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The next generation of cosmic microwave background, gravitational wave, and large scale

structure, experiments will provide an unprecedented opportunity to probe the primordial

power spectrum on small scales. An exciting possibility for what lurks on small scales is a

sharp rise in the primordial power spectrum: This can lead to the formation of primordial

black holes, providing a dark matter candidate or the black holes observed by the LIGO-Virgo

collaboration. In this work we develop a mechanism for the amplification of the small-scale

primordial power spectrum, in the context of single-field inflation with a step-like feature in

the inflaton potential. Specifically, we consider both the upward and the downward step in

the potential. We also discuss the possibility of the strong coupling between perturbations

because the rapid changes of the potential derivatives with the time-dependent field value,

caused by the step-like feature, could make the coupling stronger. As a result, we find that

the perturbations can remain weakly coupled yet sufficiently enhanced if the step realizes the

rapid changes of the potential derivatives in some fraction of an e-fold, O(P1/2
R ) . ∆N < 1,

where PR is the power spectrum of the curvature perturbation at that time. We also discuss

the PBH formation rate from the inflaton trapping at the local minimum, which can occur

in the potential with an upward step.
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I. INTRODUCTION

The paradigm of cosmological inflation [1–6] has been tremendously successful in explaining the

observed properties of the universe, from the flatness, homogeneity, and isotropy, to the cosmic

microwave background (CMB), and the large scale structure (LSS) of the universe. Single field

slow-roll inflation predicts a spectrum of primordial scalar perturbations that is adiabatic, and, on

large scales, is nearly-Gaussian and nearly-scale invariant; these predictions have been confirmed by

several generations of experiments. Inflation also predicts the existence of primordial gravitational

waves, which, as the “holy grail” of inflation [7], is a primary target for next generation CMB [8]

and gravitational wave [9] experiments, as well as a small amount of primordial non-Gaussianity,

which will be probed by both upcoming CMB and LSS experiments [10].

The historic successes of inflation, as well as future tests with CMB and LSS, are an exquisite

probe of the primordial power spectrum on large scales, corresponding to wavenumbers k .

1 Mpc−1. In contrast, the small-scale primordial power spectrum remains largely uncharted terri-

tory. There are good physical reasons for this: the diffusion (“Silk”) damping of CMB anisotropies,

and the non-linear growth of structure, both serve to mask the power spectrum on small scales,

obfuscating the primordial information contained therein.

Despite these challenges, there are exciting prospects for probing the small-scale primordial

power spectrum: For example, primordial black holes (PBHs) can be produced by large perturba-

tions on small scales at their horizon entry after the inflation era [11–14]. PBHs have been studied

recently by many authors, both as a dark matter (DM) candidate and as the BHs detected by the

LIGO-Virgo collaboration [15–20] (see Refs. [21–23] for recent reviews). Large primordial pertur-

bations can also produce ultra-compact minihalos (UCMHs), which could emit the gamma rays

from their centers depending on the DM properties [24–27]. In addition, large perturbations on

small scales can be sources of the distortion of CMB spectrum [28, 29] and the gravitational waves

through the non-linear interaction between tensor and scalar perturbations [30–39] (see Ref. [40]

for recent reviews). The future observation of CMB spectral distortions [41], e.g., by PIXIE [42],

and of a stochastic gravitational wave background, e.g., by SKA [43], LISA [44], DECIGO [45], or
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others, will investigate the enhancement of the small-scale perturbations.

These new observational windows, and the past success of the single field inflation paradigm,

provide ample motivation to develop the phenomenology of single field inflation on small scales.

In this paper we focus on inflation models that lead to a significant enhancement of primordial

perturbations on small scales. One way of enhancing the perturbations is to introduce a flat region

in the inflationary potential [46–63]. During the period of the rolling in the flat region, called

the ultra-slow-roll (USR) period, the inflaton is rapidly decelerated due to the Hubble friction,

which leads to the perturbation enhancement. Apart from the flat region in the potential, the

perturbation enhancement can be realized by non-canonical kinetic terms [64, 65], a non-minimal

coupling to gravity [53, 66–68], the parametric resonance during the inflation [69], and the extension

to multiple fields [70–75].

In this paper, we focus on canonical single field inflation models with a step-like feature in

the potential V (φ), instead of the flat region. This class of models has been extensively studied

in the past literature [76–85] (see also Refs. [86, 87] for a bump/dip or an oscillatory feature in

the potential). Recently, in Ref. [88], we have shown that a downward step in the potential can

enhance the power spectrum by O(107), which is enough for the production of PBHs as DM and the

LIGO/Virgo events [21]. Also, the connection between the PBH scenarios and multiple downward

steps has been studied recently in Ref. [89]. In terms of the inflationary slow-roll parameters

ε ≡ −Ḣ/H2 and η ≡ d ln ε/dN , with dN ≡ Hdt, these models are characterized by a rapid change

in ε, corresponding to a transient phase of |η| > 1, whilst maintaining ε� 1 at all times.

The physical process at play may be understood from simple energy conservation considerations:

When the inflaton encounters a downward step, it experiences a rapid transfer of potential energy

into kinetic energy, followed by the dissipation of this kinetic energy via Hubble friction. Conversely,

when the inflaton encounters an upward step, there is a rapid conversion of kinetic energy into

potential energy. In both cases, across the transition an incoming positive frequency mode of

the comoving curvature perturbation is rapidly converted to a linear combination of negative and

positive frequency modes (with respect to the post-transition background), indicative of particle

production (see e.g. Ref. [90]). Evolving the modes through the subsequent cosmological evolution,

one finds an enhancement of the primordial power spectrum on the scales close to the horizon at the

moment of the transition. Note that this particle production makes it possible to realize a power

spectrum which is much larger than the prediction in the slow-roll approximation, PR ∝ 1/ε. We

will demonstrate this in a concrete inflation model consistent with CMB observations, along with

toy models that admit simple analytic solutions.

In this work we also perform a detailed analysis of the perturbativity of the cosmological pertur-

bations. Since the coupling constants of higher order operators involving the comoving curvature

perturbation are determined by the evolution of the slow-roll parameters, there is a potential strong

coupling problem when the slow-roll parameters (e.g., ε) undergo a rapid change [81]. In particu-

lar, the large enhancement of the curvature perturbations makes the coupling stronger. Once the

perturbations are strongly coupled, linear perturbation theory breaks down. Since previous works

on the perturbation enhancement with a step feature were based on linear theory [76–89], it is

nontrivial whether or not the O(107) enhancement really occurs with a step-like feature, though
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we provided a qualitative discussion of how to avoid the strong coupling problem in our previous

work [88]. One of the main goals of this paper is to show quantitatively the conditions under which

strong coupling may be avoided and to provide a concrete potential that can realize the O(107) en-

hancement as an example. Specifically, we demonstrate that a potential with a downward step can

amplify perturbations up to levels for the PBH scenarios while leaving the perturbations weakly

coupled during the particle production. In contrast, in the upward step scenario the perturba-

tions are only marginally weakly coupled during the particle production. These results rely on our

fiducial step form that can be extended to have more than one field-width parameter to describe

the step transition. In an appendix, we show that a tanh-like downward step, which is used in

many previous works and has only one parameter for the step field width, cannot avoid the strong

coupling issue since the change in ε occurs too quickly, which prevents the enhancement from being

studied perturbatively (i.e., using the linearized equations of motion). These examples illustrate

the general conclusion that what is required to avoid strong coupling is a condition on the number

of efolds ∆N over which the change in the slow-roll parameters occurs.

In the course of this investigation we make contact with a related but distinct mechanism for

the genesis of PBHs, namely through the “trapping” of the inflaton in a region of the potential

away from the post-inflation vacuum, and the subsequent formation of baby universes [91, 92].

This naturally arises in the context of an upward step, wherein the incoming kinetic energy of the

inflaton would naively (that is, classically) traverse the step, were it not for quantum backreaction.

Regions of the universe that remain trapped are seen by outside observers, i.e., observers in regions

of space in which inflation has ended, as PBHs [91–94].

These results serve as a lamp post for the future study of features in the small-scale primordial

power spectrum, suggest that care will need to be taken in interpreting future data, and inferences

as to the nature of inflation (single field vs. multifield, canonical vs non-canonical, etc.). Fi-

nally, these results motivate a detailed comparison of primordial vs. non-primordial (e.g., [95, 96])

mechanisms for the enhancement of perturbations.

The structure of this paper is as follows. In Sec. II, we present a single field inflation model

exhibiting a step-like feature, and demonstrate the amplification of perturbations. In Sec. III

we present a toy model for an upward step, which exhibits a simple analytic description, and in

Sec. IV perform a similar analysis for a downward step. In Sec. V, we consider constraints on the

model from the strong coupling and the backreaction, utilizing a smoothing of the transition from

Sec. V A to control their impact. In Sec. VI, we discuss the trapping of the inflaton, and conclude

in Sec. VII with a discussion of directions for future work.

II. AMPLIFICATION OF PERTURBATIONS FROM STEP-LIKE FEATURES IN THE

INFLATIONARY POTENTIAL

A. Mechanism

First, we explain the mechanism for the perturbation enhancement with a potential step. The

evolution of the comoving curvature perturbation is governed by the Mukhanov-Sasaki equation
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for the curvature perturbation [83, 97, 98], which reads, in Fourier space,

R′′k + (2 + η) aHR′k + k2Rk = 0, (1)

where a is the scale factor and the prime denotes the derivative with respect to the conformal

time, τ , defined by dτ ≡ dt/a with τ = 0 at the end of the inflation era. From this equation, the

perturbation enhancement can be associated with η or equivalently the evolution of ε. To describe

the essence, we introduce three ε: εi as the value just before the step transition, εm as the value

just after the step transition, and εf as the value well after the transition. Throughout this work,

we consider a potential that has almost the same slopes before and after the step, which leads to

εf ' εi.
We here focus on the case of a sharp step that realizes an almost instantaneous transition from

εi to εm, which corresponds to a large η during the transition. During the large η phase, we may

approximate Eq. (1) by

R′′k +
ε′

ε
R′k ' 0, (2)

up to corrections that scale as k2/(ηaH)2. Integrating the equation of motion over the transition,

we find a rescaling of R′,

R′k(τm) ' εi
εm
R′k(τi), (3)

where τi is the conformal time at ε = εi and τm is at ε = εm. This rescaling of R′k implies a mode-

mixing across the transition; a hallmark of particle production (see e.g. Ref. [90]). In the upward

step case, we have εi/εm � 1 and therefore a large enhancement of R′. After the step transition, R
also gets enhanced by following the enhancement of R′. On the other hand, in the downward step

case, we have εi/εm � 1 and R′ gets suppressed with R fixed. In this case, the enhancement of

curvature perturbation originates from the following period. In general, the excess kinetic energy

due to the downward step naturally makes the following period a USR period, which enhances R
after the step transition. Note that, if the downward step is not sharp and the transition from εi

to εm is adiabatic, R gets suppressed during the downward step by
√
εi/εm and no perturbation

enhancement occurs in the case of εi ' εf . We shall see that these scaling behaviors are realized

in the upward (Sec. III) and downward step (Sec. IV) cases using an analytic approximation for

their behavior with the fiducial potential that we introduce next.

B. Fiducial potential

Here, we introduce our fiducial potential. Note again that one of the main goals of this paper is

to provide a concrete inflaton potential that can realize the O(107) enhancement but with enough

freedom to explore and avoid the strong coupling between the perturbations. With this in mind,

we determine the fiducial potential, especially the form of the step-like feature.

In this work we focus on a simple class of single field inflation models, namely that in which

the inflaton potential can be described by a ‘bare’ potential modulated by a step-like feature. In
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this class of models, the inflaton potential can be expressed as,

V (φ) = Vb(φ)F (φ;φ1, φ2, h) , (4)

where Vb(φ) is the ‘bare’ inflaton potential, and F (φ;φ1, φ2, h) describes the step-like feature. For

concreteness, we focus on a hilltop inflation model, wherein the potential during inflation can be

described locally as,

Vb(φ) = V0

(
1− βφ2/M2

Pl

1 + φ/φCMB

)
, (5)

where φCMB is the value of φ at the moment when the CMB pivot scale (k = 0.05 Mpc−1) exits the

horizon. The form of Vb can be expected to differ from the above for φ� φCMB, so as to describe

the end inflation, but the precise form is not important for our purposes, as we are interested in the

power spectrum on the scales far the horizon scales at the end of the inflation, which is insensitive

to the details of the end of inflation.1

The bare potential Vb determines the normalization and the tilt of power spectrum on the

CMB scales, irrespective of the feature F as long as it only appears at φ > φCMB. The slow-roll

parameters, evaluated at horizon exit of the CMB pivot scale, are given by,

ε ' M2
Pl

2

(
1

V

dV

dφ

)2

' 9

32

β2φ2
CMB

M2
Pl

, (6)

ηV ≡M2
Pl

1

V

d2V

dφ2
' −β

4
, (7)

ξ2
V ≡M4

Pl

1

V 2

dV

dφ

d3V

dφ3
' − 9

32
β2. (8)

From this we find the tilt of power spectrum at the CMB scale (ns) is determined primarily by the

second derivative of the potential, as

ns − 1 ' 2ηV ' −
β

2
. (9)

We take β = 0.06 to be consistent with the CMB measurement, ns = 0.97 [99]. Then, the third

slow-roll parameter becomes ξ2
V = −1.0 × 10−3, which is consistent with the Planck results [99].

We relate V0 and φCMB through the CMB normalization, V0/M
4
Pl = 24π2ε(φCMB)×2.1×10−9 [99].

The step feature F (φ;φ1, φ2, h) can describe either an upward or downward step in the potential.

We consider a continuous step of the form,

F (φ;φ1, φ2, h) = 1 + h

[
S

(
φ− φ1

φ2 − φ1

)
Θ(φ− φ1)Θ(φ2 − φ) + Θ(φ− φ2)

]
, (10)

where S(x) ≡ x2(3− 2x) changes from 0 to 1 within 0 ≤ x ≤ 1. The parameter h corresponds to

the height of the step which is normalized by Vb, whereas φ1 and φ2 denote the beginning and the

1 We note that, in the downward step case, the form of Vb should be modified to end inflation at a value of φ that

is much larger than it would be for the same parameters but without the step. This is because the acceleration

due to the downward step increases the field distance that the inflation rolls in a fixed number of efolds from the

CMB scales to the end of inflation. In Ref. [88], we derived the concrete value of φ at which Vb is modified.
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FIG. 1. The inflaton potentials of Eq. (4) that realizes the large enhancement of perturbations with a

downward step (left) and an upward step (right) at φ1 ≤ φ ≤ φ2 highlighted. The parameters are ns = 0.97,

εi = 7.43×10−10, and εf = 10−9 for both steps and ld = 0.1 (∆Nstep ' 0.5) and εm = 0.01 for the downward

step and lu = 0.3 and εm = 10−4 εi for the upward step. Note that we take different axis scales in the two

figures to highlight the steps at φ1 ≤ φ ≤ φ2 in both cases.

end of the step. An upward or downward step corresponds to h > 0 or h < 0 respectively. We

shall see in Sec. V and Appendix B that this parameterization provides enough flexibility to avoid

strong coupling problems for sharp steps whereas simpler smoothing schemes have problems.

This step-like feature can be characterized by four phenomenological parameters, the three ε’s

(εi, εm, εf ) and ∆Nstep, the e-folds for the change of εi → εm. In our setup, εi is the value at φ1, εm

is the maximum or minimum value associated with the step, and εf is given by β2φ2
CMB/(2M

2
Pl).

In particular, εm and ∆Nstep are controlled by the step height, h, and the step width, φ2 − φ1, in

Eq. (10). Here, we first discuss the relation between εm and h. The energy conservation law can

relate h to the ε’s as

h ' εi − εm
3

, (11)

where we have neglected the effect of the Hubble friction as the inflaton traverses the step. Using

this relation, we can use εm as an alternative to h in the downward step case.2 On the other hand,

in the upward step case, we do not use the relation Eq. (11) because εm sensitively depends on

the real height of the step in the case of εm � εi. Note that the real step height deviates from

h because of the tilt of the bare potential. Although this deviation vanishes as ∆Nstep → 0, it

still makes a significant change of εm for finite ∆Nstep in the upward step case. Moreover in this

case, ε(φ2) 6= εm and ∆Nstep 6= N2 −N1, where Na is the value at φa, since the slope of the bare

potential Vb is sufficiently large to alter the position of the local maximum of V (φ) (see Fig. 1).

Next, we discuss the relation between the e-folds for the transition, ∆Nstep, and the step width,

φ2−φ1. For convenience, we define the non-dimensional parameters as ld ≡ (φ2−φ1)/(
√

2εmMPl)

and lu ≡ (φ2 − φ1)/(
√

2εiMPl). Throughout this paper, we consider the case of ld < O(1) for the

downward step case and lu < O(1) for the upward step case, which lead to ∆Nstep < O(1), because

we focus on the case where the inflaton gets significantly accelerated or decelerated within less

2 Strictly speaking, if we determine the step height through Eq. (11), the maximum of ε slightly deviates from εm

due to the Hubble friction. In this paper, we do not care about this deviation because it hardly changes the final

power spectrum in the downward step case.
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than O(1) e-fold. In particular, in the downward step case, we can relate the step width φ2 − φ1

(or ld) to ∆Nstep as

∆Nstep '
ln(εm/εi)

η̄
(for downward step), (12)

where η̄ is the value of η during the time period in which φ traverses the step, which as we numer-

ically show, in the downward step case, is well approximated as constant. We may estimate the

value of η̄ for the downward step case by solving the equation of motion for φ in the neighborhood

of φ = φ1, where the field has a tachyonic mass m2
φ = V ′′(φ1) ' 3V0h/(φ2 − φ1)2. From this, we

can finally express η̄ as

η̄ = −6− 24hM2
Pl

(φ2 − φ1)2

−1 +

√
1− 8hM2

Pl

(φ2 − φ1)2

−1

= −6− 4(εi − εm)

εml2d

(
−1 +

√
1− 4(εi − εm)

3εml2d

)−1

. (13)

where we have left the detailed derivation for Appendix A.3

As an illustrative example, Fig. 1 shows V (φ), Eq. (4), for a fiducial choice of parameters that

exhibit a downward step (left figure) and an upward step (right figure) and are consistent with

CMB observations. The dynamics of the inflaton evolving in this potential may be understood

straightforwardly in terms of the kinetic and potential energy of the inflaton. For the downward

step case, the numerical evolution of ε and η, again for the example potential Fig. 1 (left), are shown

in the left figure of Fig. 2. This indicates that Eq. (13) is a good approximation to the enhancement

of η, and immediately after the step η ' −6, due to the excess kinetic energy (relative to the flatness

of the potential) following the downward step. On the other hand, for the upward step case, the

evolution is shown in the right figure of Fig. 2. The inflaton loses kinetic energy as it climbs up

the step, leading to a marked reduction in ε. After passing through the top of the potential, the

inflaton gets accelerated, which corresponds to the positive η period. The peak of η corresponds

to the value at φ = φ2. Note that, in the upward step case, the time at ε = εm is quite different

from the time at φ = φ2, unlike in the downward step case.

We numerically solve Eq. (1) for the evolution of perturbations during inflation in the potential

Eq. (4) and compute the power spectrum for the case of a downward step and an upward step. Fig-

ure 3 shows the power spectra in the potential with a downward step, given in Fig. 1. Incidentally,

this parameter example realizes the O(107) enhancement in the power spectrum, required for the

PBH scenarios [21, 72]. The amplitude of the peak of the power spectrum is controlled by εm/εf

(or h), while the peak scale is determined by εi (or φ1), which then determines the PBH mass.

Overlaid on the plot, in dashed black lines, are analytic approximations to the power spectrum,

which we derive in Sec. IV. The spectra for an upward step are shown in Fig. 4, where one can

again produce a significant enhancement of perturbations. We can see that, while the enhancement

3 Meanwhile, in the upward step case, η during the rolling up is not constant because the inflaton evolution during

that time depends on its initial velocity just before the step.
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FIG. 2. Evolution of ε and η in the potential with the downward (left) and the upward step (right),

shown in Fig. 1. The parameters are the same as in Fig. 1. The vertical brown solid and dotted lines

show ∆Nstep and N2 −N1, respectively. Note that we omit the line for N2 −N1 in the left figure because

N2 − N1 ' ∆Nstep in the downward step case. The approximate form of ∆Nstep, given by Eqs. (12) and

(13), predicts ∆Nstep ' 0.5 with η̄ ' 32, which is close to the real value, ∆Nstep ' 0.6, in the left figure.

is of O(εi/εm) in case the step transition occurs over a few e-folds, it can be much larger if the step

transition occurs within less than an e-fold. We note that these results are robust to a smoothing

of the potential, e.g., via convolution with a Gaussian, so as to make the step function infinitely

differentiable. This is demonstrated in Sec. V. On top of that, with this smoothed potential, we

also discuss in Sec. V the strong coupling between perturbations, which limits the application of

the Mukhanov-Sasaki equation.

In what follows, we will study in detail how the amplification of perturbations exhibited in

Figs. 3 and 4 arises, through toy models that may be solved analytically.

III. THE RISE OF THE INFLATON (UPWARD STEP)

We begin with the upward step scenario. In this case, the instantaneous deceleration of the

inflaton enhances the perturbations more efficiently than gradual deceleration. On the other hand,

unlike the downward step case, which we discuss in the next section, the upward step case requires

a finely-tuned step height to exhibit this enhancement. This is because almost all of the kinetic

energy of the inflaton before the step has to be lost by climbing the step. The main goal of this

section is to show the essence of the perturbation enhancement analytically with a simplified model.

To understand the enhancement of curvature perturbations, we start from the general solution

to the Mukhanov-Sasaki equation in a phase of constant η, given by,

Rk = C1G
(1)
ν (−kτ) + C2G

(2)
ν (−kτ), (14)

where ν = 3/2 + η/2 and C1 and C2 are constant, and G
(1)
ν and G

(2)
ν are defined with the Hankel

functions of the first (H
(1)
ν ) and the second kind (H

(2)
ν ) as

G(j)
ν (−kτ) ≡ (−kτ)νH(j)

ν (−kτ), (15)
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FIG. 3. The primordial power spectrum from the potential Eq. (4) with a downward step. The vertical

brown line is the scale corresponding to the horizon scale at φ = φ1. The solid line is the result for

the potential shown in the left panel of Fig 1. The dotted lines are the results for different ld with the

other parameters being the same as in Fig. 1. The transition e-folds become ∆Nstep ' 0.2 in ld = 0.03,

∆Nstep ' 0.6 in ld ' 0.1, ∆Nstep ' 2.1 in ld = 0.3, and ∆Nstep ' 3.9 in ld = 0.5. Overlaid in black lines are

analytic approximations, derived in Sec. IV, valid on large scales (black dashed), Eq. (39), and small scales

(black dot-dashed), Eq. (51).

k =
1

|⌧1|

<latexit sha1_base64="IblKpKBCBs8b6FysaKEWhnX81x8=">AAAB/XicdVDLSsNAFJ34rPUVHzs3g0VwFTLaal0IRTcuK9gHtCVMppN26OTBzESoafBX3LhQxK3/4c6/cZpGUNEDFw7n3Mu997gRZ1LZ9ocxN7+wuLRcWCmurq1vbJpb200ZxoLQBgl5KNoulpSzgDYUU5y2I0Gx73LackeXU791S4VkYXCjxhHt+XgQMI8RrLTkmLuj864nMElQmky6CscOmqSOWbKtio3OTmxoW3aGjFTRMYIoV0ogR90x37v9kMQ+DRThWMoOsiPVS7BQjHCaFruxpBEmIzygHU0D7FPZS7LrU3iglT70QqErUDBTv08k2Jdy7Lu608dqKH97U/EvrxMrr9pLWBDFigZktsiLOVQhnEYB+0xQovhYE0wE07dCMsQ6DKUDK+oQvj6F/5PmkYXKVuW6XKpd5HEUwB7YB4cAgVNQA1egDhqAgDvwAJ7As3FvPBovxuusdc7IZ3bADxhvn+u3lYw=</latexit>

0.01 10 104 107 101010-10
10-8
10-6
10-4
0.01

FIG. 4. The primordial power spectrum from the potential Eq. (4) with an upward step. The solid line is

the result for the potential shown in the right panel of Fig 1. The dotted lines are the results for different

lu with the other parameters being the same as in Fig. 1. The transition e-folds become ∆Nstep ' 0.3 in

lu = 0.1, ∆Nstep ' 0.9 in lu ' 0.3, ∆Nstep ' 2.5 in lu = 1, and ∆Nstep ' 5.0 in lu = 1.3.

where j ∈ (1, 2).

We here focus on the case where ε changes from εi to εf with constant η, whilst satisfying ε� 1

at all times. Specifically, we parameterize η as

η = ηc Θ(τ − τ1)Θ(τ2 − τ), (16)
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where ηc(< 0) is a constant. Then, ε can be expressed as

ε =


εi (τ < τ1)

εi

(
a(τ1)
a(τ)

)−ηc
= εi

(
τ
τ1

)−ηc
(τ1 ≤ τ ≤ τ2)

εf

(
= εi

(
τ2
τ1

)−ηc)
(τ2 < τ(< 0))

, (17)

where we have used the relation a ' −1/Hτ . Note that this toy model approximates the special

case where εm ' εf in the full upward step model of Sec. II. Specifically, this parameterization

does not take into account the acceleration phase with positive η after the step climbing. However

the perturbation enhancement originates from the rapid deceleration of the inflaton and we can

estimate the order of the enhancement from this situation with one period of transition.

Imposing the continuity of R and R′ at τ1 and τ2, we get

Rk =


D1G

(1)
3/2(−kτ) +D2G

(2)
3/2(−kτ) (τ < τ1)

E1G
(1)
νc (−kτ) + E2G

(2)
νc (−kτ) (τ1 ≤ τ ≤ τ2)

F1G
(1)
3/2(−kτ) + F2G

(2)
3/2(−kτ) (τ2 < τ)

, (18)

where νc is given by

νc =
3

2
+
ηc
2
. (19)

The coefficients D1 and D2 are determined by the Bunch-Davies initial conditions as4

D1 = −
√
π

2

H√
4k3εiMPl

, D2 = 0, (20)

while the other coefficients are determined by the continuity, and are given in full generality as,

Ej = D1

W [G
(1)
3/2(−kτ1), G

(pj)
νc (−kτ1)]

W [G
(j)
νc (−kτ1), G

(pj)
νc (−kτ1)]

, (21)

Fj =
W [E1G

(1)
νc (−kτ2) + E2G

(2)
νc (−kτ2), G

(pj)

3/2 (−kτ2)]

W [G
(j)
3/2(−kτ2), G

(pj)

3/2 (−kτ2)]
, (22)

where p1 = 2, p2 = 1, and W is the Wronskian, W [f, g] ≡ fg′ − gf ′. The power spectrum in the

late-time limit (−kτ � 1) is given by

PR =
k3

2π2
|Rk(|τ | � 1/k)|2

' k3

2π2

(
2

π

)
|F1 − F2|2, (23)

4 Note that the solution in τ < τ1 can be approximated as Rk ' H√
4k3εi

(i+ (−kτ))e−ikτ .
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where the normalization factor 2/π comes from the relation G
(1)
3/2(x→ 0) = −i

√
2/π and G

(2)
3/2(x→

0) = i
√

2/π.

In the limit of an instantaneous transition, Eq. (1) can be approximated as Eq. (2), and we

find, analogous to Eq. (3),

R′k(τ2) ' εi
εf
R′k(τ1). (24)

The change of R′ given by Eq. (24) is the origin of the power spectrum enhancement in the upward

step case, which can be understood in terms of the subsequent evolution of R: Although R does

not change at the instantaneous transition, it grows after the transition following the change of R′.
Note that the coefficients F1 and F2 are determined at τ2. This means that the particle production

completes at τ2 in our setup.5 In other words, the change of R after τ2 is not due to the particle

production. If the perturbations are strongly coupled in τ1 < τ < τ2, the particle production

cannot be described by the linearized Mukhanov-Sasaki equation and could possibly be shut off.

For simplicity, we assume the strong coupling does not occur in the rest of this section and return

to this issue in Sec. V. From Eq. (24) and the continuity of R at the transition, we get the solution

in the limit of |τ2 − τ1| → 0,

Rk(τ > τ2) = F1,limG
(1)
3/2(−kτ) + F2,limG

(2)
3/2(−kτ), (25)

where

F1,lim = −
√
πH√

8k3εiMPl

[
i(εf − εi) + (−kτ1)(εf + εi)

(−2kτ1)εf

]
, (26)

F2,lim = −
√
πH√

8k3εiMPl

(
εf − εi
εf

)(
i+ (−kτ1)

−2kτ1

)
e−2ikτ1 . (27)

Note τ1 = τ2 in this limit. Then, from Eq. (23), the power spectrum is given by

PR =
k3

2π2

(
2

π

)(
|F1,lim|2 − 2Re[F ∗1,limF2,lim] + |F2,lim|2

)
. (28)

For the perturbations on superhorizon scales at the transition (−kτ1 � 1), the power spectrum

becomes

PR '
H2

8π2εiM2
Pl

[
1 +

(
2

3
− 2εi

3εf

)
(−kτ1)2 +

(
−13

45
+

ε2i
9ε2f

+
8εi

45εf

)
(−kτ1)4

]
+O((−kτ1)6). (29)

In particular, the O((−kτ1)4) term describes the growth of the power spectrum in the upward

step case. It suffices to stop at this order given the matching conditions for the two solutions at

the transition (see Ref. [59] and an exceptional case in Ref. [62], not relevant here, where those

solutions allow a steeper k5(log k)2 growth).

5 Throughout this paper, we use the word “particle production” as the mixing of the positive and the negative

frequency modes. Strictly speaking, the particle picture of the enhanced perturbations can be applicable only

when the field evolves adiabatically [100]. In this sense, our usage of the “particle production” is colloquial and

refers to the change in the particle occupancy after the non-adiabatic transition.
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On the other hand, for the perturbations on subhorizon scales at the transition (−kτ1 � 1),

the power spectrum can be approximated as

PR '
H2

8π2εiM2
Pl

(
ε2i + ε2f

2ε2f
+
ε2i − ε2f

2ε2f
cos(−2kτ1)

)
. (30)

The physical origin of the oscillation of the power spectrum on the scales of −kτ1 � 1 can be

seen in Eq. (24). The curvature perturbation on −kτ1 � 1 oscillates before the transition and its

time derivative also does. Since the effect of the step transition scales R′ at the transition, which

determines particle production through the two amplitudes on the other side, the power spectrum

in k|τ1| � 1 exhibits an oscillatory feature.

The solution Eq. (23) to this toy model, i.e. the background specified by Eq. (16), is shown

in Fig. 5. From this one may appreciate that a large negative ηc leads to a large enhancement of

the perturbations, peaked around −kτ1 ' 3. The peak of the power spectra can be much larger

than the value in the slow-roll approximation with εf , given by H2/(8π2εfM
2
Pl). At the same time,

we can also see that there is an asymptotic value of the peak height for a large ηc. The black

dotted line shows that the dominant term ε2i /(9ε
2
f )(−kτ1)4 in the approximate form, Eq. (29), fits

the growth of the power spectrum well. Notice that the maximal enhancement is O(ε2i /ε
2
f ), which

is much larger than the O(εi/εf ), expected from the slow-roll approximation. On the very small

scales, the results in Fig. 5 asymptote to the value in the slow-roll approximation, H2/(8π2εfM
2
Pl),

except for ηc = −∞. This can be understood from the fact that the particle production occurs

only if the timescale of the step transition is much smaller than the timescale of the perturbation

oscillation, 1/k. This is why the case of ηc = −∞ does not asymptote to the slow-roll value in a

finite k.

Finally, the toy model in this section corresponds to the case of εm = εf in the model in Sec. II.

The main difference is that only the model in Sec. II has the inflaton acceleration phase after the

step climbing, which increases ε such that εm → εf (' εi). This acceleration phase decreases the

power spectrum before the perturbation exits the horizon, in proportion to 1/ε. As ∆Nstep → 0, ε

grows more quickly and leads to a larger value of ε at horizon exit of the peak mode. This is why the

peak of the power spectrum for lu = 0.1 is smaller than that for lu = 0.3 in Fig. 4. Because of this

acceleration phase before the horizon exit, the enhancement in the model in Sec. II (Fig. 4) is a bit

smaller than O(ε2i /ε
2
m) (still larger than O(εi/εm)) and the small-scale power spectrum approaches

the same value as the large-scale one. Since the effects of this acceleration phase depend on the

shape of the upward step, we do not go into details of this aspect in this paper. Still, we can

conclude that the origin of the enhancement larger than O(εi/εm) in Fig. 4 mainly comes from the

enhancement of R′ given by Eq. (24).

IV. THE FALL OF THE INFLATON (DOWNWARD STEP)

Now we consider a downward step. In this case, the inflaton gains the kinetic energy from the

downward step and its velocity becomes much larger than implied by the slow-roll approximation.

Because of this, the transition in ε is followed by a second period approximated as a USR period,
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FIG. 5. The power spectra with different ηc in our toy upward step model, where the evolution of η is

given by Eq. (16). The power spectra are normalized by the value in the limit of large scale, −kτ1 → 0.

Note that, in terms of the parameterization in Sec. II, this toy model has εm = εf , in contrast to the model

in Sec. II, where εf ' εi. In the case of the instantaneous transition limit (ηc = −∞), we use the simple

forms of F1,lim and F2,lim, given by Eqs. (26) and (27). We take εf/εi = 10−4 for all lines. For comparison,

we also plot the approximation form, ε2i /(9ε
2
f )(−kτ1)4, from Eq. (29) with a black dotted line.

with η = −6. Specifically, we can parametrize η as

η = ηcΘ(τ − τ1)Θ(τ2 − τ)− 6Θ(τ − τ2). (31)

The slow-roll parameter ε changes from εi to εm with η = ηc in τ1 < τ < τ2 and, after that,

continues decreases with η = −6. Similarly to the previous section, once εi/εm is fixed, τ2/τ1 and

τ/τ2 are given by

τ2/τ1 =(εi/εm)1/ηc , (32)

τ/τ2 =(εm/ε(τ))−1/6 (τ > τ2), (33)

where ε(τ) is the value at τ . Then, the solution of the curvature perturbation is given by,

R =


D1G

(1)
3/2(−kτ) (τ < τ1)

E1G
(1)
νc (−kτ) + E2G

(2)
νc (−kτ) (τ1 ≤ τ ≤ τ2)

H1G
(1)
−3/2(−kτ) +H2G

(2)
−3/2(−kτ) (τ2 ≤ τ)

. (34)

Note that we do not put the end of the USR period in this setup. This is because the USR phase

induced by the downward step ends adiabatically and the final amplitude of the superhorizon

curvature perturbation is expected to be that at ε(τ) = εf in the above setup.6 From the continuity

6 If we end the USR period with a step function in Eq. (31), there is an additional period of particle production

that further amplifies curvature perturbations, which is not the case for the true downward step scenario.
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FIG. 6. The evolution of the power spectra in the case with an instantaneous downward step and the

subsequent USR period. The power spectra are normalized by the value in the limit of large scale, −kτ1 → 0.

The concrete expression of the power spectrum is given by Eq. (38). We take εm/εi = 107 for all the lines.

Note that τ/τ1 = 0.068 corresponds to the time when ε = εi. The vertical lines are the horizon scales at

τ/τ1 = 1, 0.5 and 0.068 from left to right.

of R and R′, the coefficients, D1, E1 and E2 are given by Eqs. (20) and (21), and H1 and H2 are

given by

Hj =
W [E1G

(1)
νc (−kτ2) + E2G

(2)
νc (−kτ2), G

(pj)

−3/2(−kτ2)]

W [G
(j)
−3/2(−kτ2), G

(pj)

−3/2(−kτ2)]
, (35)

where we again define W [f, g] = fg′ − gf ′.
Similarly to the previous section, we here take the limit of ηc =∞ to understand the properties

of the enhancement. Then, H1 and H2 become

H1,lim =− H
√
π

4
√

2εik3MPl

3εm + (2εm + εi)(−kτ1)2 + i(εm + εi)(−kτ1)3

εm
, (36)

H2,lim =
H
√
π

4
√

2εik3MPl

e−2ikτ1 (1− i(−kτ1))(3εm − 3iεm(−kτ1) + (εi − εm)(−kτ1)2)

εm
, (37)

where note again τ2 = τ1 in this limit. The time-dependent power spectrum is given by

PR(k, τ) =
k3

2π2
|Rk(τ)|2

=
k3

2π2

∣∣∣H1,limG
(1)
−3/2(−kτ) +H2,limG

(2)
−3/2(−kτ)

∣∣∣2 . (38)

Figure 6 shows the power spectrum with different τ . From the figure, we can see that, while the

particle production completes at τ2, the curvature perturbations grow in time during the USR

phase. Also, we can see that the enhanced power spectrum oscillates with constant amplitude

between k = −1/τ1 and k = −1/τ , i.e. between the horizon scale at the transition and the

(smaller) horizon scale at a given later time.
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In the large-scale limit k � −1/τ1, the power spectrum can be approximated as

PR(k, τ) ' H2

8π2εiM2
Pl

[
1− 2c2(τ)(−kτ1)2 + c4(τ)(−kτ1)4

]
, (39)

where we have kept terms up to O((−kτ1)4) and

c2(τ) =
1

10

(
εm
ε(τ)

)−1/3

+
1

15

[
−10 +

(
εm
ε(τ)

)1/2
]

+
1

3

(
εi
εm

)[
−1 +

(
εm
ε(τ)

)1/2
]
,

' 1

15

(
εm
ε(τ)

)1/2

(40)

c4(τ) =
1

1575

{
7
εm
ε(τ)

(
1 + 5

εi
εm

)2

− 3
ε(τ)

εm

[(
εm
ε(τ)

)1/3
(
−9 + 140

(
εm
ε(τ)

)1/3
)

+70
εi
εm

(
εm
ε(τ)

)2/3
]

+

(
700− 84

(
εm
ε(τ)

)1/6

− 230

(
εm
ε(τ)

)1/2
)

−140
εi
εm

[
−5 + 3

(
εm
ε(τ)

)1/6

+

(
εm
ε(τ)

)1/2
]
− 175

(
εi
εm

)2
[
−1 + 2

(
εm
ε(τ)

)1/2
]}

' 1

225

εm
ε(τ)

' c2
2, (41)

where the final approximation assumes ε(τ)/εm � 1, which is appropriate well after the step

transition. Notice that the power spectrum becomes close to zero when c2(−kτ1)2 ' 1, around

which a near zero crossing (or rotation by π in the complex plane) of R occurs (see [60] for

a discussion of the highly suppressed out-of-phase residual). As in the upward step case, the

matching conditions for the two solutions at the transition determine that this quartic order in the

expansion suffices.

On the other hand, the perturbations which were inside the horizon at the transition become

the following expression after their horizon exit (see also [83]):

PR(k, τ) ' H2

8π2εiM2
Pl

εm
ε(τ)

1− cos(−2kτ1) +
(
εi
εm

)2
(1 + cos(−2kτ1))

2
(1/|τ1| � k � 1/|τ |)

' H2

8π2εiM2
Pl

εm
ε(τ)

1− cos(−2kτ1)

2
(1/|τ1| � k � 1/|τ |), (42)

where we have assumed εi/εm � 1 in the final line. From this expression, we may appreciate that

the enhancement of power spectrum is of O(εm/ε(τ)) and its oscillation frequency is |τ1|/π in k.

After ε adiabatically reaches εf and becomes constant, the final power spectrum for k � −1/τ1

after the horizon exit of each mode becomes

PR(k) ' H2

8π2εiM2
Pl

εm
εf

1− cos(−2kτ1)

2
. (43)

Note that this expression is valid even for the perturbations on subhorizon scales at ε = εf . The

result in the case of τ/τ1 = 0.068 in Fig. 6 shows that, while the superhorizon power spectrum

around 3 . −kτ1 . 10 is almost constant in k up to the oscillation, the subhorizon power spectrum
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grows in k. However, this subhorizon growth in k is just due to the subhorizon evolution of

the perturbations, which is not related to the enhancement mechanism itself. The subhorizon

perturbations decrease until their horizon exit and freeze after then, which results in the final power

spectrum given by Eq. (43) even for such perturbations. Here, we note that the large perturbation

enhancement in a downward step with εi ' εf requires a very small εi(< 10−7) because εm cannot

be much larger than unity. This restricts the form of the base potential to ones where the power

spectrum tilt on the CMB scales is mainly determined by η, though this restriction is easily avoided

if we allow εf � εi.

While the result Eq. (43) applies in the limit of ηc → ∞, the perturbations in the case of a

finite ηc do not get enhanced by the downward step transition on very small scales since the modes

oscillate during the transition. Because of this, the power spectrum on small scales effectively gets

damped with a finite ηc. We may understand this damping of high-k modes analytically, as follows.

The perturbation enhancement can be interpreted as the tachyonic instability due to the negative

mass of the inflaton in the downward step. In the conformal Newtonian gauge, the equation of

motion for the inflaton fluctuation can be expressed as [101]

δφ′′k + 2Hδφ′k + a2∂
2V

∂φ2
δφk + k2δφk = −2a2Φk

∂V

∂φ
+ 4φ′Φ′k, (44)

where we take the following notation of the metric perturbations:

ds2 = −a2(1 + 2Φ)dτ2 + a2(1− 2Φ)δijdx
idxj . (45)

Here, we neglect the contributions from the metric perturbations because they are suppressed by

ε during the inflation era [102]. Then, we can rewrite Eq. (44) as

δφ′′k + 2Hδφ′k + a2m2δφk + k2δφk ' 0, (46)

where m2 is the effective mass of the inflaton, given by m2 = ∂2V/∂φ2. Since the timescale of the

downward step transition is shorter than the Hubble timescale at that time, we also neglect the

Hubble friction term and just focus on the exponential growth due to the negative mass of the

inflaton during the step transition. Then, we can approximate that the inflaton perturbation grows

δφk ∝ e
∫

dτ
√
−m2a2−k2

. Here, we also assume constant m2 during the downward step transition,

which corresponds to the constant η as we will see below. Then, we define the damping factor for

the power spectrum as

D(k) ≡ eλeff(k)(τ2−τ1)

(
εm
εi

)−1/2

, (47)

where we have normalized D(k) as D(k) → 1 in η → ∞, as we will see below, and λeff is the

effective frequency of the inflaton fluctuation during the downward step transition, defined as

λeff(k) ≡
√
−k2 −m2a2. (48)

The mass m may be related to the slow-roll parameter η via the background equations of motion

(see Appendix A for details), as

m2 ' −H
2

4

(
6η + η2

)
. (49)
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With this relation, we can rewrite Eq. (48) as

λeff(k) '
√
−k2 +

1

4τ2
1

(6η + η2), (50)

where we have neglected the evolution of a during the downward step transition. We may now

rewrite the damping factor as

D(k, τ1, η) ' exp

[√
−k2 +

1

4τ2
1

(6η + η2)(−τ1)
1

η
(− log(εi/εm))

](
εm
εi

)−1/2

=

(
εm
εi

)√
− (−kτ1)2

η2 + 3
2η

+ 1
4
− 1

2

, (51)

where we have used the relation τ2− τ1 ' τ1 log(εi/εm)/η, valid in the limit of large η. We can see

|D(k, τ1, η)|2 → 1 for η → ∞. On the other hand, in the small-scale limit (k � |η/τ1|), we have

|D(k, τ1, η)|2 → εi/εm. Multiplying the approximate form in Eq. (43) by |D(k, τ1, η)|2, we can take

into account the damping of the power spectrum. Indeed, comparing to Fig. 3, we may appreciate

that the damping factor fits the damping of the power spectrum very well.

V. BOUNDS ON NON-ADIABATIC EVOLUTION

In the previous sections, we have discussed the perturbation enhancement with the linear per-

turbation theory. However, once the perturbations are strongly coupled, the perturbation theory

can no longer give reliable results. In particular, the sharp feature of the potential generally causes

stronger coupling between perturbations. In this sense, we still need to be careful about whether or

not the O(107) enhancement can be really realized by a step-like feature. The goal of this section

is to show that our fiducial potential can avoid the strong coupling problem with an appropriate

modification and is a successful example for the O(107) enhancement.

A. Smoothing Out of the Step Transition

So far, we have seen that the large enhancement can be realized by the concrete potential,

Eqs. (4)-(10), which includes jumps in V ′′ at φ1 and φ2. However, in realistic situations, the

second and higher derivatives of the potential are expected to transit smoothly there. Moreover

jumps in V ′′ would automatically lead to strong coupling problems as we discuss in the following

subsections. In this subsection, we first show that with a smoothing out of the higher derivatives

of the potential at φ1 and φ2 the enhanced power spectrum remains largely unchanged as long as

the transition occurs within much less than one e-fold.

Specifically we consider a smoothed version of the original potential which is infinitely differen-

tiable:

V (φ) =V0

(
1− βφ2/M2

Pl

1 + φ/φCMB

)
G(φ;φ1, φ2, h,∆φ1,∆φ2,∆φm) + Vend(φ;φend), (52)
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where G is defined by

G(φ;φ1, φ2, h,∆φ1,∆φ2,∆φm) ≡ 1− hU
(
φ− φ1

φ2 − φ1
;σ

(
φ− φ1

φ2 − φ1
;

∆φ1

φ2 − φ1
,

∆φ2

φ2 − φ1
,

∆φm
φ2 − φ1

))
.

(53)

The function U is a smoothed version of the step in Eq. (10) defined by

U(x;σ) ≡
∫ ∞
−∞

dy
1√
2πσ

e−
(x−y)2

2σ2 [S(y)Θ(y)Θ(1− y) + Θ(y − 1)] , (54)

and the smoothing width σ(x;σ1, σ2, σm) is defined by

σ(x;σ1, σ2, σm) ≡ σ1 +
1

2
(σ2 − σ1)

(
1 + tanh

(
x− 1/2

σm

))
. (55)

Figure 7 shows the function U . The parameters ∆φ1 and ∆φ2 correspond to the field widths for

the smoothing out of the transition at φ1 and φ2, respectively. The field smoothing width is then

itself smoothly interpolated between the two values by a step-like function with width ∆φm. This

ensures that all derivatives of U are finite and continuous. Conversely, if we take the limit of

∆φ1 → 0 and ∆φ2 → 0, we reproduce the original potential, given by Eqs. (4)-(10).

Figures 8 and 9 show the power spectra for the downward and the upward step cases, respec-

tively. In the downward step case, the inflaton velocities at φ1 and φ2 can be approximated as√
2εiMPl and

√
2εmMPl, respectively. On the other hand, in the upward step case, both the veloci-

ties can be approximated as
√

2εiMPl because of the acceleration phase after the potential climbing.

For this reason, we focus on the downward step case where ∆φ1 �
√

2εiMPl and ∆φ2 �
√

2εmMPl,

and the upward step case where ∆φ1,∆φ2 �
√

2εiMPl. In Figs. 8 and 9, we can see that, if the

transition in V ′′ still occurs within much less than one e-fold, the smoothing out does not change

the power spectrum so much.

At the same time, the smoothing out with a too small field width could cause the strong coupling

of perturbations, which invalidates linear perturbation theory. In the following sections, we will

check whether the strong coupling problem occurs in our setup.

B. Strong Coupling

We now consider the limits of perturbation theory. We begin with the simple requirement that

linearized perturbation theory remains a good approximation to the full dynamics. In terms of the

inflaton, this can be phrased as the requirement that perturbation theory in inflaton fluctuations,

φ(x, t) = φ(t) + δφ(x, t), is well behaved, such that the equation of motion for δφ(x, t) is well

approximated by the perturbative expansion of the Klein-Gordon equation where potential V (φ)

and its derivatives are evaluated at the background field value φ(t). Specifically, this requires δφ

to obey

δφ′′ + 2Hδφ′ −∇2δφ+ a2∂
2V

∂φ2
δφ = −a2

∑
n=3

1

(n− 1)!
V (n)(δφ)n−1, (56)
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FIG. 7. Comparison between the smoothed function U(x;σ1, σ2) and the function with jumps in V ′′. We

take σ1 = 0.01 and σ2 = σm = 0.1 for U(x, σ(x)).
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FIG. 8. The power spectra for the downward step case with different smoothing scales ∆φ1. The black

dotted line shows the spectrum before the smooth out. We take ∆φ2 = ∆φm = 0.01
√

2εmMPl except for

the black dotted line. The other parameters are the same as in the left panel of Fig. 1.

where V (n) ≡ ∂nV (φ)/∂φn and we have neglected the metric perturbations again. Hence qualita-

tively, we require a sufficiently smooth potential for the right hand side to be negligible. If it is

negligible then we may use the (linearized) Mukhanov-Sasaki equation, Eq. (1) for the curvature

perturbation.

We can make the requirements for perturbativity of the curvature perturbation more precise by

working in the effective field theory (EFT) of inflation [103]. In the EFT of inflation, the curvature

perturbations are related to the Goldstone boson (π) due to the time translation symmetry breaking

through R = −Hπ, which is valid at linear order in perturbations. Assuming a canonical inflation
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FIG. 9. The power spectra for the upward step case with different smoothing scales ∆φ2. The black dotted

line shows the spectrum before the smoothing out. We take ∆φ1 = 0.01
√

2εiMPl and ∆φm = ∆φ2 for all

lines. The other parameters are the same as in the right panel of Fig. 1.

model and neglecting the subleading terms in ε, we get the action for π in the EFT of inflation [104]:

Sπ '
∫
d4x
√−g(−M2

Pl)

[
3H2(t+ π) + Ḣ(t+ π) + Ḣ(t+ π)

(
(1 + π̇)2 − (∂iπ)2

a2

)]
, (57)

where the dots here mean the derivative with respect to the physical time, t. Note that all features

of V (φ) are completely subsumed into H(t + π). After performing the Taylor expansion and

integrating the Lagrangian by parts, we obtain the n-th order action in π:

Sn '
∫

d4xa3M2
Pl

[
− 1

(n− 2)!
H(n−1)πn−2

(
π̇2 − (∂iπ)2

a2

)
+

3

n!
(2HH(n) − ∂nt (H2))πn

]
, (58)

where H(n) = ∂nt H and the Hubble parameter is evaluated on the background, i.e. at t (not t+π).

Therefore in the EFT of inflation, perturbativity is related to the smoothness of H(t) which is

equivalent to the smoothness of V (φ). To see how V (n) is incorporated in H(n+1), we here write

down explicit expressions for the first few derivatives,

H(2) = −6HḢ +
1

M2
Pl

φ̇V (1), (59)

H(3) = −6(Ḣ2 +HH(2)) +
1

M2
Pl

(
−3Hφ̇V (1) −

(
V (1)

)2
+ φ̇2V (2)

)
, (60)

H(4) = −6(3ḢH(2) +HH(3)) +
1

M2
Pl

(
−3Ḣφ̇V (1) − 3Hφ̈V (1) − 9Hφ̇2V (2) − 4V (1)V (2)φ̇+ φ̇3V (3)

)
.

(61)

Note that V (n) is incorporated in H(n+1) in general.

The terms in Eq. (58) that are explicitly proportional to πn are suppressed by powers of ε

relative to the n-th order terms arising from the series expansion of H(t + π). The n-th order

Lagrangian for π can be approximated as,

Ln(π) ' − M2
Pl

(n− 2)!
H(n−1)πn−2

(
π̇2 − (∂iπ)2

a2

)
. (62)
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As a simple diagnostic for strong coupling of π (and by extension R), we consider the relative size

of Ln(π) and L2(π). We impose the following condition for weak (non-strong) couplings:∣∣∣∣LnL2

∣∣∣∣ < 1 (for all n(> 2)) (63)

⇒
∣∣∣∣∣ H(n−1)

(n− 2)!Hn−2Ḣ
Rn−2(τ)

∣∣∣∣∣ < 1 (for all n(> 2)). (64)

We note that this condition is a naive estimation, and might be modified depending on the precise

definition of strong coupling. One alternative way to proceed would be to make use of standard

In-Out formalism tools, such as the optical theorem (see, e.g., Appendix E in Ref. [105]), or its

recent In-In formulation [106]. Our situation differs from the analysis performed in those works

in that the field evolves non-adiabatically through the region of interest, and the mode functions

differ substantially from the naive expectation in de Sitter space, meaning that any analysis must

ultimately be performed numerically. In light of this, we will use the simple diagnostic above, and

perform numerical analysis.

The typical amplitude of R(n−2) can be approximated as its standard deviation, given by〈
R2(n−2)

〉1/2
. Assuming the Gaussian power spectrum, we can rewrite this as〈

R2(n−2)
〉1/2

=
√

(2n− 5)!!
〈
R2
〉(n−2)/2

'
√

(2n− 5)!!P(n−2)/2
R (k∗, τ), (65)

where n!! is the double factorial (n!! = n(n − 2)(n − 4) · · · 1). The k∗ depends on the situation.

Before the step transition, k∗ is the smallest scale that we want to calculate with the Mukhanov-

Sasaki equations because the power spectrum on subhorizon scales is a monotonically increasing

function in k at that time. We denote this smallest scale (or the largest value of k) by kmax. Since

we are interested in the power spectrum enhancement due to the step transition, this kmax should

be larger than the largest k on which the particle production occurs due to the non-adiabatic

evolution. On the other hand, after the step transition, the situation becomes different. The power

spectrum on subhorizon scales is no longer a monotonically increasing function in k. Instead, it

has a peak at kpeak, which is associated with the particle production. In this case, the k∗ of interest

should be kpeak when PR(kpeak) > PR(kmax).

For convenience, we define the following quantities:

An(k, τ) ≡ H(n−1)

(n− 2)!Hn−2Ḣ

√
(2n− 5)!!P(n−2)/2

R (k, τ). (66)

With this, we can rewrite the non-strong coupling condition, Eq. (63), as |An(kpeak, τ)|, |An(kmax, τ)| <
1 for all n > 2. Although we determine kpeak as the peak scale of the power spectrum on super-

horizon scales at late time, this can be different from the real peak scale especially in the early

stage of the step transition, where the curvature perturbations are not significantly enhanced yet.

At the same time, due to the insufficient enhancement, we can also expect that the PR(kpeak)

is not so different from the power spectrum at the real peak scale at that time. Because of
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this, our characterization of kpeak suffices in the following. From Figs. 3 and 4, we can see that

kmax = 10kpeak is larger than the largest k of the enhancement in the case of ld = 0.1 (downward

step) and lu = 0.3 (upward step). In practice therefore, we check the strong coupling condition for

kpeak and kmax = 10kpeak.

Figures 10 and 11 show the evolution of |An(kpeak)| and |An(10kpeak)| for 3 ≤ n ≤ 6. Figure 10

shows the results in the downward step case, where the left figure is for An(kpeak) and the right one

for An(10kpeak). For the result of An(kpeak), the peak around N −N1 ∼ 0 is due to relatively large

values of H(n) associated with the rolling down of the inflaton but only achieves an amplitude

of |An| . 10−2. After the rolling down, the universe enters the USR period, during which the

curvature perturbations grow. The origin of the other peak around N − N1 ∼ 3 comes from

this growth of the curvature perturbations when the mode of kpeak is superhorizon. After the

USR period, the inflaton gets in the slow-roll attractor and H(n) becomes small, which decreases

|An(kpeak)| in time. The peak value of |A3| in the USR phase is ∼ 0.2 and therefore we can expect

that the linear perturbation theory describes the step transition very well and can marginally

describe the subsequent USR evolution of the perturbations. Furthermore the k ∼ 10kpeak mode

is even less strongly coupled. Since PR(kpeak) > PR(10kpeak) is satisfied once the curvature

perturbations get enhanced, |An(10kpeak)| is larger than |An(kpeak)| only before the enhancement.

From these figures, we can see that, although |An(10kpeak)| can be larger than |An(kpeak)| before

the perturbation enhancement, the maximum value of |An(10kpeak)| (around N−N1 ∼ 0) is smaller

than that of |An(kpeak)| (around N −N1 ∼ 3).

Here, we make some remarks. First, we should keep in mind that, even if |An| becomes closer to

unity during the USR period with other parameters, the strong coupling of perturbations does not

prevent the non-adiabatic particle production because it completes before the USR period, which

amplifies the curvature perturbations mainly on superhorizon scales where gravitational interac-

tions rather than scalar field interactions dominate. In that case, although the precise calculation

of the power spectrum requires more careful methods, such as the stochastic formalism [107–112]

and the Hartree factorization [113], the perturbation enhancement definitely occurs because the

particle production itself can be described with the linear perturbation theory. Second, strictly

speaking, we need to check the infinite number of the higher order contributions, An even for

n > 6, but, in our model, the smoothing out is done with the tanh function (see Sec. V A) and

therefore we can expect the similar behavior even for n > 6. We will come back to this issue later

in this section. Third, as mentioned above, the strong coupling condition, given by Eq. (64), could

have some uncertainties at the quantitative level. However, given |An| . O(0.01) at the particle

production, we can expect the conclusion that the particle production occurs would not change

even if the strong coupling scales are defined more precisely.

Figure 11 shows the results in the upward step case. Contrary to the downward step case, the

largest value of |An(kpeak)| near N −N1 ∼ 1 is due to the step transition itself, namely from the

decrease of Ḣ (or ε). The dip around N −N1 ∼ 1 comes from the sign change of η. On the other

hand, similar to the downward step case, the maximum |An(10kpeak)| is comparable to or smaller

than |An(kpeak)|. Since the peak of all the |An| are slightly smaller than unity, the strong coupling

of the perturbations is marginally avoided.



24

H
or

iz
on

 e
xi

t

An = 1

<latexit sha1_base64="0VG6OVPCKxNyngw3pwtPUe0XoLE=">AAAB7XicbVBNSwMxEJ2tX7V+rXr0EiyCp7IrFb0IVS8eK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL0w408bzvp3Cyura+kZxs7S1vbO75+4fNLVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC0e3Ubz1RpZkUD2ac0CDGA8EiRrCxUvO6J9CV33PLXsWbAS0TPydlyFHvuV/dviRpTIUhHGvd8b3EBBlWhhFOJ6VuqmmCyQgPaMdSgWOqg2x27QSdWKWPIqlsCYNm6u+JDMdaj+PQdsbYDPWiNxX/8zqpiS6DjIkkNVSQ+aIo5chINH0d9ZmixPCxJZgoZm9FZIgVJsYGVLIh+IsvL5PmWcWvVs7vq+XaTR5HEY7gGE7BhwuowR3UoQEEHuEZXuHNkc6L8+58zFsLTj5zCH/gfP4AYJ6OWg==</latexit>

�Nstep

<latexit sha1_base64="1NBNXQhz0sA2r0c2m+9vSTR2uZI=">AAAB/XicbVDJSgNBEO1xjXGLy81LYxA8hRmJ6DGoB08SwSyQGUJPpyZp0rPQXSPGIfgrXjwo4tX/8Obf2FkOmvig4PFeFVX1/EQKjbb9bS0sLi2vrObW8usbm1vbhZ3duo5TxaHGYxmrps80SBFBDQVKaCYKWOhLaPj9y5HfuAelRRzd4SABL2TdSASCMzRSu7DvXoFERm/aLsIDZhohGbYLRbtkj0HniTMlRTJFtV34cjsxT0OIkEumdcuxE/QyplBwCcO8m2pIGO+zLrQMjVgI2svG1w/pkVE6NIiVqQjpWP09kbFQ60Hom86QYU/PeiPxP6+VYnDuZSJKUoSITxYFqaQY01EUtCMUcJQDQxhXwtxKeY8pxtEEljchOLMvz5P6Sckpl05vy8XKxTSOHDkgh+SYOOSMVMg1qZIa4eSRPJNX8mY9WS/Wu/UxaV2wpjN75A+szx+sKZVj</latexit>

-2 0 2 4 610-19
10-14
10-9
10-4

10

-2 0 2 4 610-19
10-14
10-9
10-4

10

H
or

iz
on

 e
xi

t

An = 1

<latexit sha1_base64="0VG6OVPCKxNyngw3pwtPUe0XoLE=">AAAB7XicbVBNSwMxEJ2tX7V+rXr0EiyCp7IrFb0IVS8eK9gPaJeSTbNtbDZZkqxQlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL0w408bzvp3Cyura+kZxs7S1vbO75+4fNLVMFaENIrlU7RBrypmgDcMMp+1EURyHnLbC0e3Ubz1RpZkUD2ac0CDGA8EiRrCxUvO6J9CV33PLXsWbAS0TPydlyFHvuV/dviRpTIUhHGvd8b3EBBlWhhFOJ6VuqmmCyQgPaMdSgWOqg2x27QSdWKWPIqlsCYNm6u+JDMdaj+PQdsbYDPWiNxX/8zqpiS6DjIkkNVSQ+aIo5chINH0d9ZmixPCxJZgoZm9FZIgVJsYGVLIh+IsvL5PmWcWvVs7vq+XaTR5HEY7gGE7BhwuowR3UoQEEHuEZXuHNkc6L8+58zFsLTj5zCH/gfP4AYJ6OWg==</latexit>

�Nstep

<latexit sha1_base64="1NBNXQhz0sA2r0c2m+9vSTR2uZI=">AAAB/XicbVDJSgNBEO1xjXGLy81LYxA8hRmJ6DGoB08SwSyQGUJPpyZp0rPQXSPGIfgrXjwo4tX/8Obf2FkOmvig4PFeFVX1/EQKjbb9bS0sLi2vrObW8usbm1vbhZ3duo5TxaHGYxmrps80SBFBDQVKaCYKWOhLaPj9y5HfuAelRRzd4SABL2TdSASCMzRSu7DvXoFERm/aLsIDZhohGbYLRbtkj0HniTMlRTJFtV34cjsxT0OIkEumdcuxE/QyplBwCcO8m2pIGO+zLrQMjVgI2svG1w/pkVE6NIiVqQjpWP09kbFQ60Hom86QYU/PeiPxP6+VYnDuZSJKUoSITxYFqaQY01EUtCMUcJQDQxhXwtxKeY8pxtEEljchOLMvz5P6Sckpl05vy8XKxTSOHDkgh+SYOOSMVMg1qZIa4eSRPJNX8mY9WS/Wu/UxaV2wpjN75A+szx+sKZVj</latexit>

FIG. 10. The evolution of the strong coupling parameter An(kpeak) (left) and An(10kpeak) (right) in the

downward step case. We take the same parameters as the blue line in Fig. 8 (∆φ1 = 0.1
√

2εiMPl,∆φ2 =

∆φm = 0.01
√

2εmMPl). The horizontal black dashed line is An = 1, the nominal threshold of strong

coupling. The vertical dotted lines are at ∆Nstep(' N2 −N1). The vertical dashed lines are at the e-folds

at the horizon exit of the scales of kpeak or 10kpeak. Notice |An| � 1 inside the horizon and |An| < 1 always

for both modes.

However, we should keep in mind that our strong coupling bound is a rough estimate and that it

is only marginally satisfied at the main particle production event itself for the fiducial upward step,

unlike that of the downward step. Therefore there is still the possibility that strong coupling shuts

down particle production even in our fiducial case for the upward step. To properly calculate the

perturbations that are strongly coupled, we need to perform the lattice simulation (see Ref. [114] for

the lattice simulation during the inflation). Since the main cause of the large |An| is the decrease of

the inflaton velocity, we can realize a weaker coupling (a smaller |An|) with a larger εm/εi, though

the perturbation enhancement is correspondingly reduced.

Smoothing the upward step also does not qualitatively change the strong coupling bound without

correspondingly reducing the power spectrum. Figure 12 shows |A3| with different ∆φ2, which we

showed in Fig. 9 to have little impact on the power spectrum. From this figure, we can see

that a larger smoothing width correspondingly only slightly decreases |A3| near N − N1 ∼ 1.

This is because the large |A3| (and other |An|) there mainly comes from the decrease of the

inflaton velocity and the following perturbation growth, which are not directly related to the

smoothing at φ2. In other words, the largest value of |An| is mainly determined by the sharpness

of the step, characterized by φ2 − φ1 and h. There are three periods for the particle production

around N ' N1, N ' N1 + ∆Nstep, and N ' N2, where η changes rapidly and the mixing of the

positive and the negative modes occurs (see Fig. 2). The main contribution to the perturbation

enhancement comes from the particle production around N1 + ∆Nstep, which can be understood

with the discussion in Sec. III. On the other hand, the particle production at N2 does not change

the peak height of the power spectrum because the peak scale exits the horizon before N = N2.

This is why Fig. 9 shows that the peak height of the power spectrum does not depend on ∆φ2.

The effect of the particle production at N2 can only be seen in the oscillatory feature around the

cutoff scale of the perturbation enhancement, shown in Fig. 9.

Here, we discuss the higher order contribution in π using An with n > 3, which one might
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FIG. 11. The evolution of An(kpeak) (left) and An(10kpeak) (right) in the upward step case. The other

parameters are the same as the orange line in Fig. 9 (∆φ1 = 0.01
√

2εiMPl,∆φ2 = ∆φm = 0.1
√

2εiMPl).
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FIG. 12. The evolution of A3(kpeak) in the upward step case with different ∆φ2. We take ∆φm = ∆φ2 for

all plots. For the other parameters, we take the same parameters as in Fig. 11 (or the orange line in Fig. 9).

The vertical dotted lines represent N2 −N1 for ∆φ2/(
√

2εiMPl) = 0.01, 0.1 and 0.3 from left to right.

think may be larger than |A3| especially at φ1 and φ2 because the An depends on the higher

derivatives of the potential. This scaling is regulated by the smoothing field width (∆φ1, ∆φ2).

From Eqs. (59)-(61), we can see that H(n) includes the term φ̇n−1V (n−1)/M2
Pl. Since we perform

the smoothing out with a steplike function where the smoothing scale transitions from ∆φ1 to ∆φ2

in Sec. V A, we can approximate the order of V (n) as V (n)(φ1,2) ' Vb(φ1,2) ∂nG(φ)/∂φn|φ=φ1,2 '
O(hVb/((φ2 − φ1)2∆φn−2

1,2 )).

From this, we can get a rough necessary condition for the convergence of

An = O
(
H(n−1)

Hn−2Ḣ
P(n−2)/2
R

)
(67)

in the limit of n→∞ as

An+1

An
= O

(
H(n)

HH(n−1)
P1/2
R

)
< 1



26

⇒ ∆φ1,2 >
φ̇1,2

H
P1/2
R

⇒ ∆φ1,2 >
√

2ε(φ1,2)MPlP1/2
R , (68)

where we have neglected the prefactor dependent on n for simplicity. If this condition is not

satisfied, the perturbation could be strongly coupled at the higher order in π. In the following,

let us focus on whether the peak-scale perturbations are strongly coupled at φ1 or φ2. In the

downward step case, the curvature perturbations do not grow before φ = φ2 and the peak scale

is smaller than the horizon scales in τ1 < τ < τ2 by a factor O(1). From this, we can roughly

estimate PR(kpeak)1/2 ∼ O(10−4) before φ = φ2. Then, we can derive the rough condition for the

step width for our downward step case:

∆φ1,2 > O(10−4)
√

2ε(φ1,2)MPl (for downward step). (69)

This condition is satisfied in our fiducial examples for the downward step case. On the other hand,

for the upward step case, the situation is a bit complicated because the curvature perturbations

grow by φ = φ2. Then, we obtain

∆φ1 > O(10−4)
√

2ε(φ1)MPl

∆φ2 > P1/2
R (kpeak)

√
2ε(φ2)MPl

(for upward step). (70)

At least in Fig. 11, the peak scale kpeak is (almost) on superhorizon at φ = φ2. Because of this,

we can substitute P1/2
R (kpeak) ' 10−1 from Fig. 4. Also, from Fig. 2, we can see ε(φ2) is between

εi and εm. Then, we finally find that our fiducial case in Fig. 11 marginally satisfies the above

condition.

Finally, we should keep in mind that the above results depend on the shape of the potential

step. As another example, we take a step form of tanh(x) and discuss the strong coupling issues

in Appendix B. Remarkably, in the downward step with the tanh step, the perturbations are more

strongly coupled due to a large η. This is mainly because the tanh step case has only one field-width

parameter for the smoothness of all potential derivatives at all field values during the transition

and the full (O(εm/εi)) enhancement requires the field width to be much less than
√

2εiMPl. This

is the primary reason we have taken a more flexible step transition where the various critical field

regions carry their own smoothness scale. See the Appendix for detail.

C. Backreaction

Distinct but complementary to constraints from perturbativity of the action is the backreaction

of the enhanced perturbations on the background evolution. As a simple consistency check, we

may impose that the energy density of the enhanced perturbations, which ostensibly is transferred

from the kinetic energy of the homogeneous inflaton field, is less than the kinetic energy of the

inflaton.
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The total energy density in the enhanced perturbations, i.e. from particle production, is given

by [81]

ρp '
1

2

〈
˙δφ

2
+

(∂iδφ)2

a2

〉
− ρvac

=

∫
d ln k

[
1

2

(
Pδ̇φ(k) +

k2

a2
Pδφ(k)

)
− ρ̃vac(k)

]
' ρ̃p(kpeak)− ρ̃vac(kpeak), (71)

where ρ̃p ≡ 1
2(Pδ̇φ + k2/a2Pδφ), kpeak is the peak scale of ρ̃p, and the ρvac is the contribution from

the vacuum fluctuations, whose power spectrum is given by ρ̃vac ' H4(kτ)4/(2π)2. Meanwhile, the

kinetic energy of the inflaton is given by

ρkin ≡
1

2
φ̇2 = εH2M2

Pl. (72)

To avoid the backreaction to the background evolution, the energy density of the enhanced per-

turbation must be smaller than the kinetic energy of inflaton, ρp < ρkin [81].

Figure 13 shows the evolution of ρp/ρkin in the case of the upward step and the downward

step case. In the calculation, we take the flat gauge, in which R = δφ/(
√

2εMPl). The no plot

for the upward step case in N − N1 . 0.4 implies that there is no peak of ρ̃p in k then. That

is, the perturbation enhancement has not occurred yet. The peaks around N − N1 ∼ 1 for the

upward step case roughly correspond to the minimum of the inflaton kinetic energy. On the other

hand, the peak around N − N1 ∼ 3 for the downward step case corresponds to the end of the

USR period, that is, the end of the growth of the curvature perturbations. In Fig. 13, all of the

lines are below unity, which indicates that the backreaction of the enhanced perturbation on the

background evolution is small on average in our fiducial parameter sets. On the other hand, as we

shall see next, since for the upward step the kinetic energy in the background is so small at the

top of the step, there can be fluctuating regions that fail to climb the step.

VI. TRAPPING THE INFLATON IN AN UPWARD STEP: PBH’S AS BABY

UNIVERSES

To complete this work we consider a phenomenon that is unique to an upward step: the possi-

bility that the inflaton may be unable to climb the step, and instead become trapped and unable to

roll down the potential. In particular, while in the previous sections we have discussed the inflaton

dynamics neglecting the backreaction of the quantum fluctuations, the backreaction can actually

cause the interesting phenomenon. If the inflaton decelerates due to the quantum backreaction just

before the step, the inflaton could fail to climb the potential and be trapped at the local minimum,

even in a potential that is fine-tuned to allow the classical inflaton (without the backreaction) to

successfully climb the step. Quantum backreaction opens the possibility that a fraction of the

universe might fail to climb the step, while the rest of the universe evolves in accordance with

classical intuition. In this case, observers in the post-inflationary universe see the trapped regions

as PBHs [91, 92].
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FIG. 13. The time dependence of the energy density of the enhanced perturbations normalized by the

kinetic energy of the inflaton at each time. The parameters are the same as in Fig. 10 for the downward

step case and Fig. 11 for the upward step case.

According to the detailed analysis based on the Kramers-Moyal equation in Ref. [108], the

distribution of the quantum-backreaction-induced fluctuations of the normalized inflaton velocity

asymptotes to a Gaussian distribution with variance given by7

〈
(∆Π)2

〉
=

3H2

8π2
, (73)

where Π is defined as

Π ≡ dφ

dN
' φ̇

H
. (74)

Since the Hubble parameter is almost constant, we can approximate ∆Π ' ∆φ̇/H. Then, we can

regard the distribution of the inflaton velocity fluctuations as the Gaussian distribution with the

variance given by 〈
(∆φ̇)2

〉
=

3H4

8π2
. (75)

From this result, we can also see that the variance of the kinetic energy of the inflaton is given by

〈
(∆K)2

〉
≡
〈(

1

2

(
˙̄φ+ ∆φ̇

)2
− 1

2
˙̄φ2

)2
〉

' ˙̄φ2
〈

(∆φ̇)2
〉

=
3H4

4π2
K̄, (76)

7 The variance asymptotes to this value after the universe experiences the inflation era for large e-folds (N � 1) [108].

In this paper, to discuss the connection to the PBH scenarios, we mainly focus on the case where the universe

experiences the inflation era for N � 1 before the transition and therefore we can safely use the asymptotic form

of the distribution.
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where ˙̄φ indicates the background value, which does not include the quantum backreaction, and

the background kinetic energy is defined as K̄ ≡ 1
2

˙̄φ2(= εiH
2M2

Pl).

Hereafter, for simplicity, we consider the case where the transition from εi to εm occurs rapidly

enough that we can neglect the effect of the Hubble friction while the inflaton climbs the upward

step. In this case, if we neglect the quantum backreaction, the kinetic energy becomes εmH
2M2

Pl

soon after the transition. In other words, the inflaton just before the step has an excess of kinetic

energy of εmH
2M2

Pl in addition to that required to climb the step at the classical level without the

backreaction. From this, we can express the condition of the fluctuations for the inflaton trapping

(the failure to climb the step) as

−∆K > εmH
2M2

Pl. (77)

For convenience, we define the normalized fluctuation of the kinetic energy as EK ≡ ∆K/K̄ and

rewrite the condition as

EK < −εm
εi
. (78)

From Eq. (76), we can derive the variance of EK as

σ2
EK
≡
〈
E2
K

〉
=

3H2

4π2εiM2
Pl

= 6PR(k � −1/τ1), (79)

where we have used the relation PR ' H2/(8π2εiM
2
Pl), valid on the scales much larger than the

horizon scales at the step transition. Then, we can express the probability of the inflaton trapping

as

βtrap =

∫ −εm/εi
−∞

dEK
1√

2πσEK
exp

(
− E2

K

2σ2
EK

)

' 1√
2π

σEK
εm/εi

exp

(
−(εm/εi)

2

2σ2
EK

)
, (80)

where the approximate equality is valid only when σEK/(εm/εi)� 1.

Here, let us explain the fate of the inflaton-trapping region. Because of causality, the initial

size of the inflaton-trapping region is expected to be comparable to the horizon at the transition.

Also, these regions are surrounded by the other ordinary regions, where the inflaton succeeds in

climbing the potential step. This case is similar to the consequences of bubble nucleation through

the tunneling to the true vacuum during the inflation, which is discussed in Refs. [91, 92]. The

inflaton-trapping region in our case corresponds to the bubble produced through the tunneling

in the references. Since the inflation lasts for O(10) e-folds after the transition, the inflaton-

trapping bubble is above the horizon when the other ordinary regions end inflating. This situation

corresponds to the “supercritical” case in Refs. [91, 92], whose consequences are as follows. The

bubbles are surrounded by radiation or dust after the inflation of the other ordinary regions. At

that time, while the universes inside the supercritical bubbles exponentially expand due to the
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positive energy of their (false) vacuum, the surrounding radiation or dust region does not expand

exponentially. This twisted situation leads to the two universes connected to each other by a

wormhole. After a while, the observer outside the bubble sees the bubble size comparable to

the horizon size for the observer and the wormhole closes around that time. Then, the bubble

region is finally seen as a BH for the observer outside the bubble, though the observer inside the

bubble still feels the universe expanding exponentially. One might worry about the lifetime of the

inflaton-trapping bubble because a too-short lifetime does not allow the supercritical bubble. In

Appendix C, we calculate the bounce action for the tunneling rate from the local minimum to the

true vacuum and show that the tunneling rate is small enough for the supercritical bubble at least

in our fiducial setup.

In short, the inflaton-trapping bubble finally becomes a PBH similarly to the BH production by

the supercritical bubble. This possibility is already pointed out in Refs. [93, 94]. It was shown in

Refs. [91, 92] that the mass of the PBH in the supercritical case is comparable to the total mass in

the horizon of the other ordinary regions at the time when the bubble re-enters the horizon. The

PBH mass is then of the same order as that produced by the large density perturbations at the

peak of the spectrum.

While the inflaton trapping can be a seed of a PBH, the enhanced density perturbations can

also be the seed. When very large density perturbations enter the horizon, they can collapse to

PBHs because of their own gravitational attraction force. This PBH formation mechanism is the

most common in the studies of the inflation models for the PBH scenarios. Here, we explain

the PBH production rate by the enhanced density perturbations and compare it with the PBH

production rate by the inflaton trapping. In the following, for simplicity, we assume that the

curvature perturbations follow the Gaussian distribution. Based on the Press-Schechter formalism

for the large density perturbations, the PBH production rate with mass of M is given by [115]8

βp(M) =

∫
δc

dδ
1√

2πσ(M)
exp

(
− δ2

2σ2(M)

)
' 1√

2π

σ(M)

δc
exp

(
− δ2

c

2σ2(M)

)
, (81)

where δc is the threshold of the density contrast for PBH production. σ2 is the variance of the

density contrast given by

σ2(R) =

∫ ∞
0

dq

q
W̃ 2(q;R)T 2(qR)

16

81
(qR)4PR(q), (82)

where R is the smoothing scale related to the PBH mass, W̃ is a window function in Fourier space,

and T (x) is the transfer function of the gravitational potential, which is given by

T (x) = 3
sin
(
x/
√

3
)
− (x/

√
3) cos

(
x/
√

3
)

(x/
√

3)3
. (83)

8 We neglect the overall factor 2, given in Ref. [115], because its necessity is not clear.
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As a fiducial example of the window function, we take the real-space top-hat form:9

W̃ (q;R) = 3
sin(qR)− (qR) cos(qR)

(qR)3
. (84)

In this case, we have σ2(M) ' PR(k(M)) for a scale-invariant spectrum [71, 116], where k(M)

denotes the scale of perturbation that produces a PBH with M . In addition, the non-linear relation

between the curvature perturbation and the density perturbation modifies Eq. (81) [119–121] and

the modification can be roughly taken into account by just using σ2(M) ' PR(k(M))/1.42 without

changing the form of Eq. (81) [119]. For simplicity, we use this relation and roughly estimate the

production rate of the peak mass as

βp(Mpeak) ' 1√
2π

P1/2
R (kpeak)

1.4δc
exp

(
− (1.4δc)

2

2PR(kpeak)

)
. (85)

Substituting δc = 0.51 as a fiducial value for a PBH production in a radiation era [117], we rewrite

this equation as

βp(Mpeak) ' (2.0PR(kpeak))1/2

√
2π

exp

(
− 1

3.9PR(kpeak)

)
. (86)

Comparing this equation with the inflaton-trapping probability given by Eq. (80) and taking into

account the relation PR(kpeak) < (εi/εm)2PR(k � −1/τ1) (see Eq. (30)), we see βtrap > βp, which

means that the PBHs from the inflaton trapping region could possibly be produced more than the

ones from the enhanced perturbations. However, we should keep in mind the following issues.

First, we need to be careful about the validity of the Gaussian distribution assumption in the

above calculation of βp. Generally speaking, the non-Gaussianity could significantly change the

PBH abundance because the large perturbations that produce PBHs are sensitive to the deviation

from the Gaussian distribution [122, 123]. In Refs. [93, 94], the authors discuss the probability

of the inflaton trapping and the non-Gaussianity caused by the potential bump approximated as

∝ −(φ−φc)2 with φc being the position of the bump. On the other hand, we consider the potential

step, which is different from the bump with the quadratic potential. In particular, the rapid change

of the second derivative of the potential induces the particle production, which leads to the large

perturbation enhancement in our model. Because of this, the analysis on the non-Gaussianity in

our case requires another approach. We leave this issue for future work.10

Second, the mass spectra of the two types of PBHs are expected to be different. The mass

spectrum of the PBHs from the large perturbations is determined by the profile of the power

spectrum of curvature perturbations. On the other hand, the PBH mass spectrum from the inflaton

trapping would depend on the probability distribution of the shape of the inflaton trapping bubbles.

Generally speaking, the bubbles could be different from the spherical shape, which is expected not

to prevent the PBH formation, but to change the PBH masses even if the bubbles are produced

at the same time. We leave a more detailed analysis of the mass spectrum associated with the

inflaton trapping to future work.

9 See Refs. [116–118] for the discussion on the choice of the window function.
10 The non-Gaussianity associated with the downward step is discussed in Ref. [124].
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VII. CONCLUSION

The small-scale primordial power spectrum presents an opportunity for next-generation exper-

iments to dramatically increase our knowledge of the very early universe. With this in mind,

we have developed a scenario of inflationary cosmology, wherein a step in the inflaton potential,

either downward or upward, is imprinted in the primordial power spectrum by a sharp rise fol-

lowed by oscillations on small scales. The model is that of single-field canonical inflation, and

does not necessitate additional fields or non-canonical kinetic terms. Compared with the previous

works [76–84] that discuss the power spectrum features associated with the potential step, the new

point of this paper is that we have mainly considered a relatively large change in the kinetic energy

of the inflaton due to the step, which can lead to a large (. O(107)) enhancement in the power

spectrum while avoiding strong coupling issues. Note that the linear perturbation theory cannot

give reliable results for strongly coupled perturbations. In this work, to show that the O(107)

enhancement can be realized by a step-like feature with the linear theory, we take the fiducial

form of the potential that can avoid the strong coupling. More generally, the balance between

enhancement and strong coupling requires the step transition to occur within a finite fraction of

an e-fold, O(P1/2
R (kpeak, τ)) . ∆N < 1, where τ here means the time when the salient aspects

for particle production occur. Because of the acceleration or deceleration of the inflaton during

the transition this general e-fold criterion places a more complicated requirement on smoothness in

field space, which our model satisfies whereas more naive approaches like a tanh step cannot. These

results give a general conclusion that a step-like feature can really realize the O(107) enhancement,

required for the PBH scenarios.

This large enhancement is motivated by the PBH scenarios for dark matter, or BHs observed by

the LIGO-Virgo collaboration from the collapse of rare fluctuations during the radiation or matter

dominated epoch. We have also discussed the probability of the inflaton trapping at the local

minimum that appears in the upward step case. This inflaton trapping occurs due to the quantum

backreaction to the inflaton velocity and ultimately also leads to the production of a PBH. As a

result, we have found that the PBHs from the inflaton trapping could be produced more than the

PBHs from the collapse of the large density perturbations. At the same time, we should keep in

mind that this result is based on our assumption that the density perturbations follow the Gaussian

distribution, which would be modified in models with a non-slow-roll period. We leave the study

of the non-Gaussianity associated with the upward step transition to future work.

In addition to providing the black holes observed by the LIGO-Virgo collaboration, or the

black holes of PBH dark matter, the perturbation enhancement in this scenario brings with it

complementary observables, in the form of induced gravitational waves [30–40] and CMB spectral

distortions [125–127]. Apart from them, the downward step variant is falsifiable through detection

of B-mode polarization of CMB: the requisite growth in the slow-roll parameter ε implies a small

initial value, which in turn implies a tensor-to-scalar ratio r = 16ε well below the sensitivity of

next generation experiments. A comprehensive sensitivity forecast of future observational probes

of the model is left to future work.

The model also serves as a stepping stone for future studies of particle production during



33

inflation. For example, a spectator field that experiences such a step can be expected to undergo

a similar non-adiabatic evolution and particle production. In particular, for the spectator field

identified as an axion, the authors in Ref. [128–130] showed that a copious production of gauge

fields occurs and the produced gauge fields induce large density perturbations and gravitational

waves (see also Refs. [131–133]). The spectator field can also be a curvaton [134–136] and the

enhancement of power spectrum could occur even in this case. Besides, the particle production

associated with the step-like feature may be interesting as a genesis mechanism for particle dark

matter that is “completely dark” [137]. Finally, it will also be interesting to explore the connection

of the single field model presented here to multi-field models, with the single field model realized

as one possible trajectory in multidimensional field space. Multi-field models generically exhibit

isocurvature perturbations, which may also be enhanced, and in certain models (e.g., [73, 138, 139])

can modify the tensor-to-scalar ratio. We leave this and other interesting topics to future work.
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Appendix A: Evolution of η in Downward Step

In this appendix, we analytically discuss the evolution of η in the potential with a downward

step, given by Eq. (4) with h < 0. During the downward step, the inflaton has a large tachyonic

mass. Here, we relate m to η through the equation of motion of the inflaton, given by

φ̈+ 3Hφ̇+m2φ = 0. (A1)

Then, we derive the solution

φ ' C1es+(t−t1) + C2es−(t−t1), (A2)

where s± is defined by

s± ≡
3H

2

(
−1±

√
1− 4

9

m2

H2

)
. (A3)

In the case of a large tachyonic mass, the first term with s+ quickly dominates the evolution of φ.

Then, we can safely approximate the evolution of the inflaton during the downward step transition

as

φ ' C1 exp

(
3H

2

(
−1 +

√
1− 4

9

m2

H2

)
(t− t1)

)
. (A4)
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Note that this approximation leads to the constant η during the downward step transition, unlike

during the upward step one. With this equation, we can approximate η during the increase of ε as

η =− 6− 2

Hφ̇

∂V

∂φ
+

1

M2
Pl

φ̇2

H2
(A5)

'− 6− 4

3

m2

H2

(
−1 +

√
1− 4

9

m2

H2

)−1

. (A6)

Plugging in m2 = limφ→φ1+0 V
′′(φ), we find the value of η during the downward step, Eq. (13).

We can also invert this to express m2 as a function of η during the transition as

m2 ' −H
2

4

(
6η + η2

)
, (A7)

which appears in the main text as Eq. (49).

Appendix B: Another Type of Potential Step

In this appendix, we discuss another type of the potential step, described by the hyperbolic

tangent function. Instead of Eq. (10), we use the following function as the function F :

F (φ;φ1, φ2, h) = 1 +
h

2

[
1 + tanh

(
φ− φ1

φ2 − φ1

)]
. (B1)

The key difference between this case and that of the main text is that the step transition has only

a single scale φ2 − φ1 which determines the potential derivatives V (n) and evolution of ε, η across

the whole transition. We shall see next that such a transition cannot simultaneously enhance the

power spectrum sufficiently and make the perturbations remain weakly coupled.

1. Downward Step

Figure 14 shows the power spectrum with the tanh downward step. We normalize the step width

with εf (= β2φ2
CMB/(2M

2
Pl)) because εi itself depends on the step width, though εi is almost the

same as εf . The peak scales depend on the step width because the broader step width with fixed

φ1 leads to the earlier step down of the inflaton. From this figure, we can see that, to realize the

O(εm/εf ) enhancement with this tanh step, the step width φ2−φ1 must be smaller than
√

2εfMPl,

otherwise the ε does not change from εi to εm within less than an e-fold. If the step width is sharp

enough, the peak height of the power spectrum is almost the same as that with the other type of

step, whose results are shown in Fig. 4. Meanwhile, the small-scale tail of the peak is different

from the results in Fig. 4. This difference originates from the difference in the evolution of η.

Figure 15 shows the evolution of ε and η that realize the power spectrum in Fig. 14. The peak

value of η is η ∼ 2 × 104 (out of Fig. 15). This value can be estimated based on the fact that η

roughly corresponds to the inverse of the e-folds for the O(1) change of ε by definition. Then, we

can roughly estimate η ∼ O(
√

2εmMPl/(φ2 − φ1)), which is consistent with the numerical result
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FIG. 14. The power spectrum with the downward tanh step given by Eq. (B1). Here, we define l̃ ≡
(φ2 − φ1)/(

√
2εfMPl) and take the same values for the other parameters as in Fig. 1.
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FIG. 15. The evolution of ε and η for l̃ = 0.1 in Fig. 14.

of the peak η value. Notice that since εm � εf the rapid increase in the inflaton velocity during

the step means that the most rapid change in ε occurs on an e-fold scale ∼ η−1 which is much

shorter than the full transition e-fold scale ∼ l̃ = (φ2− φ1)/
√

2εfMPl. We shall see that this short

timescale leads to strong coupling.

Figure 16 shows the evolution of An(kpeak), defined in Eq. (66), for l̃ = 0.1 in Fig. 14. We can

see the sharp spike at N−N1 ' 0, which is due to the sharp increase of the η in Fig. 15. This means

that we can no longer use the linearized Mukhanov-Sasaki equation. Instead, we need to perform

the lattice simulation to follow the perturbations. Even if we consider a smaller enhancement of

the perturbations and |An(kpeak)| is smaller than unity at the transition, the perturbations on

the small-scale tail of the power spectrum peak tend to be strongly coupled because the curvature

perturbation on the subhorizon scales is proportional to (−kτ), which leads to |An(k)| > |An(kpeak)|
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FIG. 16. The evolution of An(kpeak) for l̃ = 0.1 in Fig. 14.

for k > kpeak at the transition. For the above reasons, the perturbation enhancement with a

downward tanh step is severely limited if we require that the inflaton fluctuations remain weakly

coupled throughout. The model of the main text avoids this problem by distinguishing the epoch

of particle production from that of the acceleration of the inflaton and setting the appropriate

smoothness of the potential for each stage so that neither completes in too small a fraction of an

e-fold.

2. Upward Step

Figure 17 shows the power spectrum in the upward step. We can see that the spectrum is

similar to the results in the main body (Fig. 4). Also, Figures 18 and 19 show the evolution of ε

and η, and An, respectively. In particular, Fig. 19 is very similar to Fig. 11. From these results, we

can see that, unlike in the downward step case, the difference in the step forms does not change the

results in the upward step case, in that both cases must nearly violate the strong coupling bound.

This is mainly because the required step widths are almost the same in both forms of the step, as

φ2 − φ1 �
√

2εfMPl(∼
√

2εiMPl).

Appendix C: Bounce Action for the Inflaton Trapping

In this appendix, we calculate the bounce action for the tunneling from the local minimum to

the true vacuum in our upward step model. The bounce action determines the exponential factor

of the decay rate of the inflaton trapping bubble as Γ ∝ e−Sb . Specifically, what we calculate is the

bounce action for the nucleation rate of the true vacuum bubble in the inflaton trapping bubble.

According to Ref. [140], in the case of Γ/H4 & O(1), the inflaton trapping bubble is expected to be

dominated by the true vacuum bubble and will disappear well before the end of the inflation in the

other ordinary regions. For the inflaton trapping bubble to be a supercritical bubble, Γ/H4 � 1
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FIG. 17. The power spectrum with the upward tanh step, given by Eq. (B1). We take l̃ = 0.1 and the

same values for the other parameters as in Fig. 1.
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FIG. 18. The evolution of ε and η for the parameters in Fig. 17.

is required and this is the motivation for the calculation of the bounce action.

To perform the numerical calculation of the bounce action, we take the potential given by

Eq. (52). Here, we assume that the e-folds between the end of the inflation at φend and the CMB

scale at φCMB is NCMB = 50 for simplicity and the contribution from Vend can be neglected in

φ < φend. In this case, as we will see in the following, the bounce action does not depend on the

specific form of the potential around φend.

Based on this concrete potential, we calculate the bounce action, which is given by [141, 142]

Sb = 2π2

∫ ∞
0

dr r3

[
1

2

(
dφb(r)

dr

)2

+ V (φb(r))− V (φfv)

]
, (C1)

where φfv is the value at the false vacuum (the local minimum). The equation of motion for the
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FIG. 19. The evolution of An(kpeak) for the parameters in Fig. 17.

bounce solution is given by [141]

d2φb
dr2

+
3

r

dφb
dr

=
dV (φb)

dφb
. (C2)

The boundary condition of the bounce solution is given by

dφb(0)

dr
= 0, lim

r→∞
φb(r) = φfv. (C3)

Once we regard r as the time variable, the bounce solution can be considered as the evolution of

φ in the reverse potential, −V (φ), and the friction proportional to the inverse of the time. The

solution finally approaches the potential bump in the reverse potential, which corresponds to the

false vacuum.

Figure 20 shows the bounce solution for the potential given by Eq. (52) with the parame-

ters for the orange line in Fig. 9, where φend/MPl = 2.64 × 10−3. From this figure, we can see

limr→0 φb(r) < φend, which means that the bounce solution does not depend on the specific form

of Vend. Substituting this solution into Eq. (C1), we obtain Sb = 8.7 × 107, which indicates that

the decay rate of the inflaton trapping bubble is significantly suppressed by the exponential factor.
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