the beginning of the main inflationary period where
order unity variations are possible.

Acknowledgments: WH thanks Peter Adshead for useful
conversations and CosKASI where this work was initi-
ated. This work was supported by the Kavli Institute
for Cosmological Physics at the University of Chicago
through grants NSF PHY-1125897 and an endowment
from the Kavli Foundation and its founder Fred Kavli and
by U.S. Dept. of Energy contract DE-FG02-13ER41958.

[1] P. Ade et al. (BICEP2 Collaboration), (2014),
arXiv:1403.3985 [astro-ph.CO].

[2] C. R. Contaldi, M. Peloso, and L. Sorbo, (2014),
arXiv:1403.4596 [astro-ph.CO].

[3] V. Miranda, W. Hu, and P. Adshead, (2014),
arXiv:1403.5231 [astro-ph.CO].

[4] K. N. Abazajian, G. Aslanyan, R. Easther, and L. C.
Price, (2014), arXiv:1403.5922 [astro-ph.CO].

[5] D. K. Hazra, A. Shafieloo, G. F. Smoot, and A. A.
Starobinsky, (2014), arXiv:1404.0360 [astro-ph.CO].

[6] R. Bousso, D. Harlow, and L. Senatore, (2014),
arXiv:1404.2278 [astro-ph.CO].

[7] P. Ade et al. (Planck Collaboration), (2013),
arXiv:1303.5082 [astro-ph.CO].

[8] H. Peiris et al. (WMAP Collaboration), Astro-
phys.J.Suppl., 148, 213 (2003), arXiv:astro-ph/0302225
[astro-ph].

[9] R. Flauger, L. McAllister, E. Pajer, A. Westphal, and
G. Xu, JCAP, 1006, 009 (2010), arXiv:0907.2916 [hep-
th].

[10] P. Adshead, C. Dvorkin, W. Hu, and E. A. Lim,

Phys.Rev., D85, 023531 (2012), arXiv:1110.3050 [astro-
ph.CO].

[11] J. Hamann, L. Covi, A. Melchiorri, and A. Slosar, Phys.
Rev., D76, 023503 (2007), arXiv:astro-ph/0701380.

[12] D. K. Hazra, M. Aich, R. K. Jain, L. Sriramkumar, and
T. Souradeep, JCAP, 1010, 008 (2010), arXiv:1005.2175
[astro-ph.CO].

[13] E. D. Stewart, Phys.Rev., D65, 103508 (2002),
arXiv:astro-ph/0110322 [astro-ph].

[14] J. Choe, J.-O. Gong, and E. D. Stewart, JCAP, 0407,
012 (2004), arXiv:hep-ph/0405155.

[15] J.-O. Gong, Class.Quant.Grav., 21, 5555 (2004),
arXiv:gr-qc/0408039 [gr-qc].

[16] C. Dvorkin and W. Hu, Phys. Rev., D81, 023518 (2010),
arXiv:0910.2237 [astro-ph.CO].

[17] W. Hu, Phys.Rev., D84, 027303 (2011), arXiv:1104.4500
[astro-ph.CO].

[18] P. Adshead, W. Hu, C. Dvorkin, and H. V. Peiris,
Phys.Rev., D84, 043519 (2011), arXiv:1102.3435 [astro-
ph.CO].

[19] P. Adshead, W. Hu, and V. Miranda, Phys.Rev., D88,

http://arxiv.org/abs/1403.3985
http://arxiv.org/abs/1403.4596
http://arxiv.org/abs/1403.5231
http://arxiv.org/abs/1403.5922
http://arxiv.org/abs/1404.0360
http://arxiv.org/abs/1404.2278
http://arxiv.org/abs/1303.5082
http://dx.doi.org/10.1086/377228
http://dx.doi.org/10.1086/377228
http://arxiv.org/abs/astro-ph/0302225
http://arxiv.org/abs/astro-ph/0302225
http://dx.doi.org/10.1088/1475-7516/2010/06/009
http://arxiv.org/abs/0907.2916
http://arxiv.org/abs/0907.2916
http://dx.doi.org/10.1103/PhysRevD.85.023531
http://arxiv.org/abs/1110.3050
http://arxiv.org/abs/1110.3050
http://dx.doi.org/10.1103/PhysRevD.76.023503
http://dx.doi.org/10.1103/PhysRevD.76.023503
http://arxiv.org/abs/astro-ph/0701380
http://dx.doi.org/10.1088/1475-7516/2010/10/008
http://arxiv.org/abs/1005.2175
http://arxiv.org/abs/1005.2175
http://dx.doi.org/10.1103/PhysRevD.65.103508
http://arxiv.org/abs/astro-ph/0110322
http://dx.doi.org/10.1088/1475-7516/2004/07/012
http://dx.doi.org/10.1088/1475-7516/2004/07/012
http://arxiv.org/abs/hep-ph/0405155
http://dx.doi.org/10.1088/0264-9381/21/23/016
http://arxiv.org/abs/gr-qc/0408039
http://dx.doi.org/10.1103/PhysRevD.81.023518
http://arxiv.org/abs/0910.2237
http://dx.doi.org/10.1103/PhysRevD.84.027303
http://arxiv.org/abs/1104.4500
http://arxiv.org/abs/1104.4500
http://dx.doi.org/10.1103/PhysRevD.84.043519
http://arxiv.org/abs/1102.3435
http://arxiv.org/abs/1102.3435
http://dx.doi.org/10.1103/PhysRevD.88.023507


7

023507 (2013), arXiv:1303.7004 [astro-ph.CO].
[20] V. Miranda and W. Hu, Phys.Rev., D89, 083529 (2014),

arXiv:1312.0946 [astro-ph.CO].
[21] V. Miranda, W. Hu, and P. Adshead, Phys.Rev., D86,

063529 (2012), arXiv:1207.2186 [astro-ph.CO].
[22] W. Hu and M. J. White, Phys.Rev., D56, 596 (1997),

arXiv:astro-ph/9702170 [astro-ph].

[23] C. R. Contaldi, M. Peloso, L. Kofman, and A. D. Linde,
JCAP, 0307, 002 (2003), arXiv:astro-ph/0303636 [astro-
ph].

[24] L. Lello and D. Boyanovsky, (2013), arXiv:1312.4251
[astro-ph.CO].

[25] C. Dvorkin and W. Hu, Phys.Rev., D84, 063515 (2011),
arXiv:1106.4016 [astro-ph.CO].

http://dx.doi.org/10.1103/PhysRevD.88.023507
http://arxiv.org/abs/1303.7004
http://dx.doi.org/10.1103/PhysRevD.89.083529
http://arxiv.org/abs/1312.0946
http://dx.doi.org/10.1103/PhysRevD.86.063529
http://dx.doi.org/10.1103/PhysRevD.86.063529
http://arxiv.org/abs/1207.2186
http://dx.doi.org/10.1103/PhysRevD.56.596
http://arxiv.org/abs/astro-ph/9702170
http://dx.doi.org/10.1088/1475-7516/2003/07/002
http://arxiv.org/abs/astro-ph/0303636
http://arxiv.org/abs/astro-ph/0303636
http://arxiv.org/abs/1312.4251
http://arxiv.org/abs/1312.4251
http://dx.doi.org/10.1103/PhysRevD.84.063515
http://arxiv.org/abs/1106.4016

	Generalized Slow Roll for Tensors
	Abstract
	Introduction
	Generalized Slow Roll
	Tensors vs. Scalars
	Examples
	Discussion
	References


