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The surface of last scattering of the photons in the cosmic microwave background is not a spherical
shell. Apart from its finite width, each photon experiences a different gravitational potential along
its journey to us, leading to different travel times in different directions. Since all photons were
released at the same cosmic time, the photons with longer travel times started farther away from
us than those with shorter times. Thus, the surface of last scattering is corrugated, a deformed
spherical shell. We present an estimator quadratic in the temperature and polarization fields that
could provide a map of the time delays as a function of position on the sky. The signal to noise of
this map could exceed unity for the dipole, thereby providing a rare insight into the universe on the
largest observable scales.

I. DISTANCE TO THE LAST SCATTERING
SURFACE

The theory of general relativity dictates that particles
traveling through gravitational potential wells experience
time delays [1]. If two photons are emitted at the same
time, then they will travel different distances depending
upon the potential Φ through which they travel. In the
cosmological context of an expanding, spatially flat back-
ground, the fractional difference in comoving distance D∗
to a source at redshift z∗ is

d(n̂) = − 2

D∗

∫ D∗

0

dDΦ (Dn̂; t(D)) , (1)

where t(D) is the age of the universe when the photon is a
comoving distance D from us, and we use the space-time
metric convention

ds2 = −(1− 2Φ)dt2 + a2(1 + 2Φ)d~x2 (2)

with a(t) the scale factor. Note the sign in Eq. (1): if
photons pass through an over-dense region where Φ >
0, then they experience a time delay and therefore they
arrive from a closer distance than the unperturbed last
scattering surface1.

Photons that comprise the cosmic microwave back-
ground (CMB) experience these same time delays or ad-
vances [2] where z∗ is the redshift corresponding to the
last scattering surface. Since photons do not decouple in-
stantaneously from the electron-proton plasma, the sur-
face of last scattering is often said to have a finite width,
and a more accurate expression for the fractional differ-
ence in distance traveled is

d(n̂) = 2

∫ ∞
0

dz e−τ(z)Kd(z)Φ (D(z)n̂; t(z)) , (3)

1 There is also a geometric time delay that is typically of the same
size for a single lens but is much smaller here on the large scales
of interest.

where H(z) is the Hubble expansion rate; Kd(z) =

−(H(z)D∗)
−1 and D∗ =

∫∞
0
dz′e−τ(z′)/H(z′). Here τ is

the optical depth, ignoring reionization, which becomes
very large at times smaller than the epoch of last scat-
tering, t∗ or equivalently when z > z∗.

This directional-dependent change in the distance to
last scattering implies that the last scattering surface is
not a simple spherical shell. There are two other well-
studied phenomena that undercut the notion that the
photons in the CMB freely streamed to us from a in-
finitely thin last scattering sphere. First, since the mean
free path at recombination was finite, the last scattering
surface has a finite width, and this is accounted for in
all computations of CMB anisotropies. Second, the pho-
tons in the CMB experience angular deflections as they
traverse the inhomogeneous universe [3, 4] and this effect
has been exploited by recent experiments [5–9] that make
maps of the projected gravitational potential.

Although deflections and delays are two different phe-
nomena, they share some similarities, especially in the
case of the CMB. Both are determined by the integrated
potential along the line of sight, although with slightly
different kernels, as depicted in Figure 1: the integrated
potential φ that determines deflections has the same form
as the right-hand side of Eq. (3) with

Kφ(z) =
D∗ −D(z)

D(z)D∗H(z)
. (4)

The corresponding auto and cross power spectra are
shown in Figure 2. It is clear that they are highly an-
ticorrelated, so as a first approximation, we might view
the maps of the lensing potential created for example in
Aghanim et al. [9] as maps of distance to the last scat-
tering surface. Another similarity, one that has not yet
been exploited, is that the quadratic estimator formal-
ism [3] can be applied to the delays as well, and this is
what we will do in this paper. We start though with the
rather daunting facts that the RMS fractional distance
differences are a factor of ten smaller than the RMS an-
gular deviations and their impact on CMB power spectra
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is even smaller [2]. Further, while the latter peaks at de-
gree scales, the former peak on the largest scales where
cosmic variance is higher.
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FIG. 1. Kernel that weights the integral of the gravitational
potential for the time delay examined here and the more care-
fully studied deflection angle.
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FIG. 2. Power spectra for the lensing deflection potential
(φφ), fractional distance (dd) and deflection-distortion cross

correlation (φd). Dashed line means CφdL is negative.

II. EFFECT OF DISTANCE CHANGES ON THE
CMB

The observed temperature in a given direction Θobs(n̂)

is the undistorted temperature Θ̃(n̂) plus the deflection
due to gravitational lensing plus a term proportional to
the small fractional difference d(n̂). Linearizing these

distortions, we obtain

Θobs(n̂) = Θ̃(n̂) +∇iφ(n̂)∇iΘ̃(n̂) +
∂Θ̃(n̂)

∂ lnD
d(n̂), (5)

where D is the distance to the radiation sources, here
mainly D = D∗ the distance to recombination. We shall
see below that we can express this radial derivative in
terms of operations on the radiation transfer function.
In harmonic space we can write

Θobs
lm = Θ̃lm + δΘdefl

lm + δΘdist
lm (6)

with the two first order terms due to deflection and the
change in distance equal to

δΘdefl
lm =

∑
LM

∑
l′m′

0I
mMm′

lLl′ Θ̃l′m′φLM ,

δΘdist
lm =

∑
LM

∑
l′m′

0J
mMm′

lLl′
∂Θ̃l′m′

∂ lnD
dLM . (7)

Notice that both effects couple the undistorted tempera-
ture field to the observed temperature field at a different
multipole. Here, we have written the integral over the
product of three spherical harmonics as 0I and 0J to
enable generalization to the case of polarization, which
involves spin s = 2 harmonics. The general expression is

sI
mMm′

lLl′ = (−1)m
(

l L l′

−m M m′
)
sFlLl′ , (8)

sJ
mMm′

lLl′ = (−1)m
(

l L l′

−m M m′
)
sGlLl′ ,

with

sFlLl′ ≡
[
L(L+ 1) + l′(l′ + 1)− l(l + 1)

]
×
√

(2l + 1)(2L+ 1)(2l′ + 1)

16π

(
l L l′

s 0 −s

)
,

sGlLl′ ≡
√

(2l + 1)(2L+ 1)(2l′ + 1)

4π

(
l L l′

s 0 −s

)
. (9)

Note the extra two powers of the multipoles in the func-
tion F that governs deflection; these follow from the fact
that both the temperature and the potential are differ-
entiated with respect to transverse position on the sky.
By contrast, the radial derivative that governs the im-
pact of the time delay, or change in distance to the last
scattering surface, appears in Eq. (7) as the logarithmic

derivative of the undistorted coefficients Θ̃LM .
As in the case of the effect of deflections on the CMB,

the varying distances to the last scattering surface leads
to correlations between l-modes that differ from one an-
other. First let us define the power spectrum of the undis-
torted fields

C̃ΘΘ
l =

2

π

∫ ∞
0

k2dkPRT
Θ
l (k)TΘ

l (k), (10)

where TΘ
l (k) is the radiation transfer function and PR

is the power spectrum of the initial comoving curvature
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field R. Note that the transfer function is a radial in-
tegral over the sources at a distance D, projected onto
multipole moment l. We proceed as in Ref. [3] by focus-
ing on the expectation of off-diagonal (l1,m1 6= l2,m2)
terms quadratic in the observed moments:

〈Θobs
l1m1

Θobs
l2m2
〉 =

∑
LM

(−1)M
(
l1 l2 L
m1 m2 −M

)
×
[
φLMfl1Ll2 + dLMgl1Ll2

]
, (11)

where

fl1Ll2 ≡
[
C̃ΘΘ
l1 0Fl2Ll1 + C̃ΘΘ

l2 0Fl1Ll2
]
,

gl1Ll2 ≡
[
C̃ΘΘ,d
l1 0Gl2Ll1 + C̃ΘΘ,d

l2 0Gl1Ll2
]
. (12)

The change in distance to the last scattering produces
the spectrum

C̃ΘΘ,d
l ≡ 2

π

∫ ∞
0

k2dkPRT
Θ
l (k)TΘ,d

l (k). (13)

This expression is identical to Eq. (10) other than the
replacement of one of the transfer functions with

TΘ,d
l ≡ ∂TΘ

l

∂ lnD
, (14)

where the derivative is taken inside of the integrals over
the radiation sources by modifying the public CAMB
code. The two spectra are shown in Fig. 3.

To clarify the meaning of these terms, consider the
large scale limit where the temperature source is the
Sachs-Wolfe effect on the recombination surface at D∗,
Θ = R/5. Then

TΘ
l (k) =

1

5
jl(kD∗), TΘ,d

l (k) =
1

5

∂jl(kD∗)

∂ lnD∗
. (15)

More generally the modification to CAMB involves re-
placing the appropriate Bessel function kernel of the
source projection with its log derivative [2].

Note the difference between the two off diagonal cor-
relations in Eq. (11). Each involves a derivative. The
one that governs deflections, f , involves a derivative with
respect to the transverse directions so F as defined in
Eq. (9) has more powers of l than does G. The func-
tion that governs changes in distances involved a radial

derivative, and this shows up in the spectrum C̃ΘΘ,d
l .

The correlation between different l-modes enables us,
following Ref. [10], to extract information about the fields
causing these correlations by forming quadratic estima-
tors out of the observed temperature fields for both the
gravitational potential responsible for deflections and the
fractional distance field:

φ̂LM = AL
∑
l1m1

∑
l2m2

(−1)M
(
l1 l2 L
m1 m2 −M

)
×hφl1l2(L)Θobs

l1m1
Θobs
l2m2

,

d̂LM = BL
∑
l1m1

∑
l2m2

(−1)M
(
l1 l2 L
m1 m2 −M

)
×hdl1l2(L)Θobs

l1m1
Θobs
l2m2

, (16)
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FIG. 3. Spectra of CMB temperature anisotropies and the
logarithmic derivative of that spectrum with respect to the
distance to the last scattering surface as defined in Eq. (13)

where

hφl1l2(L) ≡ fl1Ll2
2Cl1Cl2

,

hdl1l2(L) ≡ gl1Ll2
2Cl1Cl2

, (17)

and

AL ≡ (2L+ 1)

{∑
l1l2

hφl1l2(L)fl1Ll2

}−1

,

BL ≡ (2L+ 1)

{∑
l1l2

hdl1l2(L)gl1Ll2

}−1

. (18)

With these definitions, 〈φ̂LM 〉 = φLM when dLM = 0

and 〈d̂LM 〉 = dLM when φLM = 0, where the average
is over the undistorted CMB fields given fixed distortion
fields. To provide an optimistic bound on detectability of
the delay distortion, we ignore the cross contamination
of the estimators for the time being. We return to this
issue in Sec. IV.

The noise on these estimators is now given by the pref-
actors AL and BL, so

〈d̂LM d̂∗L′M ′〉 = δLL′δMM ′
(
CddL +BL

)
(19)

with the first term on the right the signal and the second
the noise. Fig. 4 shows the signal and noise at each L for
several experimental configurations. Here, and through-
out, the largest lmax we consider is 7000, as this seems
to be within range being considered for a CMB-Stage 4
experiment (see Table 4.1 of Ref. [11]).

An estimate of the detectability of this signal can be
obtained by computing the projected error, σd, on the
amplitude Ad of the power spectrum AdCddL , where the
fiducial model has Ad = 1. Approximating the noise as
Gaussian gives(

1

σd

)2

=

∞∑
L

(2L+ 1)fsky

2

(
CddL

CddL +BL

)2

, (20)
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where fsky is the fraction of sky covered by the measure-
ments. Fig. 4 shows that most of the signal comes from
the lowest L-modes, particularly L = 1. However, even
for a full-sky experiment and the most optimistic noise
projections, the auto power spectrum CddL will not be
measurable using temperature only.

100 101

L
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10 8

10 7

L(
L

+
1)

C L
/2

Cdd
L
BL

2L + 1
 no detector noise

BL

2L + 1
 detector noise with = 1′

BL

2L + 1
 detector noise with = 4′

FIG. 4. Signal (decreasing blue curve) due to the dis-
torted surface of last scattering and the noise using the
quadratic estimator constructed from the small scale temper-
ature anisotropy (ΘΘ in the notation of Table 1) for several
different experimental configurations. Most optimistic is no
noise out to lmax = 7000; the other two noise curves have
sensitivity of 1µK-arcmin and beam size. θFWHM = 1′ or 4′.
Here, fsky is set to one.

III. POLARIZATION

The estimator above used only the temperature
anisotropy field, but the polarization field contains even
more information about the lensing potential that gov-
erns deflection and distance changes. This was worked
out in detail by Ref. [10] for deflection, and we follow
their notation here. There are now three fields of inter-
est: temperature Θ, and the two fields associated with
polarization, E and B. With letters a, b each ranging
over these three fields, we have

〈aobs
l1m1

bobs
l2m2
〉 =

∑
LM

(−1)M
(
l1 l2 L
m1 m2 −M

)
×
[
φLMf

α
l1Ll2 + dLMg

α
l1Ll2

]
. (21)

The functions fα and gα are the generalizations of
Eq. (12) to include polarization (Eq. (12) now corre-
sponds to α = ΘΘ). The full set of fα was determined by
Ref. [10] and is reproduced in Table 1, which now includes
the full set of gα that govern the impact of changing ra-
dial distances. Note that

C̃abl ≡
2

π

∫ ∞
0

k2dk PR(k)T al (k)T bl (k) (22)

denotes the power spectra of the undistorted fields with
T al as the radiation transfer function for the field a and

C̃ab,dl ≡ 2

π

∫ ∞
0

k2dk PR(k)
T al (k)T b,d(k) + T a,dl (k)T bl (k)

2
(23)

with

T a,dl ≡ ∂T al
∂ lnD

(24)

again computed by modifying CAMB. See Ref. [12] for a
more detailed discussion. Note that the angular deflec-
tion coefficients fα do not carry superscript d because
the derivatives are transverse and therefore captured by
powers of `.

α fαl1Ll2 gαl1Ll2
ΘΘ C̃ΘΘ

l1 0Fl2Ll1 + C̃ΘΘ
l2 0Fl1Ll2 C̃ΘΘ,d

l1 0Gl2Ll1 + C̃ΘΘ,d
l2 0Gl1Ll2

ΘE C̃ΘE
l1 2Fl2Ll1 + C̃ΘE

l2 0Fl1Ll2 C̃ΘE,d
l1 2Gl2Ll1 + C̃ΘE,d

l2 0Gl1Ll2
EE C̃EEl1 2Fl2Ll1 + C̃EEl2 2Fl1Ll2 C̃EE,dl1 2Gl2Ll1 + C̃EE,dl2 2Gl1Ll2
ΘB iC̃ΘE

l1 2Fl2Ll1 iC̃ΘE,d
l1 2Gl2Ll1

EB i
[
C̃EEl1 2Fl2Ll1 − C̃BBl2 2Fl1Ll2

]
i
[
C̃EE,dl1 2Gl2Ll1 − C̃BB,dl2 2Gl1Ll2

]
BB C̃BBl1 2Fl2Ll1 + C̃BBl2 2Fl1Ll2 C̃BB,dl1 2Gl2Ll1 + C̃BB,dl2 2Gl1Ll2

TABLE I. Explicit forms for f anb h of various polarizations.
Notice that for ΘΘ, ΘE, EE and BB polarization these func-
tions are “even”; for ΘB and EB polarization they are “odd”
instead. “Even” and “Odd” indicate that the functions are
non-zero only when l1 + l2 + L are even or odd, respectively.

An estimator can now be constructed for each of the
pairs of fields, so letting α denote pairs of fields (ab), we
have

d̂αLM = (−1)MBαL
∑
l1m1

∑
l2m2

(
l1 l2 L
m1 m2 −M

)
×hα,dl1l2(L)aobs

l1m1
bobs
l2m2

, (25)

where the minimum variance weights h are generaliza-
tions of Eq. (18)

h
α=(ab),d
l1l2

(L) =
Caal2 C

bb
l1
gα∗l1Ll2 − (−1)L+l1+l2Cabl1 C

ab
l2
gα∗l2Ll1

Caal1 C
aa
l2
Cbbl1 C

bb
l2
− (Cabl1 C

ab
l2

)2
.

(26)
Note that in the special cases α = aa

h
α=(aa),d
l1l2

(L) =
gα∗l1Ll2

2Caal1 C
aa
l2

. (27)

and when Cabl = 0 (e.g., for ΘB or EB),

hα,dl1l2(L)→
gα∗l1Ll2
Caal1 C

bb
l2

. (28)

The covariance of these quadratic estimators

〈d̂α∗LMd
β
L′M ′〉 ≡ δLL′δMM ′

[
CddL +Nd,αβ

L

]
(29)
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with Gaussian noise given by

Nd,αβ
L =

Bα∗L BβL
2L+ 1

∑
l1l2

{
hα,d∗l1l2

(L)
[
Cacl1 C

bd
l2 h

α,d
l1l2

(L)

+(−1)L+l1+l2Cadl1 C
bc
l2 h

β,d
l2l1

(L)
]}

(30)

with α = (ab), β = (cd). For α = β, Eq. (30) reduces

to Nd,αα
L = BαL. Armed with these expressions, we can

form a minimum variance estimator

d̂mv
LM =

∑
α

ωd,α(L)d̂αLM (31)

with weights and variance given by

ωd,α(L) = Nd
L

∑
β

(Nd,−1
L )αβ

Nd
L =

1∑
αβ(Nd,−1

L )αβ
(32)

where (Nd,−1
L )αβ are the elements of the inverse of the

delay noise matrix given by Eq. (30), with matrix indices
given by quadratic combinations. Here and below we de-
note the noise of the minimum variance combination with
no indices for simplicity. Analogous expressions with the
superscript φ apply for the lens potential estimators.

We saw in Fig. 4 that small scale temperature maps
only are not sufficient to detect this signal convincingly.
To assess the added information contained in the polar-
ization field, we show the detectability in the form of σd
for the lowest L-modes (L 6 5, which contributes essen-
tially all of the signal) as a function lmax for a noiseless
experiment in Fig. 5.

3 × 103 4 × 103 5 × 103 6 × 103 7 × 103

lmax
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 estimator
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minimum variance estimator

FIG. 5. Detectability of the spectrum of the time delay signal,
σ−1
d , using Eq. (20) for different quadratic estimators as a

function of the largest mode, lmax accessed. Here we set fsky

to be 1.

Here we keep lmin fixed at 1000 for the CMB fields (we
tested that our final results are insensitive to this choice)

and let lmax vary. We can see that at lmax ≈ 5000, the
minimum variance estimator detectability reaches 1, and
at 7000 is 1.42 but of course this is for the most optimistic
of configurations. Note that unlike the minimum variance
lensing estimator, the deflection estimator gets little con-
tribution from EB. This is because the conversion of E
modes to B modes is inefficient in the squeezed limit
where L � l1, l2, as reflected in the difference between
L + l1 + l2 even and odd configurations of the Wigner
3j symbols, and that the B modes from lensing provide
an intrinsic floor to detectability even in the absence of
undistorted B modes from gravitational waves.

IV. CROSS POWER SPECTRUM

The auto-spectrum of the distortion field, d, will ap-
parently be very challenging to extract. Another possi-
bility is to cross-correlate the quadratic estimator for the
distortion field with other fields that are well-measured.
Cross-correlations can be more easily detected if the two-
fields are highly correlated and one of the fields can be
detected with high signal to noise. Note from Figure 2

that CφdL is negative and comparable to the auto spectra
and so the two fields φ and d are highly anticorrelated.

As a first attempt, we consider the cross correlation
of the d-field with the φ-field responsible for deflections.
Without further optimization, the cross-spectrum for the
α = ab and β = cd quadratic estimators is

〈φ̂α∗LM d̂
β
LM 〉 = CφdL +N c,αβ

L , (33)

where the superscript c stands for cross. The noise in
the estimators is also correlated because both estimators
come from the quadratic combinations of same observ-
ables

N c,αβ
L =

Aα∗L BβL
(2L+ 1)

∑
l1l2

{
hα,φ∗l1l2

(L)
[
Cacl1 C

bd
l2 h

β,d
l1l2

(L)

+(−1)L+l1+l2Cadl1 C
bc
l2 h

β,d
l2l1

(L)
]}
. (34)

We can also construct the analogous noise cross spectrum
for the separate minimum variance weighted estimators
for φ and d using the weights of Eq. (32)

N c
L =

∑
αβ

ωd,α(L)ωφ,β(L)N c,αβ
L . (35)

Assuming the noise is Gaussian, we can estimate the
fractional error on the measurement of the amplitude of

the cross spectra Cφdl from these minimum variance es-
timators as

1

σ2
cross

=

Lmax∑
L=1

(2L+ 1)fsky (36)

×
(CφdL )2

(CφdL +N c
L)2 + (CφφL +Nφ

L)(CddL +Nd
L)
.
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We show this quantity in Fig. 6 where we have set fsky =
1. We see that in this ideal case, S/N could reach about
2.5. There are many other lens, and more generally large-
scale structure tracers, that delay reconstruction can be
correlated with. However the noise here is dominated by

Nd
L, which is common to all such correlations, not Nφ

L or
N c
L.
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FIG. 6. The detectability of the cross power spectrum of
the distance distortion field and the potential inducing de-
flections as a function of Lmax (with lmax = 7000). Unlike
the auto-spectrum, there is signal out to Lmax ∼ 100, but the
contributions to the detectability plateau after that, so the
best that can be hoped for with this cross spectrum is a 2.2σ
detection.

Up until this point, we have assumed that the estima-
tors of φ and d are not contaminated by the other so as
to provide the most optimistic bound on detectability of
the delay distortion. Since the cross power spectrum is
potentially measurable at low S/N we conclude by esti-
mating this contamination.

We can define the cross contamination by generalizing
the computation in Eq. (18) to retain the distortion in-
duced by φ on the estimator of d and vice versa from
Eq. (11) for the average over CMB modes

〈d̂αLM 〉 ≡ dLM + φLME
α
L

√
CddL
CφφL

,

〈φ̂αLM 〉 ≡ φLM + dLMF
α
L

√
CφφL
CddL

, (37)

where E and F measure the expected fractional contami-
nation to each estimator in units of their uncontaminated
signal rms

EαL

√
CddL
CφφL

=

∑
l1l2

hα,dl1l2(L)fαl1Ll2∑
l1l2

hα,dl1l2(L)gαl1Ll2

=
N c,αα
L

Nφ,αα
L

,

FαL

√
CφφL
CddL

=

∑
l1l2

hα,φl1l2(L)gαl1Ll2∑
l1l2

hα,φl1l2(L)fαl1Ll2

=
N c,αα
L

Nd,αα
L

. (38)

We can then compute minimum variance estimator
contaminations using Eq. (31) as

EL =
∑
α

ωd,α(L)EαL,

FL =
∑
α

ωφ,α(L)FαL . (39)

In Fig. 7 we show the relative contamination fields E
and F for the minimum variance estimators of d and φ
respectively. The relative contamination E for d is large
and increases with L, reflecting the similar structures in
the mode coupling of Eq. (8) but with extra factors of
L for φ. Conversely, the relative contamination F for
φ decreases with L: FL=1 ≈ −0.24, FL=2 ≈ −0.05. In
principle lensing estimators should be corrected for this
effect at the lowest L. While in the regime relevant to
current measurements, the delay contribution to the lens
reconstruction is entirely negligible.

If these cross contamination contributions are not re-
moved at the reconstruction level, then the auto and cross
spectrum measurements become biased since

〈φ̂mv∗
LM φ̂mv

LM 〉 =

1 +
(F ∗L + FL)CφdL√

CφφL CddL

+ F ∗LFL

CφφL +Nφ
L ,

〈d̂mv∗
LM d̂mv

LM 〉 =

1 +
(E∗L + EL)CφdL√

CφφL CddL

+ E∗LEL

CddL +Nd
L,

〈φ̂mv∗
LM d̂mv

LM 〉 = (1 + F ∗LEL)CφdL +

√
CφφL CddL (F ∗L + EL)

+N c
L. (40)

The large contributions from E dominate the contamina-
tion of the delay auto and cross spectra. For the F con-

tamination to Cφφl measurements, even at the L = 1, the
renormalization factor in the brackets is about 1.3 and
converges to unity rapidly with L. To the extent that
noise and cross contamination can be neglected in the
φ lensing measurements, the E bias can in principle be
removed at the d reconstruction level without increasing
sample variance for the power spectra. In practice this
would involve iterating the estimators. However given
that the mode coupling forms of Eq. (8) are similar but
not identical, especially in the different structures for Cabl
and Cab,dl , reweighting the (L, l1, l2) triangles to reduce
the contamination would be more optimal. Given the rel-
atively low S/N for even perfect removal, we leave these
studies to a future work.

V. CONCLUSIONS

The last scattering surface of the CMB is not purely
spherical due to the different travel times experienced
by photons as they traverse the inhomogeneous gravi-
tational potential. In principle, these distortions in the
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FIG. 7. Cross contamination E for the fractional contribution
of φ to the d estimator and F for the converse. E and F are
both negative.

distance to different directions is detectable, but we con-
clude here that the standard auto-correlation techniques
will not be sufficient to enable detection in the near fu-
ture. There is the possibility of cross-correlating a map of
the distance distortions constructed with the quadratic
estimators introduced here with another map of a closely
related integrated potential and extracting the signal in
that way. Indeed, this was the way that the transverse
distortions in the CMB were first detected [5]. Here, we
have considered the cross-correlation signal between the
distance distortion and the standard transverse deviation
maps and concluded that even an all-sky experiment with
superior angular resolution would be detect the combina-
tion of auto and cross-spectra at less than 3-sigma. We
leave exploration of other cross-correlations and the re-
moval of cross contamination between lensing and delay
estimators to future work.

To conclude, we emphasize that a measurement of the
matter density on the largest observable scales, which is
what a detection of the distance-distortion spectrum (ei-
ther in auto- or cross-) would provide, carries the poten-
tial for enormous insight into the standard cosmological

model. The apparent acceleration of the universe is of
course a very large scale effect that remains a mystery.
Inflation too is deeply embedded in the standard cosmo-
logical model and clues to it – or its replacement – might
be found by studying the universe on the largest of scales.
Over the past decades, a number of large scale anoma-
lies have emerged (see, e.g., the first section of Hansen
et al. [13] for a review of the anomalies) and many ideas
for models that might be responsible have emerged. A
measurement of CMB deflections and time delays on the
largest observable scales could help us either identify one
such model or cast further doubt on the standard cosmo-
logical model.

Beyond the statistical limitations described in this pa-
per, there are two caveats to the excitement of hunting for
large scale physics by studying the distance-distortion.
The first is the trivial comment that the deflection spec-
trum itself carries larger signal to noise even on the
largest scales (although not by much, and of course two
different measurements would be extremely worthwhile).
More important is a physics question regarding the L = 1
mode, the mode that carries the most signal to noise in
the distance-distortion spectrum. In different contexts,
there have been arguments that the dipole is suppressed
by other effects [14, 15]. A simple understanding of a
large scale gradient in the gravitational potential (i.e., a
dipole) would be that all matter experiences the same
force and therefore velocity. A simple thought experi-
ment of this “bulk motion” universe suggests that there
would still be time delays of the sort described in this
paper and the deflections that have been studied previ-
ously. However, this may be neglecting other effects that
lead to cancellations. This issue too we leave for further
study.
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