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ABSTRACT

We present measurements of the number density of voids in the dark matter distribu-
tion from a series of N-body simulations of a ΛCDM cosmology. We define voids as
spherical regions of ρv = 0.2ρm around density minima in order to relate our results to
the predicted abundances using the excursion set formalism. Using a linear underden-
sity of δv = −2.7, from a spherical evolution model, we find that a volume conserving
model, which does not conserve number density in the mapping from the linear to
nonlinear regime, matches the measured abundance to within 16% for a range of void
radii 1 < r(h−1Mpc) < 15. This model fixes the volume fraction of the universe which
is in voids and assumes that voids of a similar size merge as they expand by a factor
of 1.7 to achieve a nonlinear density of ρv = 0.2ρm today. We find that the model of
Sheth & van de Weygaert (2004) for the number density of voids greatly overpredicts
the abundances over the same range of scales. We find that the volume conserving
model works well at matching the number density of voids measured from the simula-
tions at higher redshifts, z = 0.5 and 1, as well as correctly predicting the abundances
to within 25% in a simulation of a matter dominated Ωm = 1 universe. We examine
the abundance of voids in the halo distribution and find fewer small, r < 10h−1Mpc,
voids and many more large, r > 10h−1Mpc, voids compared to the dark matter. These
results indicate that voids identified in the halo or galaxy distribution are related to
the underlying void distribution in the dark matter in a complicated way which merits
further study if voids are to be used as a precision probe of cosmology.

Key words: Methods: N -body simulations - Cosmology: theory - large-scale struc-
ture of the Universe

1 INTRODUCTION

Galaxy redshift surveys allow us to study and map out
the large scale structure of our Universe revealing a hier-
archical mass distribution with substructure over a wide
range of scales. The main components of the galaxy
distribution are arranged in a remarkable ‘cosmic web’
(Bond, Kofman & Pogosyan 1996) made up of clusters of
galaxies connected by filaments with large empty voids
which occupy most of the volume. Only recently have
systematic studies using voids as precision probes of the
growth of structure been possible due to the increased depth
and volume of current galaxy surveys (Colless et al. 2001;
York, & SDSS Collaboration 2000; Abazajian et al. 2009).
In this paper we study the distribution of underdense void
regions in the dark matter and halo distributions using N-
body simulations. We focus on the excursion set method

⋆ E-mail: ejennings@kicp.uchicago.edu

which gives an analytical prescription for the number den-
sity of voids which we compare with measurements from
simulations.

Voids are a common feature in galaxy surveys
with one of the most well known discoveries being the
void in Boötes which has a diameter of approximately
50h−1Mpc (Kirshner et al. 1981). Since then several sur-
veys such as the Center for Astrophysics Redshift Survey
(Geller & Huchra 1989), the Southern Sky Redshift Survey
(Maurogordato, Schaeffer & da Costa 1992) and the deeper
Las Campanas Redshift Survey (Shectman et al. 1996) have
identified voids in the distribution of galaxies and clusters
confirming that they are the dominant and volume filling
component of our Universe. Most recently Pan et al. (2012)
and Sutter et al. (2012b) both used the Sloan Digital Sky
Survey Data Release 7 (SDSS DR7) (Abazajian et al. 2009)
to identify voids. Pan et al. (2012) found 1054 statistically
significant voids with radii r > 10h−1Mpc with an absolute
magnitude cut of Mr < −20.09. They argue that voids of
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effective radius reff ∼ 20h−1Mpc dominate the void volume
with the largest void in the sample having r ∼ 30h−1Mpc.
Sutter et al. (2012b) constructed the first public void cat-
alog using the full extent of the SDSS DR7 spectroscopic
survey which included the LRGs and found large voids in
the sample of r ∼ 50− 60h−1Mpc in radius.

Early numerical and theoretical work on the evolution
of voids by Regos & Geller (1991), Blumenthal et al. (1992)
and Dubinski et al. (1993) focused on the expansion of
initial linear undensities up to the moment of shell cross-
ing, which is used to define a characteristic time in the
formation of voids. They considered spherical voids in a
Ωm = 1 universe and found that shell crossing occurs at a
linear underdensity of −2.7 at which point the comoving
size of the void has increased by a factor of 1.7 (see also
van de Weygaert & van Kampen 1993; Friedmann & Piran
2001). Many studies since then have focused on analysing
the dynamics and statistical properties of voids such as
the void probability function (VPF), the probability that
a randomly placed sphere will contain no objects (White
1979), the void filling factor, the void number density
and void density profiles (see e.g van de Weygaert 1991;
Mathis & White 2002; Benson et al. 2003; Colberg et al.
2005; Shandarin et al. 2006; Betancort-Rijo et al. 2009;
Einasto et al. 2011; van de Weygaert & Platen 2011;
Kreckel et al. 2012; Aragon-Calvo & Szalay 2013).

Recent studies have looked at stacking voids in order to
increase the statistical significance of weak lensing signals
(Higuchi, Oguri & Hamana 2012; Krause et al. 2013)(see
also Amendola, Frieman & Waga 1999), the Integrated
Sach-Wolfe effect (Ilic, Langer & Douspis 2013; Cai et al.
2013) or to extract cosmological parameters by modelling
the distortions in redshift space (Lavaux & Wandelt 2012;
Sutter et al. 2012a; Bos et al. 2012) or as a test of modified
gravity (Clampitt, Cai & Li 2013). The precision of these
tests relies on many factors, for example, given a survey
or numerical simulation of a certain size, how robustly can
we measure statistics for a void of a given size; how accu-
rately can we predict the number density of voids in the
galaxy/dark matter halo distribution and how well do voids
in the galaxy/halo distribution trace voids in the dark mat-
ter. In this paper we address these three issues. In our dis-
cussion of a robust void finder we do not compare with all
the other algorithms which have been used in previous stud-
ies - our choice of void finder is motivated by the excursion
set formalism for the abundance of voids which we aim to
test.

In analysing both galaxy surveys and numerical
simulations a wide variety of void finding algorithms
have been used to define underdense regions as voids.
Colberg et al. (2008) carried out the first systematic re-
view of 13 different void finders, identifying only two ar-
eas of agreement amongst the different algorithms; that
voids are very underdense (ρ ∼ 0.05ρm) at their cen-
tres and that voids have very steep edges. The void
finding methods include the construction of proto-voids
around local minima in the smoothed density field, af-
ter separating the galaxy sample into ‘wall’ and ‘void’
galaxies (see e.g. El-Ad & Piran 1997; Hoyle & Vogeley
2002); merging proto-voids which results in non-spherical
voids (Colberg et al. 2005); the watershed algorithm
(Platen, van de Weygaert & Jones 2007) which uses the

DTFE method (Schaap 2007; Cautun & van de Weygaert
2011). The watershed void finder identifies minima in the
density field and construct voids by flooding basins until the
‘landscape’ resembles a segmented plane where the edges
of each segment outline a void region. A similar algorithm,
which we make use of in this paper, is the ZOBOV (Neyrinck
2008) void finder which uses the Voronoi tessellation field
method (see e.g. van de Weygaert 2007) to partition parti-
cles into zones, which are then joined together near density
minima, into voids.

There have been many studies of the excursion set
method to predict the abundance of dark matter halos in
the Universe (see e.g. Zentner 2007, for a review). In com-
parison fewer studies have focused on testing the excursion
set predictions for underdensities in the dark matter dis-
tribution and we briefly outline some of these works here.
In applying this method to voids, Sheth & van de Weygaert
(2004) presented a model for the abundance of voids in
the dark matter which included the influence of the larger
scale environment on the formation of a void. Their model
takes into account two effects, firstly, a void of a given
size may be embedded in another underdense region which
is on a larger scale, the ‘void-in-void’ scenario, and sec-
ondly, a void of a given size could be embedded in an
overdense region on a larger scale, the ‘void-in-cloud’ sce-
nario. Furlanetto & Piran (2006) analysed how the barrier
for shell crossing of a void in the galaxy distribution would
differ from the linear theory barrier for dark matter, find-
ing that voids selected from catalogs of luminous galax-
ies should be larger than those selected from faint galax-
ies (see also D’Aloisio & Furlanetto 2007). D’Amico et al.
(2011) consider using voids as a probe of primordial non-
Gaussianity and calculate the abundance of voids using the
excursion set formalism and the two barrier prescription
of Sheth & van de Weygaert (2004). Shandarin et al. (2006)
define voids as isolated regions of the low-density excur-
sion set specified by density thresholds and measured the
abundance and morphology of voids using N-body simu-
lations. In this paper we wish to test the predictions of
the Sheth & van de Weygaert (2004) excursion set model by
comparing them to measurements of void abundances from
N-body simulations. Our definition of a void is similar to
that adopted by Shandarin et al. (2006) as we use a strict
density threshold to define the void edge (although we do
not use isodensity contours). To our knowledge, this is the
first time that this model has been directly compared with
numerical simulations.

This paper is organised as follows. In Section 2 we dis-
cuss the excursion set method as it applies to dark matter
halos and voids. Appendices A and B review the salient fea-
tures of the spherical evolution model that connects the two.
In Section 3 we detail our void finder and the N-body sim-
ulations that were carried out. In Section 4 we present the
main results of this paper on the number density of voids in
three different cosmological models at z = 0 and we show
how this abundance changes with redshift. We also present
the measured number density of voids in the halo distribu-
tion. In Section 5 we present our conclusions.

c© 2013 RAS, MNRAS 000, 1–16
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2 EXCURSION SET FORMALISM FOR VOID

ABUNDANCE

In this section we begin with a brief review of the excur-
sion set formalism in Section 2.1. It is well known that in
combination with spherical collapse this approach provides
insight into many aspects of halo formation and can be used
to predict dark matter halo abundances and clustering (see
e.g Zentner 2007, for a review of the subject). The analogous
spherical expansion model can likewise be used to make ex-
cursion set predictions for voids (Sheth & van de Weygaert
2004). We review this extension in Section 2.2 and show that
it requires modifications on physical grounds. We propose a
simple modification based on volume fraction conservation
in Section 2.3.

2.1 Excursion set formalism

The excursion set formalism at its heart relies on knowledge
of the statistical properties of the linear density field. In
Fourier space, the linear density fluctuation field smoothed
on a scale R is given by

δ(~x,R) =

∫

d3k

(2π)3
δ(~k)W (~k,R)e−i~k·~x , (1)

where δ(~k) is the Fourier transform of the density pertur-
bation δ(~x) = [ρ(~x) − ρm]/ρm, ρ(~x) is the local density at
comoving position ~x, ρm is the background matter density
and W (~k,R) is a filter function in Fourier space. It is com-
mon to relate the smoothing scale R to the corresponding
variance of the linear density field

σ2(R) ≡ S(R) =

∫

dk

k

k3P (k)

2π2
W (k,R) , (2)

where P (k) is the matter power spectrum in linear perturba-
tion theory. We can refer to a trajectory δ(~x, S) as a sequence
of overdensities given by subsequent increases in the smooth-
ing scale by increments ∆S. When a tophat filter in k-space
is used then δ(~x, S) executes a random walk. Given an un-
derlying Gaussian distribution for the linear density field,
the excursion set formalism allows us to associate proba-
bilities to random walks that satisfy a given set of criteria
for the smoothing scale at which they cross various density
thresholds. Its use in defining the statistics of objects in the
nonlinear regime requires a model that associates such cri-
teria to objects.

2.2 Spherical evolution and SVdW model

The spherical evolution model provides a complete descrip-
tion of the nonlinear evolution of a spherically symmetric
top-hat density perturbation. One of the main features of
this model is that the evolution does not depend on the ini-
tial size of the region, i.e. on the initial radius or enclosed
mass, but only on the amplitude of the initial top-hat over-
density.

For the collapse of perturbations, the spherical evolu-
tion model in combination with the excursion set provides a
good description of the statistics of dark matter halos. As we
review in Appendix A, collapse occurs when the linear den-
sity fluctuation reaches a critical value or barrier δc. We can

then use the excursion set formalism to determine the frac-
tion of trajectories that cross this barrier for the first time,
accounting for the cloud-in-cloud process, within some d ln σ
of a smoothing scale σ through the differential fraction

flnσ(σ) ≡
df

d lnσ
=

√

2

π

δc
σ
e
−

δ2c
2σ2 . (3)

Since both mass and number are conserved in the collapse,
the linear theory mapping σ(M) carries over to the nonlinear
regime and so the mass function, or the comoving differential
number density of halos is

dn

d lnM
=

ρm
M

flnσ(σ)
d ln σ−1

d lnM
, (4)

where ρm/M is the number density of such objects if the
fraction were unity.

We can extend the model to underdense regions in the
initial density field. These are naturally associated with
voids in the evolved density field today. A key assumption
in making the connection between the excursion set and the
abundance of nonlinear objects is that each collapse occurs
in isolation. This makes sense for collapsing objects since the
comoving volume occupied shrinks. In contrast to overdense
regions which contract, voids expand. We shall see that this
causes a problem for mapping excursion set predictions onto
the statistics of voids.

Nonetheless let us start with the simple spherical evo-
lution model following Sheth & van de Weygaert (2004).
The critical density threshold is defined to be when the
expanding shells cross (see e.g. Suto, Sato & Sato 1984;
Fillmore & Goldreich 1984; Bertschinger 1985). As shown in
Appendix A for an Einstein de-Sitter (EdS) universe, this
occurs when the nonlinear average density within the void
reaches ρv = 0.2ρm or when the linear density threshold
reaches δv = −2.7. Note we will use this notation of ρv to
refer to the nonlinear density of the void region and δv to
refer to the linear underdensity used as a threshold in the ex-
cursion set model. We show in Appendix A, that these EdS
values suffice for the accuracy to which we wish to describe
alternate cosmologies such as the ΛCDM model.

Once we have this value for the void barrier we can fol-
low the excursion set formalism for determining the fraction
of random walks which pierce the barrier δv. Similar to the
cloud-in-cloud process, the void-in-void process accounts for
the fact that a void of a given size may be embedded in an-
other underdense region on a larger scale. We thus define the
first crossing distribution by associating the random walks
with the smoothing scale for which they first cross the bar-
rier δv.

The second process, the void-in-cloud scenario, occurs
when a void of a given size is embedded in an overdense re-
gion on a larger scale, which will eventually collapse to a halo
and squash the void out of existence. In order to account for
the void-in-cloud effect, Sheth & van de Weygaert (2004)
proposed that the excursion set method applied to voids
requires a second barrier, the threshold for collapse of over-
dense regions, δc. In calculating the first crossing distribu-
tion, Sheth & van de Weygaert (2004) argued that we need
to determine the largest scale at which a trajectory crosses
the barrier δv given that it has not crossed δc on any larger
scale. They posit that the value of δc should lie somewhere
in between δc = 1.06, the value at turnaround in the spheri-
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Figure 1. Void abundance model predictions. In the SVdW
model, the number density of linear underdensities (blue curve)
remains unchanged in void formation and only their sizes change
(arrow to orange curve). In the V dn model, the number density
also changes so as to conserve the volume fraction in voids, low-
ering the amplitude at fixed shape (arrow to grey curve). Varying
1.06 6 δc 6 1.686 (shaded or hatched regions) changes the abun-
dance significantly only for small voids r . 1h−1Mpc. We take
δv = −2.7 throughout. We use the σ8 = 0.8 ΛCDM cosmology as
listed in Table 2 here and in the following figures unless otherwise
stated.

cal collapse model, and δc = 1.686, the value at the point of
collapse (see also Paranjape, Lam & Sheth 2012). In this pa-
per we shall refer to the model of Sheth & van de Weygaert
(2004) as the ‘SVdW’ model.

By the same reasoning as applied to halos, the SVdW
formula for the abundance of voids in linear theory is given
by

dnL

d lnM
=

ρm
M

flnσ(σ)
d lnσ−1

d lnM
, (5)

where

flnσ(σ) = 2
∞
∑

j=1

e−
(jπx)2

2 jπx2 sin(jπD), (6)

with

D =
|δv|

δc + |δv|
, x =

D

|δv|
σ . (7)

Note that Sheth & van de Weygaert (2004) give flnS =
Sdf/dS = flnσ/2. We have added the subscript “L” to re-
mind the reader that the logic relies on equating a number
density derived from linear theory to the number density of
some nonlinear object for reasons that will be clear below.

Since the infinite series in equation (6) is cumbersome
to work with, it is useful to have an accurate closed form ex-
pression. As we discuss in Appendix B, the accuracy of the
approximation given in Sheth & van de Weygaert (2004) is
uncontrolled as σ → ∞. Instead we find the limiting forms
for equation (6) such that the domain of validity of the ap-
proximation is well-defined. Note that as σ → 0, the oppos-

ing barriers are high and the sum must return the single
barrier expression since the probability of first crossing the
collapse barrier is vanishingly small. This fixes the form as
x → 0. As D increases toward unity, we lower the collapse
barrier relative to the void barrier and the value of x at
which this limit is approached decreases. Correspondingly
to achieve a matching at this point, we need to keep more
terms in the sum. The largest value that we will be inter-
ested in is D < 3/4 and so it suffices to keep 4 terms

flnσ(σ) ≈











√

2

π

|δv|

σ
e
−

δ2v
2σ2 , x 6 0.276

2
∑4

j=1 e
−

(jπx)2

2 jπx2 sin(jπD), x > 0.276

(8)

which is accurate at the 0.2% level or better across the do-
main of validity. The approximation of equation (8) is used
in all the numerical work throughout the paper.

We can alternately express the number density in terms
of the linear theory radius of the void rL. Using ρm/M =
1/V (rL) and defining the volume of a spherical region of an
arbitrary radius, R, as

V (R) ≡
4

3
πR3 , (9)

we obtain

dnL

d ln rL
=

flnσ(σ)

V (rL)

d ln σ−1

d ln rL
. (10)

In the spherical evolution model, the actual void ex-
pands from its linear radius. At the epoch of shell crossing
ρv = 0.2ρm. Given that

r

rL
=

(

ρm
ρv

)1/3

, (11)

spherical expansion predicts that this expansion factor is
r ≈ 1.7rL. The void abundance therefore becomes

dn

d ln r
=

dnL

d ln rL

∣

∣

∣

rL=r/1.7
. (12)

Note that in this model dn/d ln r shifts left to right in scale
through the nonlinear growth but does not change in ampli-
tude, as is shown in Fig. 1.

The SVdW model has two parameters δc and δv. The
latter is fixed by the shell-crossing criterion whereas the
former is expected to vary within 1.06 6 δc 6 1.686. In
Fig. 1, we also show that for the range of radius of interest
(r > 1h−1Mpc), changing δc within its expected range has
little effect on the void abundance.

The SVdW model makes a very specific prediction for
the abundance of large voids. Again the key assumption of
the SVdW model is that the comoving number density of
objects is conserved during the evolution n = nL and only
their size has changed. Unfortunately, for spherical evolution
this assumption is invalid for large voids. In particular, the
cumulative volume fraction in voids larger than R defined
as

F(R) =

∫

∞

R

dr

r
V (r)

dn

d ln r
, (13)

exceeds unity for radii of interest. In Fig. 2, we demon-
strate that this problem cannot be cured by changing δc
within the expected range as it only affects small voids
whereas the problem appears at R ≈ 2h−1Mpc. Indeed if

c© 2013 RAS, MNRAS 000, 1–16
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Figure 2. The cumulative volume fraction in voids with radii
larger than R for the various models: linear theory (blue striped
region, R = rL), SVdW model (orange striped region, R = r),
V dn model (grey shaded region, R = r). Regions correspond to
the expected range of 1.06 6 δc 6 1.686 and we take δv = −2.7
throughout. For SVdW the fraction unphysically exceeds unity
at R ≈ 2h−1Mpc while for the V dn model conserves the total
fraction from the linear theory of F(0) ≈ 0.3.

we take R → 0 then for the exact flnσ given by equation (6)
(Sheth & van de Weygaert 2004)

F(0) =

(

r

rL

)3 ∫ ∞

0

dσ

σ
flnσ =

(

r

rL

)3

(1−D). (14)

This result suggests that reducing δv → 0 simultane-
ously takes r → rL and D → 0 bringing SVdW asymptoti-
cally to physicality F(0) = 1. Strictly speaking, δv is fixed by
the shell-crossing criterion. However, given the approximate
nature of the correspondence between the isolated spherical
expansion model and real voids, it is interesting to explore
whether modifications to this criterion can bring the SVdW
model into agreement with physicality and simulations. If
we change the nonlinear density at which voids are defined
ρv/ρm, the linear density threshold δv and the expansion fac-
tor r/rL must change in a self-consistent fashion (see Fig. A1
and equation (B1)). In Fig. 3 we show that changing δv alters
the shape of the abundance function. As |δv| decreases, the
steepness of the abundance function also decreases. Thus,
although lowering δv can make the total volume fraction
physical (Fig. 3, lower panel), it increases the abundance
of the largest voids. We shall see that correspondingly the
SVdW model greatly overpredicts the abundance of large
voids regardless of the choice of δc and δv.

2.3 Volume conserving V dn model

We propose a simple fix to the unphysicality of the SVdW
model. We require that the volume fraction and shape of
the abundance function is fixed during the expansion, rather
than assuming that the expansion of isolated voids preserves
their total number density. Specifically, if we define the vol-

dn
/d

ln
r 

 (
h/

M
pc

)3

r  [Mpc/h]

SVdW

δv=-1.24, ρv=0.4ρm
δv=-1.8,   ρv=0.3ρm
δv=-2.7,   ρv=0.2ρm

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 1  10

F
(R

)

R  [Mpc/h]

SVdW

δv=-1.24, ρv=0.4ρm
δv=-1.8,   ρv=0.3ρm
δv=-2.7,   ρv=0.2ρm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  10

Figure 3. Relaxing the shell crossing criteria of the SVdW model
void abundance predictions. Upper: Variation of the void under-
density ρv/ρm changes both the shape of the abundance through
the linear barrier δv and the size of the voids or horizontal shift
through r/rL = (ρv/ρm)−1/3. Decreasing |δv| increases the num-
ber of large voids and decreases that of small voids. Lower: The
cumulative volume fraction in voids with radii larger than R de-
creases as |δv| → 0 and R → 0 but at the expense of making the
larger voids more abundant. We use δc = 1.06 throughout.

ume fraction in linear theory, FL, as

FL(RL) =

∫

∞

RL

drL
rL

V (rL)
dnL

d ln rL
. (15)

then this fraction is conserved if we define the nonlinear
abundance as

V (r)dn = V (rL)dnL

∣

∣

rL(r)
. (16)

In this picture, when a void expands from rL → r it combines
with its neighbours to conserve volume and not number.

c© 2013 RAS, MNRAS 000, 1–16
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Thus the abundance becomes

dn

d ln r
=

V (rL)

V (r)

dnL

d ln rL

d ln rL
d ln r

∣

∣

∣

rL(r)

=
flnσ(σ)

V (r)

d ln σ−1

d ln rL

d ln rL
d ln r

∣

∣

∣

rL(r)
. (17)

We call this model the V dn model and show its abundance
prediction in Fig. 1. We have left the mapping r(rL) general
here since the specific form from isolated spherical expansion
until shell crossing may not apply here. We will however
adopt r = 1.7rL for voids with nonlinear density ρv = 0.2ρm
from N-body simulations as a starting point. Note that in
this case d ln rL/d ln r = 1 and the impact of going from the
linear to the nonlinear abundance is both a shift in scale and
a change in amplitude with no change in shape, as is shown
as the combination of arrows in Fig. 1.

In Fig. 2, we also show the cumulative volume fraction
with this abundance function, along with that for linear the-
ory defined in equation (15). Since by construction the vol-
ume fraction is conserved, the two curves differ only by a
horizontal shift in scale.

Since the V dn model is not the unique means of con-
structing a physical model, it is interesting to explore other
ways of keeping the volume fraction below unity. Phe-
nomenologically, we can decouple the relationship in equa-
tion (B1) between the parameters δv and r/rL provided by
the spherical expansion model. In fact, we can choose these
parameters so as to mimic the V dn predictions for a fixed
cosmology. For example, in the upper panel of Fig. 4, we find
we can change the parameters δv → −2 and r/rL → 1 in the
SVdW model to fit the V dn model in the σ8 = 0.8 ΛCDM
cosmology listed in Table 2. However, this change then pre-
dicts very different abundances than the V dn model for a
different cosmology as shown with the EdS cosmology listed
in Table 2 and Fig. 4 (lower panel). We shall show below
that simulation results favor the V dn model over universal
changes in δv and r/rL.

3 SIMPLE VOID FINDING ALGORITHM

In Section 3.1 we outline the void finding algorithm used to
identify voids in both the dark matter and halo populations
in this work. In Section 3.2 we present the details of the N-
body simulations which were carried out as summarised in
Table 2.

3.1 Void finder

As we have already mentioned one of the main complications
in studying the distribution of voids in the large scale struc-
ture of the Universe, is finding a robust definition of what
a void is (see Colberg et al. 2008, for a comparison of void
finders). In this work we wish to make a direct comparison to
the predictions of the excursion set formalism which assumes
that these underdense regions are non-overlapping spheres
of a given underdensity corresponding to a region at the mo-
ment of shell crossing. We shall retain the moment of shell
crossing as the key feature which defines a nonlinear void in
the matter distribution today although we also compare the
measured abundance of voids with different underdensities
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Figure 4. Void abundance in the V dn model (black dot-dashed
curve) and a modified SVdW model (blue solid line) with ad hoc
variations designed to fit the ΛCDM V dn model. Upper panel: we
choose δv = −2 and r/rL = 1 in the SVdW model in violation of

spherical expansion predictions in a σ8 = 0.8 ΛCDM cosmology.
Lower panel: we show that the same set of parameters give a
poor fit, in an EdS model (see Table 2). For all curves we use
δc = 1.686.

to the predictions of the volume conserving model in Section
4.1.

We start with the publicly available code ZOBOV

(Neyrinck 2008) which uses Voronoi tessellation to estimate
densities and find both voids and subvoids. The main ad-
vantage of using tessellation methods is that it gives a local
density estimate by dividing space into cells, where the cell
around any given particle is the region of space closer to
that particle than to any other. The Voronoi tessellation
also gives a natural set of neighbours for each particle which
ZOBOV uses to construct zones around density minima.

The output from ZOBOV is useful for our purposes for
two main reasons. Firstly, it outputs a linked list of zones
in the dark matter distribution, which is also ordered by
density contrast. It thus provides a tree structure which we
can prune according to the definition of a void. Secondly,
ZOBOV identifies the ‘core’ or least dense particle in a zone
and returns its density as well as a measure of the probabil-
ities that each collection of zones arises from Poisson fluc-
tuations. Note that the list which ZOBOV returns contains
zones of various densities and Poisson probabilities, some of
which could be overdense or not statistically significant, so
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Table 1. A toy example showing the first five columns from a
ZOBOV output file.

Void#(zones) FileVoid# CorePar CoreDen ZoneVol
1 (a, b, c) 2945 26 1.08e-02 4.9e+03
2 (b, c) 5033 83 1.8e-02 7.8e+02
3 (c) 1814 45 2.0e-01 1.9e+02

it is necessary to prune the output from ZOBOV in order
to construct a void catalogue.

In constructing our void finder the goal is to identify
all spherical non-overlapping underdense regions of average
density ρv = 0.2ρm in a dark matter simulation. We use
the output from ZOBOV and find spherical regions centred
around the core particle (lowest density particle) in a zone,
which can encompasses any particles which are around the
zone returned by ZOBOV and not necessarily part of the
particular zone or collection of zones returned by ZOBOV.

One of the outputs from ZOBOV is a text file which
lists individual zones and joined zones which are added
to the list in a sequential process analogous to water
flooding a plane with troughs of various heights (see also
Platen, van de Weygaert & Jones 2007). During flooding,
when water from a particular zone or joined zones flows
into a neighbouring deeper zone, the process stops and the
zone is recorded in the list. A toy example of the output is
shown in Table 1 where the zones are listed in order of den-
sity contrast. Here FileVoid# and CorePar refer to unique
identification tags for the void and its core particle respec-
tively. CoreDen is the density, in units of the mean, of the
void’s core particle.

In order to count non-overlapping regions with an av-
erage density of 0.2, we perform the following two stages of
analysis on the output from ZOBOV. Firstly, starting from
the top of the ZOBOV output file we determine if the first
collection of zones listed e.g Void #1, which is made up of
zones a,b and c, pass the following criteria:

• [rmin, rmax]: The radius corresponding to a sphere of
equal volume should be > rmin and < rmax.

• The core particle density is < 0.2ρm.

As we are searching for regions which have an average den-
sity ρv = 0.2ρm we also only consider zones in the list which
have a density ρv > 0.2ρm in order to speed up the search.

If the collection of zones fulfils all of the above, then
we proceed to the second stage. A spherical region around
the centre is found by iteratively including one particle at
a time moving away from the centre of the void until ρv =
0.2ρm. We assume that the volume corresponds to a sphere
with radius equal to the distance from the centre to the last
particle included. If for example, Void #1 did not pass the
rmax, rmin criteria then we consider if the deepest zone, zone
a, does and if so we grow a sphere around the centre of
this single zone. This step is important as the output from
ZOBOV only lists the deepest zone ‘a’ once and if Void
#1 fails the rmax, rmin criteria the void finder would miss
counting the deepest zone in the simulation box.

We then proceed to the next line in the output file and
perform the same two stages of analysis. All of the particles
in the spherical regions which are grown have been tagged
and at any stage if there is any overlap of spheres we dis-
regard the less underdense zone to avoid double counting

any volume in the simulation. Note if we consider the out-
put from ZOBOV as a tree structure then this procedure
is similar to walking the tree from root to tip, pruning any
branches after our criteria are met.

Using a cut in rmax and rmin as above allows us to avoid
considering spuriously small voids and the first output in the
text file which is a void which takes up the entire simulation
box, however we have checked that our results are not sensi-
tive to changes in rmax and rmin but we retain these criteria
in the void finder to speed up computation. For our simu-
lations we use the following: [rmin, rmax] = [0.5, 15], [1, 30],
[2, 60] and [4,120] h−1Mpc for the 64h−1Mpc, 128h−1Mpc
and 256h−1Mpc and 500h−1Mpc boxes respectively.

We tested several different criteria in identifying voids
and found that the two points listed above are sufficient to
identify significant non-overlapping regions of a given under-
density in the particle distribution. In testing the robustness
of our void finder we considered the impact of the following
adjustments to the method:

• As an alternative to using the core particle to define
the centre of the void we can use a volume-weighted centre
defined as

~c =

∑

i ~xiVi
∑

i Vi
, (18)

where ~xi and Vi are the position and volume of each parti-
cle in the zones returned by ZOBOV respectively. We found
that the abundance of voids was not substantially affected
by this choice and so we use the core particle as the centre
of the spherical region. Note that using the volume-weighted
centre is more robust when using stacked voids (see e.g.
Lavaux & Wandelt 2012).

• Instead of allowing the spherical region to include all
particles which are around the void we consider restrict-
ing it so that only particles which ZOBOV list as being
part of the zone are included when growing the sphere. We
find that in the majority of cases the region of underden-
sity ρv = 0.2ρm is contained within the collection of zones
returned by ZOBOV and so this restriction does not affect
the measured abundance of voids. Our results in Section 4
use all particles within 1.5 times the radius of the zones to
find the spherical void. Including particles only within this
radius was found to be sufficient considering the original
collection of zones was required to have an average den-
sity of > 0.2ρm. An alternative approach to this would be
to use the actual volume of each zone particle when trying
to find a void of a given average density. This would allow
for irregularly shaped voids which it could be argued is a
more ‘natural’ description of an actual void, however as we
mentioned we are trying to compare with the excursion set
theory for abundances which assumes spherical voids.

• We originally included a third criteria in our void finder
by requiring that the probability a zone arose from a Poisson
process was less than a given significance (see Neyrinck 2008,
for more details). However we found that the core particle
density requirement by itself was sufficient to get rid of spu-
rious voids. This also agrees with the findings of Neyrinck
(2008).

• In the algorithm we have described we stop growing a
sphere around the core particle when we find the desired
underdensity at the maximum radius at which this occurs
within the radius of the collection of zones. This is a different
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Table 2. Details of the simulations used in this work.

Model Ωm h σ8 Boxsize # particles # simulations z output

ΛCDM 0.26 0.715 0.8 64, 128, 256 2563 8 0, 0.5, 1

500 4003 1 0
500 2563 8 0

ΛCDM 0.26 0.715 0.9 64, 128, 256 2563 8 0, 0.5, 1

EdS 1 0.7 0.8 64, 128, 256 2563 8 0

approach to simply stopping to record the first radius where
ρv = 0.2ρm which would not take into account void-in-void
scenarios. In practice we find that accounting for a void-
in-void effect alters the measured abundances by a small
amount (e.g ∼ 7% over the range 1 < r(h−1Mpc) < 10).

• The above method does not allow any overlap of voids
within the simulation in order to compare with the excursion
set method. In practise for regions of ρv = 0.2ρm we found
the overlap was very small for the simulations we consider.

• ZOBOV is run using all the particles in the simulation
with a run-time density threshold parameter which can limit
the growth of a collection of zones into high-density regions.
We set this parameter to 0.2 however we have verified that
changing this run time parameter has little effect on the
abundance of underdensities found by our void finder.

3.2 N-body simulations

We measure the abundance of voids in the dark matter
distribution using a series of N-body simulations in vari-
ous box sizes. These simulations were carried out at the
University of Chicago using the TreePM simulation code
Gadget-2 (Springel 2005). The ΛCDM model used has the
following cosmological parameters: Ωm = 0.26, ΩDE = 0.74,
Ωb = 0.044, h = 0.715 and a spectral tilt of ns = 0.96
(Sánchez et al. 2009). The linear theory rms fluctuation in
spheres of radius 8 h−1 Mpc is set to be σ8 = 0.8 for our main
simulation set of 8 independent realisations of the ΛCDM
cosmology. In order to investigate the abundance of voids in
different cosmologies we also carry out two additional sim-
ulations; one with a ΛCDM cosmology and σ8 = 0.9 and
another which we refer to as the ‘EdS’ simulation which has
Ωm = 1. The EdS simulation is not a viable cosmological
model for our Universe as it has already been ruled out by
many observations but we use it here as a tool to exam-
ine how robust our void models are to large changes in the
power spectrum or cosmology.

The simulation details are summarised in Table 2. Most
of the simulations use N = 2563 particles to represent
the dark matter while for the larger simulation box of
500h−1Mpc we use 4003 particles. The error on the abun-
dance of voids measured in the 500h−1Mpc box is estimated
from eight lower resolution simulations which have 2563 par-
ticles in a computational box of 500h−1Mpc on a side. These
lower resolution simulations have a mean abundance which
agrees with the 4003 particle simulation over the range of
scales which we consider and are computational less expen-
sive to run and analyse with the void finder. The initial con-
ditions of the particle load were set up with a glass config-
uration of particles (Baugh, Gaztanaga & Efstathiou 1995)
and the Zeldovich approximation to displace the particles

Figure 5. Void abundance in simulations vs. predictions with
ρv = 0.2ρm in the dark matter distribution of the σ8 = 0.8 ΛCDM
cosmology in simulation box sizes 64h−1Mpc (green), 128h−1Mpc
(purple), 256h−1Mpc (red) and 500h−1Mpc (cyan) on a side. The
error bars represent the scatter on the mean from eight differ-
ent realisations of this cosmology in each box size. The range in
predictions cover the parameter interval δc = [1.06,1.686] with
δv = −2.7 and are consistent with simulations for V dn (grey
shaded) but not SVdW models (orange hatched).

from their initial positions. We chose a starting redshift of
z = 100 in order to limit the discreteness effects of the initial
displacement scheme (Smith et al. 2003). The linear theory
power spectrum used to generate the initial conditions was
created using the CAMB package of Lewis & Bridle (2002).
Snapshot outputs of the dark matter distribution as well as
the group catalogues were made at redshifts 1, 0.5 and 0.
In the following section we also test voids that are identi-
fied with dark matter halos. The simulation code Gadget2

has an inbuilt friends-of-friends (FOF) halo finder which was
applied to produce halo catalogues of dark matter particles
with 10 or more particles. A linking length of 0.2 times the
mean interparticle separation was used in the halo finder.

4 RESULTS

In the following sections we compare simulation results for
the abundance of voids with the predictions of both the vol-
ume conserving and the SVdW model. In Section 4.1 we
present the measured abundances of voids from the ΛCDM
simulations in four different simulation box sizes. In Sections
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The abundance of voids and the excursion set formalism 9

Figure 6. Void abundance for different defining underdensities ρv = 0.3ρm (left panel), ρv = 0.4ρm (right panel). The grey shaded
region represents the excursion set predictions with varying amplitude and using a linear underdensity value δc = 1.686 and δv, given in
the legend in each panel. The amplitude rescaling vs the SVdW predictions ranges from ρv/ρm (V dn; top black dashed curve) to 1/5
(bottom black dotted curve) which both preserve agreement for ρv = 0.2ρm.

4.2, 4.3, 4.4, we test the robustness of the models to variation
in the critical void underdensity, redshift, and cosmology re-
spectively. In Section 4.5 we present the abundance of voids
identified in the dark matter halo catalogue.

4.1 Baseline model comparison

We implement the void finder, which is described in Sec-
tion 3.1, to measure the abundance of spherical voids which
have ρv = 0.2ρm at z = 0 in all four simulation box sizes of
the ΛCDM cosmology, see Table 2. Fig. 5 shows the average
number density as a function of radius, of voids measured
from eight different realisations of the ΛCDM cosmology in
simulation box sizes 64h−1Mpc (green), 128h−1Mpc (pur-
ple), 256h−1Mpc (red) and 500h−1Mpc (cyan) on a side.
The error bars represent the scatter amongst these simula-
tions.

The orange hatched region in this figure represents the
SVdWmodel within the parameter interval δc = [1.06,1.686]
and δv = −2.7 and assuming that the voids have expanded
by a factor of 1.7 today. The grey shaded region shows the
V dn model for the same parameters. As discussed in Section
2.2, the range in δc accounts for the void-in-cloud process by
which a void in a larger overdense regions will be crushed out
of existence. As we can see from Fig. 5 this only affects the
smallest voids of r < 1h−1Mpc and for larger voids the abun-
dance is insensitive to δc. The decrease in the void abun-
dance at r(h−1Mpc) ∼ 2.5, 1.5 and 1 for the 256h−1Mpc,
128h−1Mpc and 64h−1Mpc boxes shows the resolution limit
for each of these simulations where small voids are not fully
resolved and so the abundance is decreased.

The SVdW model overpredicts the abundance by a fac-
tor of 5 whereas the V dn model agrees with simulations
to ∼ 16% across the range 1 < r(h−1Mpc) < 15 where
the results measured from simulations in different box sizes
has converged. The V dn model conserves the volume rather
than the number of voids and hence implies that the number

density decreases in going from the linear to the nonlinear
regime by the same amount that the volume of the voids
grow. It is somewhat surprising that using the factor of 1.7
in this model, which applies to the expansion of isolated ob-
jects, fits the results from the simulations where voids have
merged as they expand. It is important to test that this is
not just a coincidence but rather is robust to other choices
of parameters in the simulations.

4.2 Underdensity variation

In both the SVdW and V dn models, we adopt the shell
crossing criteria ρv = 0.2ρm for defining the void and match
predictions to ρv as defined by the simple void finder of
Section 3.1. If the agreement between the V dn model and
simulations was robust, we would expect that it would be
preserved for at least small variations in this criteria.

We modify our void finder such that the largest non-
overlapping spherical regions which have densities ρv =
0.3ρm and ρv = 0.4ρm are recovered from the simulations.
The results are shown in the left and right panels of Fig. 6
respectively. The errors plotted in this figure represent the
scatter on the mean from eight simulations.

As discussed in Section 2.2 (see also Fig. A1 and equa-
tion (B1)), changing the underdensity criteria in the spher-
ical evolution model alters the shape of the abundance
function through the linear threshold δv. Specifically, for
ρv = 0.3ρm, δv = −1.8; while for ρv = 0.4ρm, δv = −1.24.

For dark matter voids with ρv = 0.2ρm the predicted
abundance for the V dn model are approximately a factor
of 5 smaller then those of the SVdW model. In modelling
the number density of underdense regions with ρv = 0.3ρm
and ρv = 0.4ρm, which cannot be directly related to shell
crossing in the spherical expansion model, we adopt a phe-
nomenological approach. Given that for ρv = 0.2ρm, the
V dn model has the same shape as the SVdW model but a
factor of ρv/ρm = 1/5 lower amplitude, we can preserve the
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good match there by either following the V dn prescription
literally and rescaling SVdW by ρv/ρm or by simply keeping
this factor fixed at 1/5.

This range is plotted in Fig. 6 as grey shaded regions
bounded by the two limiting cases, black dashed and dotted
lines. Simulation results clearly favor the simple phenomeno-
logical prescription of rescaling the amplitude by 1/5. The
ρv/ρm scaling prescription of the V dn model would over-
predict the amplitude by approximately 1.5 for voids with
ρv = 0.3ρm and 2 for ρv = 0.4ρm. These results again high-
light the point that excursion set models predict the overall
shape of abundance function accurately and only the am-
plitude needs to be altered to fit the simulations results,
here without the benefit of volume conservation as motiva-
tion. Note that the preferred rescaling of 1/5 is more than
sufficient to bring the predictions to a physical void filling
fraction for ρv > 0.2ρm.

4.3 Redshift variation

Next we check the robustness of results to the redshift at
which the void abundance is measured. Fig. 7 shows the
number density of voids as a function of radius at z = 0.5
(blue) and z = 1 (red) measured from the ΛCDM, σ8 = 0.8
simulation. The measured abundances from the three simu-
lation box sizes 64h−1Mpc, 128h−1Mpc and 256h−1Mpc are
the volume-weighted averages and errors over 8 realisations.
The volume conserving (V dn) model is shown as a black
hatched (grey shaded) region using δv = −2.7 at z = 0.5
(z = 1) and the parameter range δc = [1.06, 1.686]. Note
we have used only one colour for the results from the three
simulation boxes at each redshift for clarity in this figure.

We again find that the V dn model works very well in
reproducing the abundance of voids in the dark matter in a
ΛCDM universe at both redshifts, while the SVdW model,
which is not plotted here for clarity, again overpredicts the
abundances by approximately a factor of 5. Fig. 7 shows
that smaller (larger) voids are more (less) abundant at z =
1 compared to z = 0.5 which is also found in the model
predictions at both redshifts.

4.4 Cosmological parameter variation

In order to check if the V dn model for the abundance of
voids works when we change the cosmological model we
have run two simulations of alternative cosmologies to the
standard ΛCDM with σ8 = 0.8 which we discussed in the
previous section. In the first alternative cosmology we have
chosen to modify only the value of σ8 to 0.9, see Table 2; our
second alternative cosmology is an Einstein de-Sitter (EdS)
universe where the matter density parameter Ωm = 1. The
linear perturbation theory power spectra for these simula-
tions were generated using CAMB (Lewis & Bridle 2002)
and normalised to σ8 = 0.9 (σ8 = 0.8) for the ΛCDM (EdS)
simulations in order to generate the initial conditions for
the simulations and the variance σ(R) which is used in the
excursion set model for the abundance.

The measured z = 0 number density of voids with ρv =
0.2ρm in the σ8 = 0.9 and EdS simulations are shown in Fig.
8. The volume conserving model is shown in both panels as
a grey shaded region as in previous plots. We have used the

Figure 7. Redshift dependence of the void abundance with
ρv = 0.2ρm at z = 0.5 (blue) and z = 1 (red) measured
from the ΛCDM, σ8 = 0.8 simulation. The black hatched (grey
shaded) region represent the V dn model using linear underden-
sity values of δv = −2.7 at z = 0.5 (z = 1) for the range
δc = [1.06, 1.686]. Note the measured average abundances and
errors from the 256h−1Mpc, 128h−1Mpc and 64h−1Mpc simu-
lation boxes are the volume-weighted values. Note in this figure
we have plotted the results from the three simulation boxes using
the same colour for clarity.

same value, δv = −2.7, for the linear perturbation theory
underdensity. Note this parameter is different in different
cosmologies, however we find that such a small change in δv
going from an EdS to a ΛCDM universe has a small impact
on the predicted abundance of voids in the excursion set
theory and the main differences arise from the change in the
variance, σ(R) (see Appendix A).

From Fig. 8, it is clear that the volume conserving
model works well in both of these cosmologies and fit the
abundance of voids to within 25% over the range 1 <
r(h−1Mpc) < 15. It is interesting to note the overall de-
crease in the abundance of voids in the dark matter distri-
bution for voids with small radii r < 2h−1Mpc in these two
cosmologies which is most obvious in the measured number
density from the EdS simulation and a larger abundance for
the σ8 = 0.9 cosmology for large r. It is also clear from Fig.
8 (lower) that the excursion set model predicts more squash-
ing of smaller voids due to the void-in-cloud effect but this
is occurring right on the resolution limit of our simulations
at 2 < r(h−1Mpc). Finally note that even if we modified the
SVdW model in the ad hoc manner of Fig. 4 to match the
simulation results of ΛCDM with σ8 = 0.8, the predictions
would be far off simulation results for the EdS cosmology.

4.5 Halo defined voids

Voids in the galaxy population are defined not through the
dark matter density field but by the number density field nh

of the dark matter halos they populate. In this section we use
density minima in the halo number density. Our goal is to
test how faithfully the abundance of voids in the dark matter
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Figure 8. Void abundance for alternate cosmological parameters
at z = 0. Upper: ΛCDM with the initial conditions normalised to
give σ8 = 0.9. Lower: EdS model with σ8 = 0.8 with Ωm = 1. The
grey shaded region shows the V dn model within the parameter

interval δc = [1.06,1.686] and using δv = −2.7.

matches that in the halo populations within the context of
the simple void finder of Section 3.1.

In this section we use the FOF halo catalogues from
the 128, 256, 500 h−1Mpc simulation boxes and the pub-
licly available halo catalogues from the MultiDark and Bol-
shoi simulations (Riebe et al. 2011) which have computa-
tional box sizes of L = 1000h−1Mpc and L = 250h−1Mpc
on a side respectively. These halos have been identified using
the Bound-Density-Maxima algorithm (Klypin & Holtzman
1997). We only use halos which have Vmax > 200km/s and
M > 1 − 2 × 1012h−1M⊙ from the Bolshoi and MultiDark
simulations to ensure that the statistics are robust. We use
the void finder described in Section 3.1 to identify voids in
the distribution of halos which have nv = 0.2nh where nv

is the average number density in the void whereas nh is the
average in the whole simulation. Our final sample consists of

Figure 9. The number density of voids with nv = 0.2nh in the
halo distribution from the 128 (purple), 256 (red), 500 (cyan)
h−1Mpc simulation boxes. The results from the MultiDark (Bol-
shoi) simulation are shown in dark green (blue). The error bars
represent the error on the mean from eight simulations. The er-
rors on the MultiDark simulation represent the Jackknife error on
the mean. The grey shaded region bounded by the black dashed
and dotted line represents the volume conserving model with
δv = −1.24 and varying amplitude as in Fig. 6. The grey solid
line represents the V dn model with δv = −2.7.

5,768 voids using 1.7 ×106 halos from the MultiDark simu-
lation and 4,826 voids using 2.2 ×106 halos from the Bolshoi
simulation. Both of these simulations are of a higher resolu-
tion than the ones we carried out in 128, 256, 500 h−1Mpc
simulation boxes – it is useful to compare the abundance
of voids in the halo population from these simulations to
ours as an indication of the scales at which our results have
converged.

The measured abundance of voids in the halos popula-
tion from our simulations and the Bolshoi and MultiDark
catalogues at z = 0 are shown in Fig. 9. The errors shown
on the results from the 128 (purple), 256 (red), 500 (cyan)
h−1Mpc simulation boxes are measured from the scatter
amongst eight different realisations in each box size. The
errors on the MultiDark simulation were obtained by jack-
knife sampling from each simulation by dividing the sim-
ulation volume into Nsub = 8 equal subvolumes and then
systematically omitting one subvolume at a time in order to
calculate the void abundance on the remaining Nsub−1 vol-
ume. We find that voids identified in this manner through
the halo distribution do not follow the V dn model assum-
ing nv = 0.2nh which corresponds to dark matter voids of
ρv = 0.2ρm. They also do not follow the SVdW model which
would have the same shape but 5 times the amplitude.

Overall Fig. 9 shows that our void finder finds large halo
defined voids that do not correspond to dark matter defined
voids of the same underdensity for r & 10h−1Mpc. Although
it is difficult to compare these results with previous work
due to the large differences in the void finders used, quali-
tatively this agrees with the findings of Benson et al. (2003)
who measured the void probability function from simula-
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Figure 10. Left: A 10 × 50 × 50h−1Mpc slice through the 500 h−1Mpc simulation box centred on a large, r ∼ 21h−1Mpc, void in the
halo population (black dots). The diameter of the void is shown as a dashed grey line and the coloured contours represent the log of
the densify field which has been evaluated on a grid of 2563 points. The red circles represent all the voids in dark matter which have
ρv = 0.2ρm and whose centres are within 10h−1Mpc of the centre of the void in the halo distribution. Right: A 60×14×60h−1Mpc slice
through the 500 h−1Mpc simulation box centred on a large, r ∼ 26h−1Mpc, void in the halo population (black dots). The red circles
represent all the voids in dark matter which have ρv = 0.2ρm and whose centres are within 10h−1Mpc of the centre of the void in the
halo distribution. Note these voids only appear to be overlapping due to the projection effect.

tions and found that the VPF for voids with r > 5h−1Mpc
was much higher for the galaxy catalogues compared to the
dark matter. These results illustrate the fact that there is
not always a 1:1 correspondence between voids in the dark
matter and the dark matter halo distributions and this is es-
pecially pronounced when we define a void as having a fixed
underdensity which is the same for dark matter and halos.

To illustrate the mismatch between the voids which we
find in the dark matter and halo distributions using the same
underdensity criterion, Fig. 10 shows a 10× 50× 50h−1Mpc
(left panel) and a 60 × 14 × 60h−1Mpc (right panel) slice
through the dark matter density field which has been eval-
uated on a grid of 2563 points from the 500 h−1Mpc sim-
ulation box. The coloured contours represent the log of the
density field in each cell and the halos around each void
are represented by black dots. The radius of each void is
r ∼ 21h−1Mpc (left panel) and r ∼ 26h−1Mpc (right panel)
and is shown as a grey dashed line in Fig. 10. The red cir-
cles in this plot show the voids identified in the dark matter
whose centres are within 10h−1Mpc of the centre of the void
in the halo population. Not only is it possible to find more
than one dark matter void which overlaps with the halo void
but the radii of the dark matter voids at which ρv = 0.2ρm
are a lot smaller than the halo voids which satisfy the anal-
ogous criterion.

There are at least two possible ways to reconcile the
V dn predictions for the abundance of dark matter voids with
that of the halo voids. Firstly, a scale dependent modifica-
tion to the barrier in the V dn model could be used to alter
the underdensity threshold used to find voids in the dark
matter. Secondly if we keep a fixed underdensity threshold
to define dark matter voids, it may be possible to find a
scaling of this threshold to define voids in the halo distribu-

tion. These ideas are beyond the scope of this work but see
Furlanetto & Piran (2006) for related ideas.

As a simpler illustration of these ideas, in Fig. 9 we
also plot the V dn model assuming that halo defined voids
of nv = 0.2nh correspond to dark matter defined voids of
ρv = 0.4ρm. These predictions are plotted as a grey shaded
region allowing the amplitude to vary from the predictions
of the V dn model which rescales the SVdW amplitude by
ρv/ρm = 0.4 (black dashed lines) and the rescaling of 1/5
that fits our dark matter voids well as in Fig. 6 (black dotted
line). Compared to the predictions of the V dn model for
dark matter voids of nv = 0.2nh (solid grey line), these black
dashed and dotted curves match the abundance of voids
in the halo populations better though no single rescaling
matches perfectly across the full range.

5 SUMMARY AND CONCLUSIONS

The next generation of galaxy redshift surveys such as Big-
BOSS (Schlegel et al. 2009), Euclid (Laureijs et al. 2011)
and WFIRST (Albrecht et al. 2006; Green et al. 2012) will
allow us to study the large scale structure of our Universe
in ever greater detail. Cosmic voids represent one of the
main components which strongly influence the growth of
clusters, walls and filaments in the mass distribution. Study-
ing the statistics and dynamics of these underdense regions
is a promising way to test the cosmological model and hier-
archical structure formation.

Several challenges which may affect the usefulness of
voids as a probe of cosmology are addressed in this pa-
per, such as, given a survey or numerical simulation of a
given size, how robust are the statistics on the number den-
sity of voids of a given size, how accurately can we pre-
dict the number density of these voids and how faithfully
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do voids in the halo population represent voids in the dark
matter. Using N-body simulations of a ΛCDM cosmology
we test the excursion set model for the abundance of voids
including the model provided by Sheth & van de Weygaert
(2004), which takes into account the void-in-void and void-
in-cloud scenarios. Our void finder makes use of the ZOBOV

(Neyrinck 2008) algorithm which uses Voronoi tessellation
to locate density minima. We define a void as a spherical
region around these minima with ρv = 0.2ρm and make
use of several different computational box sizes so we can
determine the volume and resolution that is needed in or-
der to recover robust statistics for voids of a given size. We
have tested the robustness of our void finder to the following
changes and have found convergent results: using different
simulation boxsizes and particle numbers, using a volume-
weighted centre or the core particle to define the centre of a
void, using all particles around the density minima or only
particles in a zone given by ZOBOV and using only statis-
tically significant voids or voids with a core particle density
< 0.2ρm.

We find that the measured abundance of voids at z = 0
from a ΛCDM simulation does not match the predictions of
the Sheth & van de Weygaert (2004) model, which greatly
overpredicts the results using a linear underdensity of δv =
−2.7. Instead we find a volume conserving model, which is
also based on the excursion set method with δv = −2.7,
matches the measured abundances to within 16% for void
radii 1 < r(h−1Mpc) < 15. This model works remarkably
well and suggests that the number density of voids decreases
in going from the linear to the nonlinear regime by the
same amount that the voids expand. This agreement is ro-
bust to varying the redshift in the ΛCDM model as well
as the underlying cosmology. Using simulations of different
cosmological models, a ΛCDM cosmology with σ8 = 0.9
and a Einstein-deSitter cosmology with Ωm = 1, we find
that the volume conserving model works well and repro-
duces the measured number density from each simulation
to within 25% over the range 1 < r(h−1Mpc) < 15. We
have also tested model predictions for density thresholds
of ρv = 0.3ρm and ρv = 0.4ρm and find that the volume
fraction physicality rescaling factor remains fixed at ∼ 1/5
rather than scaling as ρv/ρm.

Using the number density threshold criteria of nv =
0.2nh in our void finder we have examined the voids in the
halo population from the 128, 256 and the 500h−1Mpc on
a side computational boxes. We also use the Bolshoi and
the Multidark (Riebe et al. 2011) simulations to measure
void abundances. These two simulations are of a higher res-
olution than our simulations and we have confirmed that
our measured void abundances in the halo population agree
with both the MultiDark and Bolshoi measurements. We
find that the number density of voids in the dark matter
halo distribution is very different to that in the dark mat-
ter, with fewer small, r < 10h−1Mpc, voids and many more
large, r > 10h−1Mpc, voids. These results indicate that a
given void in the halo distribution of fixed underdensity of
nv = 0.2nh cannot be unambiguously related to a void in the
dark matter of equal underdensity and in the case that there
is a 1:1 correspondence, the radii at which a dark matter or
halo void have a given underdensity can be very different.

Cosmic voids are a promising and interesting tool which
can be used to test many aspects of the ΛCDM cosmological

model and having an accurate model for the number density
of voids in the Universe represents a first step. In this work
we have presented a model based on the excursion set the-
ory which conserves the volume fraction of voids and works
well at predicting the abundance of voids identified in dark
matter from N-body simulations over a range of scales. Es-
tablishing the relationship between voids in the dark matter
and in the halo or galaxy distribution requires further study.
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APPENDIX A: SPHERICAL EVOLUTION

MODEL

In this Appendix we review the spherical evolution
model which describes the nonlinear evolution of an
un-compensated spherically symmetric tophat underdense
(overdense) perturbation. To illustrate the physics, we will
use the spherical tophat model in Einstein-de Sitter cosmol-
ogy as an example, which is analytically solvable until shell
crossing.

Consider an initial spherical tophat density perturba-
tion (|δ0| ≪ 1) of physical radius R0 at ai = a(ti). We can
think of the perturbation as composed of concentric mass
shells, labeled by their initial physical radii Ri at ai. Let
∆(Ri, a) denote the average overdensity of the region en-
closed by the mass shell Ri. Then its initial value is

∆i(Ri) ≡ ∆(Ri, ai) =

{

δ0 Ri 6 R0,
δ0(R0/Ri)

3 Ri > R0.
(A1)

For brevity we omit the Ri argument of ∆i below. According
to Birkhoff’s theorem, the evolution of the mass shell Ri

only depends on the total mass inside Ri, but not the mass
distribution or the mass outside. Thus the shell Ri evolves
in the same way as a FLRW universe

[

Ṙ(t;Ri)

R(t;Ri)

]2

= H2
i

[

(1 + ∆i)

(

Ri

R

)3

−
5

3
∆i

(

Ri

R

)2
]

, (A2)

where R(t) is the physical radius, and initial conditions are
set to the growing mode in linear theory. By introducing the
dimensionless conformal time

dη =
Ri

R

√

∣

∣

∣

∣

5

3
∆i

∣

∣

∣

∣

Hidt , (A3)

we can solve equation (A2) in a parametric form (to leading
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order in ∆i)

R

Ri
≃

1

2

∣

∣

∣

∣

5

3
∆i

∣

∣

∣

∣

−1
{

(cosh η − 1) δ0 < 0,

(1− cos η) δ0 > 0;
(A4)

Hit ≃
1

2

∣

∣

∣

∣

5

3
∆i

∣

∣

∣

∣

−
3
2

{

(sinh η − η) δ0 < 0,

(η − sin η) δ0 > 0.
(A5)

Given this evolution of mass shells, we are particularly
interested in shell crossing for the expansion case (δ0 < 0),
which is usually seen as a characteristic event that signifies
the formation of the void at a nonlinear level. Note that these
solutions represent a family of trajectories labeled by Ri

and parametrized by ηRi . We can find out when and where
shell crossing first occurs by differentiating the parametrized
solutions with respect to Ri and η, and requiring that dR
and dt vanish, for Ri > R0

[

A11 A12

A21 A22

] [

dRi/Ri

dη

]

= 0, (A6)

where

A11 = 2

∣

∣

∣

∣

5

3
∆i

∣

∣

∣

∣

−1

(cosh η − 1),

A12 =
1

2

∣

∣

∣

∣

5

3
∆i

∣

∣

∣

∣

−1

sinh η,

A21 =
9

4

∣

∣

∣

∣

5

3
∆i

∣

∣

∣

∣

−
3
2

(sinh η − η),

A22 =
1

2

∣

∣

∣

∣

5

3
∆i

∣

∣

∣

∣

− 3
2

(cosh η − 1). (A7)

For this homogeneous system of linear equations to have
nonzero solutions, we must have detA = 0. Thus we derive
the shell crossing condition

sinh η (sinh η − η)

(cosh η − 1)2
=

8

9
. (A8)

Shell crossing first happens at ηsc = 3.488 among the bound-
ary shells, i.e., Ri = R0 in the above criterion. At shell cross-
ing, the void interior has a relative density

1 + ∆sc ≃
9

2

(sinh ηsc − ηsc)
2

(cosh ηsc − 1)3
= 0.2047 , (A9)

which implies that the void has expanded by a factor of
(1 + ∆sc)

−1/3 = 1.697 in comoving radius. Note that these
numbers do not depend on the size of the void.

To calculate the linear theory prediction of the void
underdensity at shell crossing δv, we expand R(t) to the
first order with the help of the parametric solution (A4)
and (A5), for Ri 6 R0

R

Ri
=

a

ai

[

1−
δ0
3

(

3

2
Hit

) 2
3

+ · · ·

]

, (A10)

the first order of which gives the linear underdensity

δ = δ0

(

3

2
Hit

) 2
3

≃ −
3

20

[

6(sinh η − η)
]2/3

. (A11)

Thus the linear underdensity at shell crossing is

δv = δ(ηsc) = −2.717 . (A12)

Note this number is different in different cosmologies, e.g

δ v
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fit
-2.5

-2

-1.5

-1

-0.5

 0

re
l. 

 e
rr

or

r / rL

0.0%

0.1%

 1  1.1  1.2  1.3  1.4  1.5  1.6

Figure A1. Linear underdensity as a function of void expansion
factor (exact: dot-dashed line, fit of equation (B1): blue solid line).
Also shown is the physicality constraint from requiring that the
total volume fraction in voids from equation (14) remain less than
unity in SVdW model for the least stringent value of δc = 1.06
(shaded region). Only as |δv| → 0, where the regions are at the
mean density and do not expand, does the model regain physi-
cality. Bottom panel shows fractional error in the fit.

it is δv = −2.731 for ΛCDM. However we find that such a
small change in δv going from an EdS to a ΛCDM universe
has a small impact on the predicted abundance of voids in
the excursion set theory. Also note the value for δv for the
EdS universe quoted in Sheth & van de Weygaert (2004) is
−2.81 which was based on an approximate calculation and
not on an exact treatment of the evolution of a tophat un-
derdensity.1

Similarly, for the spherical collapse model

δ = δ0

(

3

2
Hit

) 2
3

≃
3

20

[

6(η − sin η)
]2/3

. (A13)

The well-known turn-around and virialization of halos occur
at ηta = π and ηvir = 2π, leading to δc = 1.062 and δc =
1.686 respectively. For the ΛCDM model these become δc =
1.303 and δc = 1.674, for turnaround and collapse at z = 0.
The EdS range encompasses that of the ΛCDM parameters
and so in the main text we have adopted the EdS parameters
to show the full range of possibilities.

Finally note that these linear density thresholds δv and
δc, which are to be used in the excursion set formalism, are
independent of the size of the structures.

1 R. Sheth, private communication
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APPENDIX B: SVDW MODEL

MODIFICATIONS

In this Appendix we explore modifications of the SVdW
model prescription and approximations introduced in
Sheth & van de Weygaert (2004). The spherical evolution
model relates the linear underdensity δ to nonlinear under-

density ∆, or alternatively to r/rL = (1 +∆)−
1
3 , where r is

the void radius r = R(t;R0)/a(t) and rL the linear radius
rL = R0/ai. If we relax the criterion for defining a void to
correspond to underdense regions that have undergone shell
crossing, there is additional freedom in defining the void
abundance as a function of radius so long as δv and r/rL are
chosen self-consistently.

We show this relation before shell crossing for the EdS
model in Fig. A1. The relation is well fit to (Bernardeau
1994)

δv ≈ c[1− (r/rL)
3/c] = c[1 − (ρv/ρm)−1/c], (B1)

where c = 1.594, with errors below 0.2%. Also shown is the
maximum r/rL, constrained by requiring the total volume
fraction in voids from equation (14) be less than 1, in the
SVdW model. Clearly this constraint depends on δc, which
in the plot is chosen to be the least stringent value 1.06 in
the expected range. Note that no choice of δv and r/rL is
physical for they all violate the total volume condition. In
the main text, we also considered ad hoc modifications of
the model where δv and r/rL are considered unrelated.

Sheth & van de Weygaert (2004) also utilised an ap-
proximation to the exact prediction for the abundance func-
tion of equation (6) which introduces notable errors for
scales where the void-in-cloud process dominates and con-
sequently the total volume fraction. Their approximation

flnσ(σ) ≈

√

2ν

π
exp

(

−
ν

2

)

exp

(

−
|δv|

δc

D2

4ν
− 2

D4

ν2

)

, (B2)

where ν = δ2v/σ
2(M), had a stated realm of validity of

δc/|δv| > 1/4 or D < 4/5. Unfortunately, this approximation
has uncontrolled errors at ν ≪ 1, exactly where the void-in-
cloud process operates as shown in Fig. B1. Our piecewise
approximation is accurate at the 0.2% level or better every-
where. Note that the errors and smoothness of our approxi-
mation can be improved at the transition point by a suitable
interpolation between the two piecewise curves though it is
not necessary for this work.
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