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ABSTRACT

Supernova distance and primary CMB anisotropy measurements provide powerful probes of the dark
energy evolution in a flat universe but degrade substantially once curvature is marginalized. We show
that lensed CMB polarization power spectrum measurements, accessible to next generation ground
based surveys such as SPTpol or QUIET, can remove the curvature degeneracy at a level sufficient
for the SNAP and Planck surveys and allow a measurement of σ(wp) = 0.03, σ(wa) = 0.3 jointly with
σ(ΩK) = 0.0035. This expectation assumes that the sum of neutrino masses is independently known
to better than 0.1 eV. This assumption is valid if the lightest neutrino is assumed to have negligible
mass in a normal neutrino mass hierarchy and is potentially testable with upcoming direct laboratory
measurements.
Subject headings: cosmology – gravitational lensing, large-scale structure of the universe

1. INTRODUCTION

Currently, observations of the expansion history of the
universe are remarkably consistent with cosmic accelera-
tion driven by a cosmological constant in a spatially flat
universe. When testing this hypothesis, one typically
looks for possible evidence of spatial curvature in the ab-
sence of dark energy evolution or evolution in the absence
of spatial curvature. It is of course possible that spatial
curvature and dark energy evolution conspire to mimic
a cosmological constant in a flat universe. Nonetheless
while the data remain consistent with the simpler hy-
pothesis, this approach is justified.

More worrying is the possibility that as measurements
improve, we find evidence for non-standard dark energy
in a flat universe — a dark energy equation of state
w 6= −1. Should we then believe that the universe is flat
and dark energy varying in time, or that it has a small
curvature and the dark energy is simply the cosmolog-
ical constant? While the standard inflationary theory
predicts that the curvature of our Hubble volume is be-
low measurable limits (ΩK . 10−4), models that allow
a detectable spatial curvature do exist and are arguably
on sounder footing than dynamical dark energy models.

Ideally of course, we would like to measure both ΩK

and w(z) but this is difficult because of degeneracies.
Moderately good constraints are obtained once type
Ia supernova (SNe) data and cosmic microwave back-
ground (CMB) data are combined with high precision
Hubble constant measurements (Hu 2005; Linder 2005),
weak gravitational lensing (Knox 2006; Bernstein 2006),
baryon oscillations (Knox et al. 2006; Ichikawa et al.
2006) or cluster abundances. However, these techniques
are subject to a vast array of systematic uncertainties
that have to be accounted for carefully. For example,
weak gravitational lensing requires modeling of the fully
nonlinear power on scales of 0.1-100 Mpc to the accuracy
of a few percent (e.g., Huterer & Takada 2005).

Only two methods – SNe Ia and CMB – have proven
so far to be both powerful and robust probes of cos-
mology. Here we show that the information required to

break the degeneracy between curvature and dark en-
ergy to a level sufficient for future SNe missions such as
SNAP (Aldering et al. 2004) lies within the reach of next
generation ground-based CMB polarization power spec-
trum measurements. This information comes from weak
gravitational lensing of the CMB in the linear regime at
redshifts z ∼ 1 − 3 (see Lewis & Challinor (2006) for a
recent review). We employ a recently developed frame-
work for CMB lensing power spectrum observables that
includes the non-Gaussian nature of the lensing signal
(Smith et al. 2006). This method is ideally suited for
investigating the complementarity between different cos-
mological probes in a wide range of dark energy models.

2. METHODOLOGY

To describe the information content of the various cos-
mological probes, we model the observables and employ
the usual Fisher approach. For SNe Ia, we model the
magnitudes mi of the SNe as

mi = 5 logH0dL(zi) + M + ǫi , (1)

where i runs through the observed SNe. Here the lumi-
nosity distance is given by

dL(z) = (1 + z)
1

√

ΩKH2
0

sinh

(

√

ΩKH2
0D

)

, (2)

where ΩK is the curvature in units of the critical energy
density, H0 is the Hubble constant, D(z) =

∫

dz/H(z)
is the comoving radial distance, M ≡ M − 5 logH0 + 25
is a nuisance parameter involving the unknown absolute
magnitude of the supernova M . The noise term ǫi repre-
sents both statistical errors and possible systematic er-
rors that do not necessarily decrease with the number of
observed supernovae.

We assume a survey similar to the planned SNAP mis-
sion (Albert et al. 2005) with 2800 SNe distributed in
redshift out to z = 1.7 given by Aldering et al. (2004)
(middle curve of their Fig. 9, reproduced here in Fig. 1).
We combine the SNAP dataset with 300 local supernovae
uniformly distributed in the z = 0.03 − 0.08 range.
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Fig. 1.— Top panel: redshift distribution of SNAP supernovae
nSN and weights of the lensing observables {Θ1,Θ2} normalized
to integrate to unity. Bottom panel: derivatives of the luminosity
distance dL and relative luminosity distance H0dL with respect to
curvature ΩK and the dark energy parameters w0 and wa. Here
ΩDE is adjusted to keep the angular diameter distance to recom-
bination fixed in each case.

Following Albert et al. (2005), we model the error as
a sum of the statistical error and an irreducible, but un-
biased, systematic error. The latter imposes a floor on
the errors at a given redshift that is uncorrelated across
broad redshift ranges. Given a binning of SNe into some
arbitrary bins in z denoted as ∆zI , we assume that

∑

i∈I,j∈J

〈(mi − m̄i)(mj − m̄j)〉
NINJ

= δIJ

(

σ2
m

NI

+ σ2
sys

)

,

(3)
where NI is the number of SNe in ∆zI . Following
Tegmark et al. (1998), we can replace the sum over dis-
crete SNe with an integral over the redshift distribution,
NI = nSN(z)∆zI and construct the Fisher matrix for a
parameter set pµ as

F SNAP
µν =

∫

dznSN(z)
1

σ2
ǫ (z)

∂m̄(z)

∂pµ

∂m̄(z)

∂pν

, (4)

where
σ2

ǫ = σ2
m + σ2

sysnSN(z)∆z . (5)

For SNAP, we take σm = 0.15 and σsys = 0.02 (1+z)/2.7,
∆z = 0.1. When constructing the Fisher matrix in cos-
mological parameters we marginalize M.

For the CMB, we use the information coming from
recombination by constructing the Fisher matrix of the
unlensed CMB out to multipole ℓ = 2000 in the usual way
(Zaldarriaga et al. 1997). We assume the Planck survey
with 80% usable sky and 3 usable channels for cosmology:
FHWM 5.0′ with temperature noise ∆T = 51µK′ and
polarization noise ∆P = 135µK′ ; 7.1′ with ∆T = 43µK′,
∆P = 78µK′; 9.2′ with ∆T = 51µK′, ∆P = ∞. We will
call this Fisher matrix FPlanck

µν .
For the additional information from lensing, we use the

lensing observables framework (see Smith et al. 2006, for
details). Constraints below so derived are an excellent
match to those obtained through the full non-Gaussian
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Fig. 2.— Constraints on dark energy parameters ΩDE, w0 and
wa, shown for supernovae (SNAP) and unlensed CMB (Planck)
separately: (a) constraints assuming a flat universe; (b) weakened
constraints from curvature marginalization.

band power covariance matrix. The two lensing observ-
ables Θ1 and Θ2 are determined from temperature/E-
polarization and B-polarization respectively. They are
associated with the amplitude of the convergence power
spectrum in broad bands around ℓ1 ∼ 100 and ℓ2 ∼ 500.
This amplitude in turn has a redshift sensitivity plotted
in Fig. 1. Note that this sensitivity extends to z ≫ 1
and is reason that CMB lensing has higher sensitivity to
curvature than dark energy. The CMB lensing Fisher
matrix is given by

FCMBlens
µν =

∑

i=1,2

∂Θi

∂pµ

1

σ2
Θi

∂Θi

∂pν

. (6)

For the errors on the observables, we will assume a deep
CMB survey that is comparable to the proposed SPTpol
survey. Specifically we take a deep temperature survey
on 4000 deg2 and ∆T = 11.5µK′ and a deep polariza-
tion survey on 625 deg2 with ∆P =

√
2∆T = 4µK′. We

take a FWHM beam of 1’. With these specifications com-
bined with sensitivity to Θ1 from Planck, the two observ-
ables can be measured with an accuracy of σΘ1

= 0.041
and σΘ2

= 0.032. For reference, the latter represents a
∼ 3% measurement of the overall power in lensing B-
modes and dominates the overall constraints. Moreover
the deep temperature survey provides little weight in the
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Fig. 3.— 68% CL region in w0 − wa with and without CMB
lensing (CMBlens) information. Filled ellipses: SNAP statistical
errors. Open ellipses: SNAP systematic and statistical errors. In-
ner ellipse in each set: Planck+SNAP errors alone in a flat universe.

Θ1 constraint itself and would mainly serve as an internal
cross check for foregrounds, systematics and other secon-
daries. Likewise, other planned surveys such as QUIET
will have comparable precision in Θ2 with very different
frequency bands.

Finally, we sum the Fisher matrices as usual

Fµν = F SNAP
µν + FPlanck

µν + FCMBlens
µν (7)

and approximate the joint parameter covariance matrix
as Cµν = (F)−1

µν .

3. FORECASTS WITH CURVATURE

It is well known that CMB information from recombi-
nation allows SNe to determine the dark energy equation
of state parameters

w(a) = w0 + (1 − a)wa , (8)

in a flat universe. In the 3-dimensional space
{ΩDE(=0.76), w0(= −1), wa(= 0)}, Planck CMB mea-
surements limit the allowed region to a 2-dimensional
surface or plane in the Fisher approximation (see Fig. 2).
Values in parentheses represent those of the fiducial
model. Here we have marginalized the baryon density
Ωbh

2(= 0.022), cold dark matter density Ωch
2(= 0.106),

tilt ns(= 0.958), initial amplitude of curvature fluctua-
tions δζ(= 4.52 × 10−5) at k = 0.05/Mpc, and reioniza-
tion optical depth τ(= 0.92).

SNAP supernovae measurements constrain a flat tube
in this space that is nearly orthogonal to the Planck sur-
face. Note that the pre-marginalization of any one of the
three parameters before combining does not bring out
this complementarity or the quality of the two surveys in
confining the volume in the allowed dark energy space.

The marginalization of spatial curvature can be visu-
alized as the superposition of independent shifts in the
Planck plane and SNAP tube. Given that even the
unlensed CMB has distance-independent, albeit weak,
curvature information from both the ISW effect and
the acoustic peaks (see Hu & White 1996, Fig. 11),
the Planck plane only widens marginally (see Fig. 2).
On the other hand the SNAP tube widens substan-
tially. The net effect on the joint constraints in the
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Fig. 4.— Improvement in the area statistic Aw in the w0 − wa

plane of as a function of the prior on the sum of the neutrino
masses. The top line represents the SNAP+Planck constraint
alone in a flat universe, the bottom represents the degradation
once curvature is marginalized. CMB lensing can recover much
of this information if the sum of the neutrino masses is known to
σ(mν ) < 0.1eV.

w0 − wa plane marginalized over {ΩDE, ΩK} is shown
in Fig. 3. It represents a factor of 4.8 in the 68% CL
area (Huterer & Turner 2001) as measured by Aw =
σ(wp)σ(wa). Here wp is the equation of state at the best
constrained or pivot redshift and its errors are equal to
those of w0 at fixed wa (Hu & Jain 2004).

This degeneracy is also illustrated in Fig. 1 (bottom
panel). Here the fractional deviations in the SNe ob-
servable H0dL from the fiducial model are shown as pa-
rameter derivatives at a fixed distance to recombination.
Without spatial curvature, w0 and wa make distinguish-
able changes in the relative distance at z < 2. With
spatial curvature, the effects become largely degenerate.

The effect of spatial curvature on observables persists
to high redshift z ≫ 1 whereas that of the dark energy
parameters flatten and depend only on H0, the difference
between relative and absolute distances. This degeneracy
may therefore be broken either by high precision Hubble
constant (Hu 2005; Linder 2005) or high-z distance mea-
surements (Knox 2006; Bernstein 2006).

CMB lensing supplies the latter kind of information.
Around the fiducial model the sensitivity of the lensing
observables to cosmological parameters used in Eqn. (6)
is

∆Θ1≈−1.01ΩDE − 0.399∆w0 − 0.146∆wa − 5.17∆ΩK

+12.3∆Ωch
2 + 2∆ ln δζ − 0.33

∆mν

1eV
,

∆Θ2≈−1.27ΩDE − 0.446∆w0 − 0.154∆wa − 5.30∆ΩK

+18.8∆Ωch
2 + 2.09∆ ln δζ − 0.45

∆mν

1eV
. (9)

This lensing sensitivity depends both on parameters that
control distances and the matter power spectrum at the
redshift range shown in Fig. 1. We have here used the
fact that other parameters in the latter class such as
ns are sufficiently well determined by Planck. The sum
of the neutrino masses mν is however not well deter-
mined and changes both the shape and growth rate of
the matter power spectrum. The distance parameters
also change the growth rate and the curvature sensitiv-
ity is in fact enhanced by this effect.
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First let us consider the impact of CMB lensing con-
straints assuming that the sum of the neutrino masses
mν(= 0.06eV) is fixed. This is a good assumption if
the lightest neutrino has a mass < 0.01eV and a nor-
mal mass hierarchy due to the measurement of the solar
and atmospheric neutrino mass squared differences. The
same assumption in an inverted hierarchy would also be
sufficient in that it only adds a second discrete possibility.

In this fixed neutrino case, the addition of the lensing
constraint nearly fully restores the ability of SNAP and
Planck to measure the dark energy (see Fig. 3). It allows
a measurement to σ(wa) = 0.30 and A−1

w = 137. This
restoration of sensitivity occurs even if SNAP is limited
by only statistical errors such that σ(wa) = 0.19 and
A−1

w = 241.
Figure 4 shows how A−1

w depends on prior knowledge
of the sum of the neutrino masses in the case that the
lightest neutrino does not have negligible mass. In this
case all three neutrinos could have degenerate masses.
External constraints on the sum of neutrino masses begin
to help at the 0.2eV level and would be fully sufficient
at a few 10−2eV. For example the KATRIN experiment
is expected to reach σ(m2

νe
) = (0.16eV)2 from tritium β

decay (Aalseth et al. 2004). Such a measurement would
test the degenerate mass scenario.

As an aside it is interesting to note that even with spa-
tial curvature and dark energy the combination of data
sets would allow a measurement of σ(mν) = 0.24 eV.
With curvature fixed, σ(mν) = 0.14 eV. Hubble constant
measurements with 1− 7% precision would provide neu-
trino measurements that interpolate between these two
limits by fixing the spatial curvature.

4. DISCUSSION

Constraints on the temporal evolution of dark energy
benefit particularly strongly from the addition of CMB
lensing information to that of SNe and the primary CMB
at recombination. The three methods probe very differ-
ent epochs: SNe are sensitive to distances at z . 1, the
primary CMB to z ∼ 1089 whereas CMB lensing probes
1 . z . 3. Given that spatial curvature affects distances
and growth out to high redshift, CMB lensing is ideally
suited to breaking the degeneracy between curvature and

the dark energy. It has the additional advantage of being
nearly entirely in the linear regime and a lensing test of
curvature where the source distance can be considered
fixed.

Furthermore, this degeneracy breaking requires only
already planned ground-based CMB polarization power
spectrum measurements. We have demonstrated that
even if the SNAP and Planck surveys are limited only
by statistical errors, a ground based survey like SPT-
pol will be sufficient to extract the full information:
σ(wp) = 0.02, σ(wa) = 0.2 and σ(ΩK) = 0.0034; with
some accounting for SNAP systematic errors these de-
grade to 0.025, 0.3, and 0.0035.

There are two critical assumptions that make this pos-
sible. Firstly that the ground based CMB survey will
be able to remove foregrounds and systematics at a level
sufficient to enable few percent level measurements of
the lensing B-mode polarization power. Secondly, we as-
sume that the neutrino masses are fixed by oscillation
measurements and a theoretical assumption about the
neutrino mass hierarchy. This assumption will be tested
by next generation laboratory experiments. In the more
general context, the sum of the neutrino masses must be
externally determined to 0.1eV or better.

The lensing observables approach we have taken here
can be easily extended to consider different combinations
of probes or alternate explanations of the accelerated ex-
pansion. Furthermore we have only considered the sim-
plest description of the time-dependent dark energy den-
sity, in terms of parameters w0 and wa. More ambitious
descriptions of the dark energy sector or more exotic the-
oretical models with high redshift deviations may be even
further assisted by CMB lensing.
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