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Linear halo bias is the response of dark matter halo number density to a long wavelength fluctu-
ation in the dark matter density. Using abundance matching between separate universe simulations
which absorb the latter into a change in the background, we test the consistency relation between
the change in a one point function, the halo mass function, and a two point function, the halo-matter
cross correlation in the long wavelength limit. We find excellent agreement between the two at the
1 � 2% level for average halo biases between 1 . b̄

1

. 4 and no statistically significant deviations
at the 4 � 5% level out to b̄

1

⇡ 8. The separate universe technique provides a way of calibrating
linear halo bias e�ciently for even highly biased rare halos in the ⇤CDM model. Observational vi-
olation of the consistency relation would indicate new physics, e.g. in the dark matter, dark energy
or primordial non-Gaussianity sectors.

I. INTRODUCTION

Dark matter halos, which host observable galaxies and
galaxy clusters, are biased tracers of the underlying dark
matter density field of the large-scale structure of the
Universe [1]. Therefore understanding the mass, red-
shift, and scale dependence of halo bias is important
for extracting cosmological information, on e.g. dark en-
ergy, massive neutrinos and the statistics of the primor-
dial perturbations [2–5], from ongoing and future wide-
area galaxy surveys such as the Dark Energy Survey [6],
Dark Energy Spectrograph Instrument [7], the Subaru
HSC/PFS Survey [8][9], and ultimately LSST [10], Eu-
clid [11] and WFIRST [12].

Whereas near the nonlinear scale, a single definition
of halo bias does not su�ce due to a host of e↵ects that
influence the clustering of halos ([13, 14], see [15] for a
recent review), the linear response of dark matter halos to
the dark matter density field is much better understood.
In particular, under the peak-background split approach
[16], the halo bias can be modeled through the halo mass
function. Under the assumption that it is a universal
function of the variance of the dark matter density field,
this provides a simple expression for halo bias [17–22].

More directly, halo bias can be measured from the
cross-correlation of halos with the dark matter distri-
bution in the large scale limit – the clustering bias
[2, 21, 23, 24]. Previous works [21, 25–27] have shown
that the universal mass function bias approximates the
clustering bias, at least at the 10% level, but were in-
conclusive beyond this level partly because the two bi-
ases were not always self-consistently estimated from the
mass functions and the clustering correlations in same
simulations. Refs. [25, 26] even claimed evidence for in-
consistency near this level. Consistency between the bias
and the mass function is important for dark energy tests
that utilize both the abundance and clustering of halos
(e.g. [28, 29]).

In this paper we consider a related but alternative way
of understanding and calibrating linear halo bias. As in
the peak-background split approach, linear halo bias is
modeled as the response of the number density of halos,
or halo mass function, to a change in the background dark
matter density field. Unlike the universal mass function
implementation, this linearized change in the background
is modeled throughout the whole past temporal history of
the density fluctuation using the separate universe simu-
lation approach developed in Refs. [30, 31] [see also 32–
35]. The induced change in the mass function yields the
response of halo number densities to the background dark
matter density, or “response bias”. Defined in this way,
the response bias is quite general in a sense that it does
not assume the universality of halo mass function and it
includes all the e↵ects of mergers and mass accretion that
are correlated with the background density mode. It can
also be easily extended to baryonic and galaxy formation
e↵ects using simulations that include them.

We furthermore use a consistent set of simulations to
address whether the response bias matches the cluster-
ing bias, and also compare the results with the univer-
sal mass function bias in Ref. [21]. Observational vi-
olation of this consistency relation would indicate new
physics where the dark matter, dark energy, primordial
non-Gaussianity or other e↵ects provide alternate means
of producing a mass function response to the dark matter
density fluctuation.

The outline of this paper is as follows. In §II, we define
response bias and clustering bias in a ⇤CDM cosmology,
give a brief review of the separate universe simulation,
and then propose the abundance matching method for
calibrating the response bias. We present results and
tests of the consistency of response and clustering biases
in §III. We discuss the results in §IV. In the Appendix
we present robustness checks on the bias results.
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II. HALO BIAS

A. Halo response vs. clustering bias

Dark matter halos of a given mass M are biased tracers
of the underlying dark matter density field. On large
scales where the dark matter density fluctuations � =
�⇢

cdm

/⇢
cdm

are still in the linear regime |�| ⌧ 1, we can
think of biasing as the linearized response of the halo
number density to changes in the dark matter density,
implicitly of some linear wavenumber k,

b
1

(M) ⌘
@�

h

@�
=

@ ln n
lnM

@�
, (1)

where the mass function n
lnM

(M) is the di↵erential num-
ber density of halos per logarithmic mass interval. We
will call this quantity the “response bias”.

This definition of linear density bias is quite general as
it includes any e↵ect that is correlated with the change in
�. For example the halo density in a given mass range can
change due to mass accretion, minor mergers, and ma-
jor mergers. A change in � could also be correlated with
changes in the dark energy or massive neutrino density
that could likewise influence halo numbers through their
impact on the history of structure formation, e.g. the
halo accretion and merger history [4, 36–38]. Intrinsic
non-Gaussian correlation between long wavelength ini-
tial curvature fluctuations and small scale power in the
density field can also change the response in a scale de-
pendent way [2].

On the other hand, we can define the linear density
bias directly via cross-correlation of halos with the cold
dark matter distribution:

b
1

(M) = lim
k!0

P
h�

(k; M)

P
��

(k)
, (2)

where

h�⇤
h

(k)�(k0)i = (2⇡)3�(k� k

0)P
h�

(k),

h�⇤(k)�(k0)i = (2⇡)3�(k� k

0)P
��

(k). (3)

We will call this form for b
1

“clustering bias”. Eqs. (1)
and (2) characterize the same physical quantity since the
mass function response can come from any e↵ect that
is correlated with �. Uncorrelated changes in the halo
density, e.g. from stochasticity in the bias, can a↵ect the
autocorrelation of halos but by definition do not change
the cross-correlation.

In this paper we focus on the most fundamental re-
sponse, that of the direct influence of the long wavelength
dark matter density fluctuation on the halo number den-
sity in the ⇤CDM cosmology with Gaussian initial condi-
tions. The critical assumption that we seek to test is the
extent to which this local number density depends only
on the local mean dark matter density. In this case the
equivalence of Eqs. (1) and (2) forms a consistency rela-
tion between the change in a one point function, the halo
mass function, and a two point function, the halo-matter

cross correlation in the long wavelength limit. Valida-
tion of this consistency relation would allow two alter-
nate means of calibrating bias in simulations. Observa-
tional tests of this consistency can in principle uncover
new physics beyond ⇤CDM where the dark matter, dark
energy or primordial non-Gaussianity provide alternate
means of producing a mass function response to �.

Specifically, as detailed in the next section, we will
use separate universe (SU) simulations to test this con-
sistency relation. In this approach, the fluctuation in
the dark matter density is characterized by changes
to cosmological parameters or spatially constant back-
ground densities to match the mean fluctuation �

b

= �.
This should be compared with the well-known peak-
background or universal mass function approach to quan-
tifying b

1

through the mass function n
lnM

. Here it is
assumed that the mass function can be described as a
universal function of the peak height ⌫ = �

c

/�(M), the
ratio of the collapse threshold of halos �

c

relative to the
rms linear density fluctuations in a radius that encloses
the mass M at the background density �(M). Chang-
ing the collapse threshold via shifting the background
�
c

! �
c

� �
b

, then changes the number density of halos
providing the model for b

1

through Eq. (1).
While the separate universe approach shares the idea of

characterizing � as a change in the background �
b

, it does
not rely on the existence of a universal mass function or
the idea of a strict threshold for collapse of dark matter
halos. All types of responses of the mass function to
the background, including the highly nonlinear processes
of the merger history of halos, etc., are automatically
included in the simulations. Although we only test N -
body e↵ects and dark matter halos here, this in principle
applies to baryonic e↵ects and galaxy tracers through
simulations that incorporate them.

B. Separate universe technique

To calibrate numerically the response of halo mass
function to a background mode, we use the separate
universe (SU) simulation technique [30–33]. We follow
Ref. [30] and refer the reader there for details.

In summary, the long-wavelength density fluctuation
�
b

is absorbed into the background density ⇢̄
mW

of a
separate universe:

⇢̄
mW

= ⇢̄
m

(1 + �
b

), (4)

where the quantities with subscript “W” denote the
quantities in separate universe.

The separate universe consequently has a di↵erent ex-
pansion history, and accordingly we need to change cos-
mological parameters for the flat ⇤CDM cosmology, to
the first order of �

b

, as

�h

h
⌘

H
0W

� H
0

H
0

= �

5⌦
m

6

�
b

D
, (5)
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where the linear growth rate is normalized as lim
a!0

D =
a. Since �

b

/D is independent of time the SU is character-
ized by a simple constant shift in parameters. Similarly
the other parameters need to be changed to

�⌦
m

⌦
m

=
�⌦

⇤

⌦
⇤

= ��⌦
K

= �2
�h

h
. (6)

Thus in the presence of a �
b

> 0, the properties of smaller
scale structures including the abundance of halos experi-
ence the accelerated growth of a closed universe.

Finally, the separate universes have to be compared at
the same time which corresponds to a di↵erent value of
the scale factor

a
W

' a

✓
1 �

�
b

3

◆
. (7)

Because of this di↵erence, the SU simulations are most
naturally set up as a Lagrangian approach where the
simulation volumes match in their comoving rather than
physical volume (cf. [30] for an alternative method that
matches physical volumes at a specific time). This splits
the response of the mass function into two pieces. The
first corresponds to the change due to the growth of struc-
tures, including processes such as shell crossing, mass ac-
cretion and merger of halos

bL

1

(M) ⌘
@ ln nL

lnM

@�
b

=
@ ln n

lnM

@�
b

���
V

c

, (8)

where |

V

c

denotes the response at fixed comoving vol-
ume. “L” superscripts refer to that fact that this general-
izes the concept of Lagrangian bias to the whole volume
rather than individual N-body particles or halos. The
second is due to the change in the physical volume and
hence physical densities due to Eq. (7) or

@ ln a3

W

@�
b

= �1. (9)

The sum of these two e↵ects is then the Eulerian response
bias

b
1

(M) ⌘ bL

1

(M) + 1. (10)

It is important to note that this is a definition and hence
is exact, rather than an approximation that relies on halo
number conservation. This is the growth-dilation deriva-
tive technique developed in Ref. [31] as applied to the
mass function response. Calibrating the response bias
with separate universe simulations therefore amounts to
determining the derivative of the Lagrangian mass func-
tion nL

lnM

with respect to the background density fluctu-
ation �

b

in Eq. (8).

C. Abundance matching

Much of the response of the Lagrangian mass function
nL

lnM

to �
b

comes from small changes in the mass of in-
dividual halos rather than a change in the net number of
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b

FIG. 1. Abundance matching relates the number density weighted
bias above threshold mass M

th

to the shift of that threshold. The
halo abundance above M

th

grows in proportion to the bias func-
tion when increasing �

b

, which we can compensate by moving M
th

accordingly. This figure graphically illustrates Eq. (14).

halos in the volume. Therefore measuring the response
by binning halos into finite mass ranges is very ine�-
cient since the mass change associated with a small �

b

only shifts the mass bin of halos near bin edges.
Given the pairs of SU simulations with the same Gaus-

sian random fields, in principle the same halos could be
identified in each and the response calculated from the
average change in the mass. However, in practice the
identity of halos can be easily a↵ected by mergers. Even
for those halos for which a one-to-one correspondence ex-
ists, their change in mass is not uniquely determined by
M due to di↵erences in the environment around halos of
the same M which introduces scatter into the mapping.
This suggests that we need to find a statistic that does
not rely on a one-to-one correspondence between SU ha-
los in mass whose ensemble average recovers the desired
response in numbers.

Abundance matching of the cumulative number den-
sity or mass function of halos above a given mass thresh-
old M

th

provides such a statistic [39, 40]. Defining

n(M
th

; �
b

) ⌘

Z 1

M

th

dM

M
nL

lnM

(M ; �
b

), (11)

we change the threshold M
th

(�
b

) to keep the cumulative
number density in the comoving volume fixed when vary-
ing �

b

dn(M
th

; �
b

)

d�
b

= 0. (12)

We use (. . . ; p) to denote a quantity for which we omit
the parameter p where no confusion should arise.

Abundance matching balances two e↵ects to keep the
number density the same, as illustrated in Fig. 1. The
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first is the boundary e↵ect of halos moving across a
threshold shifted by s due to the change in d�

b

d lnM
th

⌘ s(M
th

) d�
b

. (13)

The second is the integrated change in the mass function
itself, which is the e↵ect we want to extract for estimat-
ing response bias. Abundance matching sets these to be
equal:

nL

lnM

(M
th

)s(M
th

) =

Z 1

M

th

dM

M

@nL

lnM

@�
b

, (14)

which also follows algebraically from Eq. (11) and
Eq. (12).

Measuring the mass shift s associated with matching
the abundance therefore provides a way of estimating the
average response bias above threshold

b̄L

1

(M
th

;1) ⌘
1

n(M
th

)

Z 1

M

th

dM

M
bL

1

nL

lnM

=
1

n(M
th

)

Z 1

M

th

dM

M

@ ln nL

lnM

@ �
b

nL

lnM

=
nL

lnM

(M
th

) s(M
th

)

n(M
th

)
. (15)

We emphasize that such an estimation of the response
bias does not rely on any assumption on the universality
of halo mass function.

Note that measuring this quantity also defines the av-
erage bias in a finite mass bin

b̄L

1

(M
1

; M
2

) ⌘

R
M

2

M

1

dlnM bL

1

nL

lnMR
M

2

M

1

dlnM nL

lnM

=
nL

lnM

(M
1

)s(M
1

) � nL

lnM

(M
2

)s(M
2

)

n(M
1

) � n(M
2

)
. (16)

In the limit that M
2

! M
1

from above this quantity
is simply the Lagrangian bias or mass function response
itself bL

1

(M
1

) and is equivalent to replacing the formal
definition in terms of derivatives

bL

1

(M) = �

@s

@lnM
� s

@ ln nL

lnM

@lnM
. (17)

with a finite di↵erence approximation. Since the clus-
tering bias also must be explicitly estimated from finite
mass binning it is in fact Eq. (16) that should be directly
compared with it. As a shorthand convention and for
comparison with the universal mass function approach
we plot the average bias in a bin as

bL

1

(M) ⇡ b̄L

1

(M
1

; M
2

) (18)

using the average mass of halos in the bin

M ⌘

R
M

2

M

1

dlnM MnL

lnMR
M

2

M

1

dlnM nL

lnM

. (19)

Following our notational convention, we also take

b̄L

1

(M) = b̄L

1

(M ;1) (20)

when no confusion will arise.
To measure these response bias quantities directly,

we need the estimators of the cumulative mass function
n(M), the threshold mass shift s(M) and the di↵erential
mass function nL

lnM

(M) in the Lagrangian volume. We
consider their explicit construction in the next section.

III. METHODOLOGY AND RESULTS

In this section we describe the methodology to cali-
brate the model ingredients needed to estimate response
and clustering halo biases using suites of simulations in
the fiducial cosmology and its separate universe pairs.
We then show the main results that establish their con-
sistency.

A. Simulations

We simulate the fiducial ⇤CDM cosmology specified in
Tab. I. Each pair of separate universe simulations have
the same realizations of the initial Gaussian random den-
sity field, in order to reduce the sample variance in the
change of the mass function.

⌦
m

⌦
b

h n
s

�
8

0.310 0.04508 0.703 0.964 0.785

TABLE I. Parameters of baseline flat ⇤CDM model [5].

We set up the initial conditions using CAMB [41, 42],
and 2LPTIC [43], with 10243 particles at a

i

= 0.02.
We then employ L-Gadget2 [44] with 20483 TreePM
grid to produce the simulations. For calibrating re-
sponse bias we employ N

sim

= 32 simulations with
V

c

= (500 Mpc/0.703)3 for each of 3 �
b

= 0,±0.01 at
z = 0. The separate universe variations all have the
same comoving volume V

c

in Mpc3 (see §II B).
The �

b

= ±0.01 pairs are used in abundance match-
ing and the �

b

= 0 simulations are used to calibrate the
mass function (see §II B). Since measuring clustering bias
for rare high mass halos requires more numbers than re-
sponse bias, we supplement these with N

sim

= 25 simu-
lations with V

c

= (1 Gpc/0.703)3 fiducial simulations at
�
b

= 0. The particle masses for the two box sizes are
1.4 ⇥ 1010M� or 1.1 ⇥ 1011M� respectively which limits
the minimum halo mass that we can robustly identify as
we shall now discuss.

B. Halo finding and catalog

While the choices made in halo finding can a↵ect the
mass function and bias results, for tests of the correspon-
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dence between SU response bias and clustering bias, what
is important is that we apply the same halo finding tech-
nique to each. In practice, we use an algorithm similar to
that in Ref. [45] to identify halos as spherical overdense
regions centered around local density peaks as we now
describe.

We first locate local density maxima by assigning par-
ticles to a 10243 grid, using the nearest-grid-point (NGP)
scheme. We find local density maximum grid points that
are denser than their 6 immediate neighbors. Starting at
the center of mass associated with each local maxima, we
grow a halo until the enclosed mass reaches an e↵ective
overdensity of

�
W

=
�

1 + �
b

=
200

1 + �
b

(21)

defining a trial radius r
tr

. The 1 + �
b

factor makes sure
that the spherical overdensity is 200 times the global
mean matter density. We refine the center of the halo
by locating the center of mass iteratively in shrinking
radii from r

tr

/3 to r
tr

/15 or until only 20 particles re-
main. We then regrow the halo around this center until
the overdensity criteria Eq. (21) is exactly satisfied, with
sub-particle resolution. To achieve this, we assume the
mass of the last particle is uniformly distributed in a
spherical mass shell lying between the last two particles
and interpolate to the exact radius r. The mass of all
particles within r gives the halo mass M .

Each simulation provides a catalog of the positions and
masses of these halos. We ignore halos with < 100 par-
ticles when creating the catalog. We retain halos with
100-400 particles to eliminate edge e↵ects in the mass
function determinations below but only report results for
halos with � 400 particles [45] (see also §A 2). To remove
subhalos in the catalog, starting from the most massive
halos, we compare pairs of halos in descending order in
mass, and discard the smaller halo of the pair if the center
of one resides in the other.

C. Halo mass functions and mass shift

As discussed in §II C, we measure the response bias
through an abundance matching technique to reduce the
shot noise in its determination. This technique requires
us to estimate the cumulative and di↵erential mass func-
tion in the fiducial model as well as the mass shift from
matching the ±�

b

pairs of SU simulations. We show here
that these can be robustly estimated without binning the
halo catalogs in mass. Coarse binning would miss the
small changes in mass due to �

b

whereas fine binning
would be subject to severe shot noise.

We start by combining the halo catalogs of all N
sim

simulations of the same �
b

and V
c

into a single halo
catalog ordered from highest to lowest mass i > j for
M

i

< M
j

with total number N
tot

. We construct a table
for the cumulative abundance above a given mass object

101

102

103

104

105

m
as

s
fu

n
ct

io
n
s

[G
p
c�

3

]

T08 n
T08 n

lnM

smooth n
smooth n

lnM

1013 1014 1015

M [M�]

-5%

0

5%

re
l.

d
i↵

.
FIG. 2. Cumulative (thick solid green) and di↵erential (thin
solid blue) mass functions at z = 0 calibrated by penalized spline
smoothing the cumulative number density of all (500Mpc/h)3 fidu-
cial simulations. Shaded regions show the standard deviation of
bootstrap resamples. The T08 fitting mass functions [45] (dashed
black) are also shown for reference with the lower panel showing
the di↵erence for each case.

in the catalog as

lnM = [ln M
1

, . . . ln M
N

tot

]T,

n =
[1/2, . . . , N

tot

� 1/2]T

N
sim

V
c

, (22)

which we will denote as the data vector n(lnM; �
b

, V
c

).
Here we count the halo with mass M

i

as one half above
and one half below M

i

due to discreteness, and recall V
c

is the comoving volume in Mpc3 and is fixed in the SU
simulations when varying �

b

.
Next we construct a data vector of mass shifts by abun-

dance matching. Since we have rank ordered the vector
from highest to lowest mass, at a given i, the abundances
match by definition

n
i

(ln M+

i

; +�
b

, V
c

) = n
i

(ln M�
i

;��
b

, V
c

), (23)

but relate to di↵erent masses. Note that the total length
of the vectors can di↵er and so the matching stops at
i = min(N+

tot

, N�
tot

). We then form the elements of the
mass shift data vector as

s
i

=
ln M+

i

� ln M�
i

2�
b

,

ln M
i

=
ln M+

i

+ ln M�
i

2
, (24)

which we denote as s(lnM; V
c

).
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1013 1014 1015

M [M�]

0

1

2
s

FIG. 3. Threshold mass shift as a response of varying �
b

at fixed
cumulative abundance at z = 0. Solid blue line and shaded region
show the smoothed estimate and the bootstrap error.

We then estimate the underlying smooth functions
n̂(ln M ; �

b

= 0, V
c

) and ŝ(ln M ; V
c

) from these data vec-
tors using the penalized spline technique described in de-
tail in §A 1, with 2 spline knots per dex in mass

ln n̂(lnM) = S

�
lnn(lnM)

 
, (25)

ŝ(lnM) = S{s(lnM)}, (26)

where S{} denotes the smoothing operator. Finally we
estimate the di↵erential mass function as the derivative
of n̂(ln M)

n̂
lnM

(lnM) = �

dn̂(lnM)

dlnM
. (27)

Using mock catalogs drawn from a known mass function,
we demonstrate in §A 1 that the bias of estimators in
Eqs. (25) and (27), if any, is better than sub-percent level
and much smaller than the statistical error. To quantify
the statistical error, we sample with replacement from
the N

sim

simulations to make a bootstrap resampled con-
struction of n̂, ln n̂

ln M

and ŝ. By repeating this proce-
dure 100 times, we measure the bootstrap error as the
standard deviation of the resamples.

We present the mass function measurement in Fig. 2 as
well as the fitting function from Ref. [45], with the latter
labeled as “T08” in this paper. Their di↵erence is consis-
tent with the stated precision of the fitting formula but
is typically much larger than the bootstrap error. Fig. 3
shows mass shift estimate from all pairs of separate uni-
verse simulations. The bootstrap error is of order of a few
percent or better over mass range 6⇥1012

⇠ 2⇥1015 M�.
Note the turn located between 1014 M� and 1015 M� cor-
responds to the transition between polynomial and expo-
nential regions in halo mass function in Fig. 2.

D. Response vs. clustering bias

From the estimates of the mass functions and the shift
of threshold mass, we construct the response bias cumu-
lative from a threshold b̄

1

(M) = b̄
1

(M ;1) using Eq. (15)
as shown in Fig. 4. We compare this result to the uni-
versal mass function prediction for b

1

(M) from Ref. [21]
integrated over the self-consistent mass function from
Ref. [45]. Our results are systematically low by ⇠ 2%
at the low mass end and di↵er by up to 6% at the high
mass end.

In Fig. 5, we show the average bias in 5 logarithmically
spaced mass bins per dex plotted as b

1

(M) = b̄
1

(M
1

; M
2

)
using Eq. (16) and (18). We compare this to the un-
binned b

1

(M) from Ref. [21] for reference.

To calibrate clustering bias, we follow Eq. (2), and
measure the auto matter power spectrum P

��

and the
cross halo-matter power spectrum P

h�

. We bin halos in
either the same 5 logarithmic mass bins per dex or cumu-
lative above threshold, and assign the particles or halos
in each bin to a 2563 grid with the cloud-in-cell (CIC)
scheme, and apply the FFT before deconvolving the CIC
window.

For halos in a mass bin [M
1

, M
2

] we can estimate the
clustering bias following Eq. (2)

b̄
1

(M
1

, M
2

) =

P
|k|<k

max

h�⇤
h

(k)�(k)i
P

|k|<k

max

h�⇤(k)�(k)i
, (28)

where the average is over the N
sim

simulations of the
same volume. This quantity matches its response bias
analogue in Eq. (16) since linearity in �

h

implicitly
weights the statistic by number density. We only use
large-scale modes up to k

max

= 0.03 h/Mpc, and show
the scale dependence on k

max

in §A 2. We conclude that
k
max

is at most a source of systematic error that is com-
parable to our statistical error.

Given the lack of high mass halos in the (500Mpc/h)3

simulation volumes, we combine these estimates with the
(1Gpc/h)3 simulations according to the expected inverse
shot variance weight, i.e. 8 times higher weight for the
larger volume simulations down to their 8 times higher
minimum mass. In §A 2, we show results from the two
sets separately to test for resolution and volume e↵ects.
To estimate the errors, we bootstrap resample with the
N

sim

of each set.

We compare the clustering and response bias in Figs. 4
and 5. The agreement in the 1 . b̄

1

. 4 region is an ex-
cellent 1� 2%. For the higher bias of rarer halos the sta-
tistical errors for both quantities increase but the agree-
ment is better than the 4� 5% level for b̄

1

. 8. The bias
in mass bins is slightly noisier but still consistent within
the bootstrap errors for 1 . b

1

. 8.
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FIG. 4. Average bias for halos with mass > M . Solid blue line and
shaded area show the response bias with bootstrap errors whereas
dashed red line and shaded area show the same for clustering bias.
Dotted line shows the bias of T10 [21] integrated over the mass
function of T08 [45] for comparison.

IV. DISCUSSION

Linear halo bias is the response of the halo number
density to a change in the long-wavelength dark mat-
ter density as manifest in the cross correlation between
the clustering of halos and the dark matter. In this pa-
per we have used the separate universe (SU) simulation
technique to calibrate the response bias of halos, by treat-
ing the long-wavelength density mode as a change in the
background density in a separate universe. By using pairs
of SU simulations with the same realizations of the initial
Gaussian random seeds, we can reduce sample variance
e↵ects when comparing the mass functions in two sepa-
rate universes.

Rather than comparing the mass functions at each
mass bin in the SU simulations, we introduced an alter-
native method, the abundance matching method for the
comparison, where we adjust the mass threshold so as to
have the same cumulative abundance of halos above the
mass threshold in the separate universes. We show how
to calibrate the response bias from the mass threshold
shift and the mass functions. The method can robustly
extract the e↵ect of subtle changes in the mass of individ-
ual halos, caused by the di↵erent merger and accretion
histories in the paired SU simulations.

We found agreement between the response and cluster-
ing biases at the 1�2% level for average biases 1 . b̄

1

. 4
and find no significant deviations at the 4�5% level out to
b̄
1

⇠ 8. This excellent agreement provides a precise test

1

10

b 1

T10

response

clustering

1013 1014 1015

M [M�]

-0.1

0

0.1

re
l.

d
i↵

.
FIG. 5. Average bias for halos in mass bins. Blue + points show
the response bias with bootstrap errors at bin center and red ⇥
points show the same for clustering bias. Dotted line shows the
universal mass function bias of T10 [21].

of the consistency relation between the changes in a one-
point function, the halo mass function, and a two-point
function, the halo-matter cross-correlation in the large-
scale limit that can in principle test for new physics in the
dark matter, dark energy or primordial non-Gaussianity
sectors. Our results are systematically lower than the
bias in T10 [21] by 2% and di↵ers by up to 6% at high
mass end. T10 derived the halo bias based on the peak-
background split approach assuming the universality of
halo mass function.

Our method can be easily extended to including other
e↵ects in halo bias beyond flat ⇤CDM cosmology. It
would be straightforward to apply SU techniques in cos-
mological hydro-simulations for studying e↵ects of bary-
onic physics on large-scale halo bias. Further, massive
neutrinos and/or dark energy change the growth of long-
wavelength dark matter perturbation, and will in turn
cause changes in the response of halo mass function.
The primordial non-Gaussianity causes additional mode-
coupling between the long- and short-wavelength modes,
inducing a characteristic scale-dependent e↵ect on halo
bias at large scales [2]. Di↵erent halos of the same mass
can have di↵erent large-scale bias if the halos experience
di↵erent assembly histories – the so-called assembly bias
[36, 46]. A generalization of SU simulation technique can
give a better handle on calibrating these modifications
in halo bias by reducing the sample variance e↵ects for
both the long wavelength and short wavelength modes.
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Appendix A: Robustness of techniques

In this appendix we describe our smoothing procedure,
and demonstrate its robustness when applied as a mass
function estimator in §A 1. We test the dependence of
clustering bias on k

max

, resolution and volume in §A 2.

1. Spline smoothing robustness

The halo abundance and mass shift measured from a
simulation is defined at a discrete set of masses of its con-
stituent halos. Instead of the commonly adopted method
that bins the noisy data in mass, instead smooth the cu-
mulative mass function and mass shift, and demonstrate
its advantage and robustness below.

Among all the twice di↵erentiable function estimate
of the our discrete observations (x

i

, y
i

), i = 1, . . . , n, we
look for the f(x) = f̂(x) that minimizes

nX

i=1

⇥
y

i

� f(x
i

)
⇤
2

+ �

Z
xn

x

1

f 00(x)2 dx. (A1)

The first term is the residual sum of squares which en-
courages f̂(x) to fit the data well, while the second one
is a penalty term that suppresses variability. The non-
negative smoothing parameter � controls the trade-o↵
between fidelity and smoothness, or bias and variance.
When � = 0 the resulting f̂(x) becomes the interpolat-
ing spline, while � ! 1 it converges to the linear least
squares.

It can be shown that the solution that minimizes
Eq. (A1) is a natural cubic spline with knots at x

i

(see
e.g. [47]), known as a smoothing spline. This procedure
is nonparametric, but is computationally intense for a
large number of data points. In practice we can greatly
improve the performance and avoid overfitting by using
a smaller number of knots. This latter approach is some-
times referred to as penalized spline.

Consider the function estimates of the form

f(x) = �T

b(x) ⌘
mX

j=1

�
j

b
j

(x), (A2)

where b

T(x) ⌘ [b
1

(x), . . . , b
m

(x)] are the basis functions
for natural cubic splines with m knots. So we can write
Eq. (A1) in terms of the bases

��
y �B�

��2 + ��T

⌦�, (A3)

where B
ij

⌘ b
j

(x
i

) and ⌦
jk

⌘

R
b00
j

(x)b00
k

(x) dx, with
i = 1, . . . , n, and j, k = 1, . . . , m. The coe�cients
�T

⌘ [�
1

, . . . , �
m

] that minimize Eq. (A3) are

�̂ =
�
B

T

B + �⌦
��1

B

T

y, (A4)

and thus our function estimate

f̂(x) = b

T(x)
�
B

T

B + �⌦
��1

B

T

y

⌘ S{y(x)}, (A5)

where S{} denotes the smoothing operator that maps
discrete data to the estimate of a continuous function.
And the fitted values at x

T

⌘ [x
i

, . . . , x
n

] are

ŷ ⌘ f̂(x) = Sy, (A6)

where matrix S ⌘ B

�
B

T

B + �⌦
��1

B

T acts linearly on
the data y

T

⌘ [y
i

, . . . , y
n

].
To avoid either overfitting or over-smoothing, we

choose the smoothing parameter � by cross-validation.
Specifically, the criterion of the leave-one-out cross-
validation (LOOCV) is widely used [47]. In LOOCV, we
successively take each data point i as a validation point
for the smoothing operation trained on the remaining
n � 1 data points. We choose the value of � that mini-
mizes the sum over the squared residuals for these points,

nX

i=1

⇥
y

i

� f̂
(�i)

�

(x
i

)
⇤
2

=
nX

i=1


y

i

� f̂
�

(x
i

)

1 � [S
�

]
ii

�
2

, (A7)

where the superscript (�i) indicates the fit leaving the
ith observation (x

i

, y
i

) out, and the subscript
�

makes
the �-dependence explicit. The equality in Eq. (A7) [47]
allows this procedure to be performed without explicitly

obtaining f̂
(�i)

�

for each point.
In the main text, we utilize this penalized spline

method to smooth discrete data sets, including halo cat-
alogs in fiducial simulations and shift of threshold mass
when matching the abundance between paired separate
universe simulations. This procedure avoids problems
with binning halos in mass as well as taking derivatives
of noisy data.

To verify the robustness, we test our smoothing esti-
mator on mock data, drawn from a known distribution.
For this purpose, we use the fitting formula for halo mass
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FIG. 6. Robustness of smoothing procedure verified by compar-
ing smoothed abundance estimates from 1000 mocks drawn from
the fitting mass function T08 [45] to the function itself (solid).
We generate each mock catalog for halos between 1.4 ⇥ 1012 M�
and 1016 M�, in an volume of 4Gpc3/h3 same as that of all fidu-
cial (500Mpc/h)3 simulations combined. Lines and shaded regions
show mean and scatter of the estimated cumulative (thick green)
and di↵erential (thin blue) mass functions.

function in [45] to generate 1000 mock catalogs. The min-
imum mass in the catalogs is 1.4⇥ 1012 M�, correspond-
ing to the smallest halos that our halo finder keeps (100
particles). We also introduce a maximum mass 1016 M�
since there is a negligible probability of obtaining even
one such halo in the ⇤CDM cosmology. We populate
catalogs with total number N̂

halo

drawn from a Poisson
distribution, with mean as the mean number of halos in
a volume of 4Gpc3/h3, same as that of all fiducial sim-
ulations combined. For each halo in the catalog, we use
the inverse cumulative distribution function algorithm to
draw its mass and form a realization of the cumulative
number density n

i

(ln M
i

).
We employ the smoothing algorithm described above

to provide an estimate of the underlying smooth function
n̂(ln M) from the discrete data. The smoothing function
needs to handle both the polynomial and exponential re-
gions of the mass function. To achieve this, we take the
natural logarithm of both the cumulative number density
n

i

and the mass M
i

, i = 1, . . . , N̂
halo

, before applying the
smoothing operation in Eq. (A5) with 2 knots per dex in
mass

ln n̂(lnM) = S

�
lnn(lnM)

 
, (A8)

where n̂(lnM) is the function estimate. Thus we can
estimate the mass function by taking derivative of the

0.005 0.01 0.02 0.05

k
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[Mpc�1]
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5

cl
u
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g
b 1
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1014

1015

M [M�]

FIG. 7. Dependence of clustering bias calibration on k
max

, in the
V
c

= (500Mpc/h)3 simulations (solid, shaded) and V
c

= (1Gpc/h)3

(dashed, hatched) at z = 0. Shown are the mean and bootstrap
errors for the 0.2dex mass bins centered from 7.9⇥1012 M� to 1.2⇥
1015 M�. Larger k

max

gives more modes and thus smaller variance,
but also introduces bias due to scale dependence approaching the
nonlinear scale. We choose to use modes below the dashed line (see
text for discussion of robustness).

smooth cumulative mass function estimator

n̂
lnM

(lnM) = �

dn̂(lnM)

dlnM
. (A9)

Note that we include halos with 100 � 400 particles for
smoothing, to avoid the enhanced error near the edge,
but only trust and present results for halos with � 400
particles.

We set up the robustness test to exactly parallel to our
estimation of halo mass functions. Fig. 6 shows that the
bias of the smoothing estimator, if any, is at sub-percent
level, much smaller than the statistical error per catalog.

2. Clustering bias robustness

The calibration of clustering bias depends on the k
max

cut on the large scale modes as well as the resolution
and volume of the simulations. Repeating the bias esti-
mation in Eq. (28) with di↵erent k

max

, we present the
scale dependence in Fig. 7 for V

c

= (500 Mpc/h)3 and
V

c

= (1Gpc/h)3 separately. As k
max

approaches the non-
linear scale the bias increases with k

max

for the most mas-
sive halos, and slightly decreases for . 1013 M� halos,
similar to the trend demonstrated in Fig. 2 of Ref. [48].
These trends are also stable between the two volumes
which have di↵erent mass resolutions.

In the main text, we compromise between losing modes
and increasing the statistical errors and using more
modes but increasing the systematic bias by choosing
k
max,fid

= 0.021 Mpc�1. Taking the measurement with
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FIG. 8. Clustering bias robustness to simulation volume V
c

=
(500Mpc/h)3 (small) and (1Gpc/h)3 (large). Overlapping points
show the level of robustness to the 400 particle criteria for the
minimum halo mass in the large volume and fluctuations due to
the lack of high mass halos in the small volume.

this choice as the fiducial values, we can quantify the
possible systematic bias of using a di↵erent k

max

by the
deviation averaged over mass bins

1

N
bin

N

binX

i

⇥
b
1

(M
i

; k
max

) � b
1

(M
i

; k
max,fid

)
⇤
2

�
b

1

(M
i

; k
max,fid

)2
. (A10)

For V
c

= (500 Mpc/h)3, the k-range where this av-
erage variance is below 1 is from 0.013 Mpc�1 to
0.03 Mpc�1; for V

c

= (1 Gpc/h)3, a very similar range
from 0.015 Mpc�1 to 0.035 Mpc�1. Given the substantial
range in the linear regime over which results are stable,
we conclude that systematic error due to k

max

is at most
comparable to our statistical error.

With the fiducial k
max,fid

= 0.021 Mpc�1 we show in
Fig. 8 the results for b

1

(M) of the two volume types
separately. In the main text we combined the volumes
(cf. Fig. 5). For most of the mass bins, the clustering
bias measured from the large (1Gpc/h)3 volume simula-
tions agrees well with that from the small (500 Mpc/h)3

ones, confirming that 400 particles are enough to resolve
halos for estimating clustering bias. The small volume
estimates fluctuate substantially at the high mass end
due to having very few high mass halos in such vol-
umes. In fact the high point at ⇠ 8 ⇥ 1014M� can
be traced back to Fig. 7 as a statistical fluctuation of
the k

max,fid

= 0.021 Mpc�1 modes that is not present at
higher k

max

.
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