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Early dark energy (EDE), whose cosmological role is localized in time around the epoch of matter-
radiation equality in order to resolve the Hubble tension, introduces a new coincidence problem: why
should the EDE dynamics occur near equality if EDE is decoupled from both matter and radiation?
The resolution of this problem may lie in an early dark sector (EDS), wherein the dark matter mass
is dependent on the EDE scalar field. Concretely, we consider a Planck-suppressed coupling of EDE
to dark matter, as would naturally arise from breaking of the global U(1) shift symmetry of the
former by quantum gravity e↵ects. With a su�ciently flat potential, the rise to dominance of dark
matter at matter-radiation equality itself triggers the rolling and subsequent decay of the EDE. We
show that this trigger EDS (tEDS) model can naturally resolve the EDE coincidence problem at the
background level without any fine tuning of the coupling to dark matter or of the initial conditions.
When fitting to current cosmological data, including that from the local distance ladder and the
low-redshift amplitude of fluctuations, the tEDS maximum-likelihood model performs comparably to
EDE for resolving the Hubble tension, achieving H

0

= 71.2 km/s/Mpc. However, fitting the Planck

cosmic microwave background data requires a specific range of initial field positions to balance the
scalar field fluctuations that drive acoustic oscillations, providing testable di↵erences with other
EDE models.

I. A NEW COINCIDENCE PROBLEM

The discrepancy between the inference of the Hub-
ble constant from the Planck cosmic microwave back-
ground (CMB) data [1] within the ⇤CDM model and
that from the SH0ES cosmic distance ladder calibrated
with Cepheid variables stands at 5� [2]. More gener-
ally, many direct probes of H

0

also disagree with the
CMB (and large-scale structure constraints) at varying
levels of quoted significance [3, 4] (see, however, [5, 6]).
This “Hubble tension” has spurred on an intense e↵ort in
the cosmology community, aiming to explain the origin
of this discrepancy via new physics in the cosmological
model.

A prominent approach to reconcile these measure-
ments is to modify the cosmological model in the pre-
recombination universe, thereby changing the CMB in-
ference of H

0

. In particular, one may consider a model
which reduces the physical size of the sound horizon at
last scattering, rs, relative to that found in the concor-
dance ⇤CDM model; since the CMB data constrain the
angular size of the sound horizon, ✓s, such a change then
raises the H

0

value inferred from the CMB. A paradig-
matic example within this class of models is early dark
energy (EDE), originally proposed by [7, 8] and followed
by many other realizations, e.g., Refs. [9–13] (see [4] for
a recent review).

The size of the sound horizon rs and that of the CMB
damping scale are most sensitive, in di↵erent ways, to
the decade of redshift that precedes last scattering [14].
Meanwhile, measurements of the post-recombination uni-
verse are in excellent agreement with ⇤CDM, with rela-

tively little room for modification. This suggests that the
epoch of matter-radiation equality occupies a privileged
position in the hierarchy of time-scales in the new model
in order to mimic the success of ⇤CDM [7].
This presents a new cosmological mystery, which we

refer to as the Early Dark Energy Coincidence Problem:

The resolution of the Hubble tension by a dark
energy-like component crucially relies on a
coincidence of unknown origin, namely, that
its epoch of influence corresponds to the time
of matter-radiation equality.

This may easily be observed in all successful EDE-like
models (see, e.g., [8, 10, 11]). In these models, the new
dark-energy-like component contributes a fraction of the
energy density of the universe, f

EDE

, that is sharply
peaked at a redshift zc. If the model is to address the
Hubble tension, then zc must be ⇡ z

eq

which would ap-
pear to be a coincidence lacking a dynamical explanation.
The EDE coincidence problem has been studied in a

small number of works with a limited amount of suc-
cess. Concretely, Ref. [15] obtained a no-go with assisted
quintessence; Refs. [16, 17] proposed neutrino-assisted
EDE, which has the potential to resolve the coincidence
problem, but has yet to be tested against observables and
may violate existing constraints on neutrino masses; and
Ref. [18] study the interaction between EDE and dark
matter in a specific scenario that fails to address the co-
incidence problem, as described in further detail below.
The early dark sector (EDS) scenario [19] encompasses

a general interaction between EDE and dark matter, in
the form of an EDE-dependent mass for the dark matter
particle. It has been studied in a specific incarnation as
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a mechanism to reduce the disagreement in the EDE sce-
nario between Hubble-tension-resolving models that fit
the CMB data and observations of large-scale structure
[20–24] (see also [25–28]). One might also wonder, in a
more general context, whether EDS can address the EDE
coincidence problem.

In this work we answer the EDE coincidence ques-
tion within the EDS framework in the a�rmative: we
demonstrate that an EDE-dependent perturbative cor-
rection to the dark matter mass, itself a generic expec-
tation of e↵ective field theory, can act as a trigger for
the decay of the EDE that naturally occurs at matter-
radiation equality. We provide three detailed conditions
that any coincidence-free model must satisfy, and demon-
strate that our trigger EDS (tEDS) model satisfies them
all.

The structure of this paper is as follows: In Sec. II we
enumerate the model requirements on the background
cosmological evolution for a successful resolution of the
EDE coincidence problem, and propose the tEDS model
which satisfies these requirements. In Sec. III we con-
front the model with data from Planck 2018 CMB, BOSS
BAO, Pantheon SNIa, and the SH0ES cosmic distance
ladder measurement ofH

0

, and find that the tEDS model
performs comparably well to EDE. We investigate this
further in Sec. IV, where we perform a detailed analy-
sis of CMB physics in the tEDS model, and show why a
specific range of initial field values is preferred in spite of
the insensitivity of the trigger mechanism. In Sec. V we
show that tEDS also has the (partial) ability to reduce S

8

compared to that found in EDE, from which it benefits
once Dark Energy Survey data is included. We discuss
results and directions for future work in Sec. VI.

II. RESOLVING THE COINCIDENCE
PROBLEM

The EDE coincidence problem finds a natural solution
in the context of the EDS scenario. EDS was originally
proposed in [19] as a mechanism to resolve the Hubble
tension without exacerbating the currently moderate ten-
sion between CMB and large-scale structure inferences of
S
8

within ⇤CDM. The EDS scenario posits an interac-
tion between dark matter (DM) and the EDE field, such
that the mass of the DM particle is dependent on the
EDE scalar.

While past work [19] considered the limit in which the
dominant e↵ect of the EDE-DM interaction is in the DM
background and perturbations, with only a small backre-
action on the evolution of the EDE scalar, in the present
work we are interested in the opposite regime: a small
change in the DM mass that has a dramatic e↵ect on the
background evolution of the EDE scalar. In this regime,
the dark matter can act as a trigger for the decay of the
EDE so that the scalar is naturally released from Hubble
drag near matter-radiation equality.

EDS models are specified by a potential V (�) and a

dark matter mass m
DM

(�). The background evolution
for the DM energy density ⇢

DM

is given by

⇢̇
DM

+ 3aH⇢
DM

= �̇
d lnm

DM

d�
⇢
DM

, (1)

and for the EDE scalar � by

�̈+ 2aH�̇+ a2V 0
e↵

= 0, (2)

where overdots are derivatives with respect to conformal
time and the Hubble parameter is defined with respect
to the coordinate time, H ⌘ d ln a/dt. Here V

e↵

is an
e↵ective potential that includes both the “bare” potential
V (�) and the interaction with DM, defined by

V 0
e↵

= V 0 + ⇢
DM

d lnm
DM

d�
(3)

where 0 is the derivative with respect to �. The e↵ective
potential dictates the transition in the EDE evolution
from dark-energy-like (i.e., a cosmological constant) to
decaying. The timing of this transition can be approxi-
mated as the epoch when

V 0
e↵

H2�
⇠ O(1) (onset of rolling) (4)

is first satisfied, corresponding to the release of the field
from Hubble drag (cf. Eq. (2) above). If |V 0

e↵

| � |V 0| at
this time, the release and subsequent decay of the EDE
can be considered to be “triggered” by the DM coupling.
Following past work, we parametrize the evolution of

the EDE in terms of its fractional contribution

f
EDE

(z) ⌘ ⇢
EDE

(z)

⇢
tot

(z)
, ⇢

EDE

⌘ 1

2
a�2�̇2 + V (�) (5)

to the total energy density ⇢
tot

. This is maximal at a crit-
ical redshift zc, and we will frequently refer to f

EDE

(zc)
as simply f

EDE

.

A. Model Requirements

We make the following demands on a model for it to
be deemed a resolution of the Hubble tension free from
the EDE coincidence problem:

1. Resolve the Hubble tension via EDE-like dynam-
ics, with f

EDE

⇠ 0.1 and zc ⇠ 103.5 (approximately
matter-radiation equality), and a release from Hub-
ble drag

���
d ln�

d ln a

��� ⇠
���
V 0
e↵

�H2

��� ⇠ 1 (6)

just prior to this epoch.

2. DM-triggered decay: The release from Hubble drag
is triggered by the coupling rather than the bare
potential V (�), i.e., |V 0

e↵

| � |V 0|, implying

⇢
DM

H2�

���
d lnm

DM

d�

��� ⇠ 1 (7)

at release.
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3. No fine-tuning of initial conditions: The mecha-
nism of DM-induced release from Hubble drag at
the critical redshift zc is independent of the initial
value of �.

These requirements significantly narrow the possibilities
for both the mass m

DM

(�) and the potential V (�).

B. Previous Models

Previous models are unable to satisfy the conditions
for a successful trigger mechanism. For example, Ref. [18]
proposed a monomial potential V (�) = V

0

(�/M
pl

)n with
n > 2 and an exponential coupling m

DM

(�) = m
0

ec�/Mpl

as an EDE-like model with the possibility to resolve
the coincidence problem. The e↵ective potential in this
case has slope given by V 0

e↵

= V 0 + c⇢
DM

/M
pl

. Let us
confront this with the above conditions:

Condition 1, namely, that zc ⇠ z
eq

, sets the Hub-
ble parameter at that time as 3M2

pl

H2(zc) ⇠ ⇢
DM

.

This can be related to V via f
EDE

⇠ V/(3H2M2

pl

) as
V ⇠ f

EDE

⇢
DM

, and, using V = V
0

(�/M
pl

)n, this fixes
the slope V 0 ⇠ nf

EDE

⇢
DM

/�.

Condition 2 implies that c⇢
DM

/M
pl

� V 0. Com-
bined with V 0 from Condition 1, this implies c �
n(M

pl

/�)f
EDE

. At release,

⇢
DM

c

H2�M
pl

⇠ 1. (8)

Condition 3 is violated since the trigger mechanism
works only around a specific initial value of � given by
Eq. (8).

In addition, even only requiring Conditions 1 and 2
causes problematic phenomenology for satisfying obser-
vations. First, they require a large fractional change
in the DM mass between the initial epoch and today:
|� lnm| ⇠ |c�/M

pl

| � nf
EDE

. Furthermore, since
⇢
DM

⇠ 3M2

pl

H2

eq

, the specific initial value required is
� ⇠ 3cM

pl

and even marginally satisfying the trigger
condition implies a large coupling 3c2 & nf

EDE

, which is
also not observationally favored in this model, in part due
to the “fifth force” in the dark sector and the enhanced
growth that it mediates [19] (see §IID below).

Similar considerations for the no-go for trigger solu-
tions also apply to the original EDE axion-like potentials,
where

V (✓ = �/f) = V
0

(1� cos ✓)3 , (9)

as studied in Ref. [19] with the same exponential EDE-
DM coupling as in Ref. [18].

We therefore conclude that with EDE axion-like poten-
tials and an exponential coupling to the DM mass there
is no viable resolution to the EDE coincidence problem.

C. Trigger Model

The requirement that the EDE field is triggered by the
DM for generic initial field values from Eq. (7) suggests
that we need a coupling where d lnm

DM

/d� / � with
a su�ciently flat bare potential, unlike previous models.
In addition, this form of the coupling makes the fifth
force enhancement of growth in the DM sector vanish as
� ! 0, and can thus remove the consequent late-time
enhancement of large-scale structure found in [19] (see
§IID).
As a simple, theoretically well-motivated coupling

that satisfies this requirement, we consider an EDE-
dependence of the dark matter mass given by

m
DM

(�) = m
0

 
1 + g

�2

M2

pl

!
. (10)

The interaction with � is naturally Planck-suppressed,
and the coupling constant g is expected to be an O(1)
number based on standard e↵ective field theory argu-
ments. This coupling is consistent with the symmetries
of the low-energy e↵ective field theory (wherein � is typ-
ically associated with a pseudo-scalar), and is also a nat-
ural expectation of string theory. For example, the non-
perturbative e↵ects in string theory (presumably respon-
sible for the EDE potential) are themselves in general
moduli-dependent (see, e.g., Refs. [29, 30]), which could
generate couplings of the form given above.
For the potential, one may again take guidance from

e↵ective field theory considerations. The EDE scalar field
is naturally identified as an axion-like particle, e.g., the
phase of a complex scalar field in a field theory describ-
ing the spontaneous breaking of a global U(1) symme-
try. In this case the requisite extremely small mass of �
can be justified on the basis of a continuous shift sym-
metry that is broken to a discrete shift symmetry non-
perturbatively, with the potential protected from pertur-
bative corrections. The potential in this case is periodic,
e.g., V (✓ = �/f) = V

0

cos ✓.
In the present context, the requirement that the min-

imum of the potential is locally V / �2n with an in-
teger n � 2 in order for f

EDE

to decay su�ciently
quickly (e.g., [8, 9]), whilst V 0

e↵

� V 0 at early times to
trigger o↵ the DM, suggests instead a potential of the
monodromy type, namely, a potential that breaks the
shift symmetry entirely. In this scenario, the potential
is generically flattened at large field values [31]. For ex-
ample, the original models of axion monodromy inflation
[32, 33] (see also Ref. [34]) may be parametrized as

V (✓ = �/f) = V
0

(1 + ✓a)
1
b , (11)

where V
0

is a normalization. This potential is charac-
terized by a minimum which is locally V ⇠ ✓a, and a
flattening of the potential at large field values, V ⇠ ✓a/b

for a > 0 and b > 1. This class of potential has well-
developed interesting associated phenomenology, such as
the production of oscillons [35–37].
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More recent axion monodromy models (e.g., Ref. [38])
have extended the scenario to include plateau-like poten-
tials, characterized by an ever more dramatic flattening
at large field values. This class of monodromy potential
naturally satisfies V 0

e↵

� V 0 for arbitrary initial condi-
tions, and thus is a natural candidate for a coincidence-
free EDS model. To make contact with the EDE litera-
ture and enforce a flat plateau, we remap the parameters
of Eq. (11) as a = �2np and b = �p with positive in-
teger values of n and p. This rewriting of the potential
makes manifest a plateau V ! V

0

at large field values
(|✓| � 1), a minimum V / ✓2n at small field values
(|✓| ⌧ 1), and a transition region at |✓| ⇠ 1. Motivated
by the phenomenologically successful EDE potential in
Eq. (9), which behaves as V ⇠ ✓6 near its minimum, we
fix n = 3 hereafter so that p alone controls the sharp-
ness of the transition. Our bare potential is therefore
parameterized as

V (✓ = �/f) = V
0

✓6

(1 + ✓6p)
1
p

. (12)

This trigger EDS model admits a simple interpretation.
For g�2/M2

pl

⌧ 1, corresponding to a small fractional
change in the DM mass, one may approximate lnm

DM

⇠
lnm

0

+ g�2/M2

pl

. The e↵ective potential may then be
approximated as

V
e↵

⇡ V (�) + g
�2

M2

pl

⇢
DM

, (13)

in e↵ect a correction to the mass of �,

m2

�
e↵

⇡ V 00 + 2g
⇢
DM

M2

pl

. (14)

Note we use the exact expressions for V (�) and m
DM

(�),
Eqs. (12) and (10), in all numerical calculations.

The e↵ective potential in Eq. 13 is shown in Fig. 1 for
p = 8. One may immediately understand the dynam-
ics of the model: if the field is initially on the plateau
of V (�), then V

e↵

/ �2 and the e↵ective mass of � is
predominantly due to the DM contribution. The field
begins to roll when m2

�
e↵

⇠ H2, which occurs when

H2 ⇠ g⇢
DM

/M2

pl

. For g ⇠ O(1), this is satisfied around
matter-radiation equality for any initial �. This con-
struction naturally satisfies all three trigger conditions:
V 0
e↵

/(�H2) ⇠ m2

�eff
/H2 is independent of � and hence

the onset of rolling is independent of initial conditions,
satisfying condition 3; V (�) for � � f is flat by de-
sign and hence V 0 is automatically small, satisfying con-
dition 2; and f

EDE

⇠ V
0

/(H2M2

pl

) may be adjusted
by setting V

0

, while zc is determined by g, thus sat-
isfying condition 1. Notice that the conditions them-
selves do not set requirements on the field scale f . This
flexibility allows for the ability to adjust the variation
in the dark matter mass between zc ⇠ z

eq

and today,
m

DM

(✓ = 1)�m
0

= m
0

gf2/M2

pl

, and in particular to re-
duce it while increasing the frequency of field oscillations
around the potential minimum at z . zc.

FIG. 1. The tEDS bare potential (Eq. (12)) versus e↵ec-
tive potential (Eq. (13)) at di↵erent redshifts near matter-
radiation equality (as labeled). Here we take p = 8, f =
0.05M

pl

, V
0

= 0.12 eV4, g = 0.68, and ⌦ch
2 = 0.1280 as

an example. The rolling of the EDE scalar field is triggered
by the coupling to dark matter near z

eq

for any initial field
position on the plateau of the bare potential.

We confirm these dynamics in Fig. 2, where we numer-
ically solve for the evolution of the background fields in
the EDS model defined by Eqs. (10) and (12). In the top
panel of Fig. 2 we show the evolution of the EDE scalar
� for varying initial field positions ✓i, for the fixed p = 8,
f , and V

0

values of Fig. 1. The EDE fractional energy
density f

EDE

(z) is shown in the bottom panel of Fig. 2.

We can see that the Hubble tension target (f
EDE

⇠
0.1, zc ⇠ 103.5) can be realized by a wide range of initial
conditions. The time evolution of f

EDE

(z) is not sensitive
to the initial field position ✓i once zc is fixed by adjusting
the coupling constant g by a fractional amount around its
typical order-unity magnitude. In addition, the evolution
of the DMmass, especially in the observationally relevant
regime z < z

eq

⇠ zc, remains very small (see the middle
panel of Fig. 2). Moreover, since � ! 0 the additional
fifth force acting on the DM at late times is suppressed
as well.

We have also verified that this trigger mechanism and
its consequences for the dark matter apply to any su�-
ciently large p or equivalently any su�ciently flat plateau
in V (�).

Therefore, we conclude that we can satisfy all the re-
quirements for solving the coincidence problem for the
EDE background evolution with the model defined by
Eqs. (10) and (12), which we shall refer to as the trigger
EDS or tEDS model.
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FIG. 2. The time evolution of the EDE scalar field (top),
dark matter mass (middle), and EDE fractional energy den-
sity f

EDE

(z) (bottom) for the tEDS model (p = 8) with var-
ious initial field values ✓i. The vertical dashed line indicates
the peak epoch zc and the black horizontal line on the top
panel indicates the edge of the potential plateau ✓ = 1. For
a wide range of initial field positions ✓i, the EDS order-unity
coupling g is adjusted fractionally as labeled to achieve a sim-
ilar f

EDE

evolution. The other parameters are fixed to be the
same as in Fig. 1.

D. Perturbations

A successful resolution to the Hubble tension with the
tEDS model must not only reproduce the background
energy density features of EDE, but also produce pertur-
bations which fit CMB and large-scale structure data.

Following Ref. [19], the equations of motion for the per-
turbations in synchronous gauge are modified to account
for a general coupling as:

�̈�+2aH ˙��+

✓
k2 + a2

d2V

d�2

◆
��+

1

2
ḣ�̇ =

�a2

d lnm

d�
⇢
DM

� +
d2 lnm

d�2

��⇢
DM

�
, (15)

�̇ + ✓ +
ḣ

2
=

d lnm

d�
˙��+

d2 lnm

d�2

�̇��, (16)

✓̇ + aH✓ =
d lnm

d�
k2��� d lnm

d�
�̇✓. (17)

where � and ✓ ⌘ @iv
i are the density and velocity diver-

gence perturbations of the dark matter, and h is the met-
ric trace perturbation in synchronous gauge. The equa-
tions of motion for other components, including metric
fluctuations, remain unchanged (see, e.g., [39]).
These equations contain a number of notable features

for CMB observables, which we return to in §IV. For
large-scale structure, the sourcing of the scalar field fluc-
tuations �� from DM fluctuations � is of particular in-
terest. On small scales, where gradients dominate over
both temporal derivatives and derivatives of the poten-
tial, the sourced scalar field fluctuation in this quasistatic
approximation is given by

��(sourced) ⇡ �a2

k2
d lnm

d�
⇢
DM

�, (18)

which acts as a slowly varying o↵set corresponding to the
DM density-dependent minimum of the field oscillations.
This in turn sources a change in the DM momentum pro-
portional to �, via Eq. 17, in e↵ect a dark “fifth force”
[19] (see also related discussion in [40]).
In the case of an exponential coupling d lnm/d� =

c/M
pl

, the impact on DM can be described by an e↵ective
Newton’s constant on small scales [19],

G
e↵

= GN (1 + 2c2), (exp) (19)

leading to an enhanced growth of structure which signif-
icantly constrains the allowable range of c. This may be
contrasted with the case of the quadratic coupling of the
tEDS model, which gives d lnm/d� = 2g�/(M2

pl

+g�2) !
0 at late times and

lim
�!0

G
e↵

= GN , (tEDS). (20)

It follows that there is no enhanced growth of structure
at late times from a dark fifth force for our tEDS model.

III. H
0

TENSION DATA AND SOLUTIONS

In order to assess the ability of our tEDS model to
resolve the Hubble tension, we employ the following
datasets:

• CMB: low-` and high-` Planck 2018 [1, 41, 42]
[Plik] temperature and polarization power spectra
(TT+TE+EE) and lensing potential power spec-
trum.

• BAO: SDSS DR7 main galaxy sample [43],
6dF galaxy survey [44], and SDSS BOSS DR12
LOWZ+CMASS galaxy samples [45].
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Model ⇤CDM EDE tEDS(p=4) tEDS(p=8) tEDS(p=16)
100✓s 1.04204 1.04129 1.04133 1.04112 1.04128
⌦bh

2 0.02254 0.02272 0.02285 0.02291 0.02293
⌦ch

2 0.1182 0.1319 0.1280 0.1280 0.1278
⌧ 0.0595 0.0602 0.0559 0.0563 0.0549

ln(1010As) 3.052 3.075 3.056 3.055 3.055
ns 0.9696 0.9887 0.9826 0.9825 0.9851
✓i - 2.768 1.208 1.103 1.056
g - - 0.076 0.041 0.017

f/M
pl

- 0.18 0.21 0.30 0.29
V
0

/eV4 - 0.050 2.15 1.96 1.75
f
EDE

- 0.123 0.102 0.110 0.108
log

10

zc - 3.57 3.87 3.85 3.84
H

0

68.24 71.90 70.46 70.72 70.77
S
8

0.8136 0.8437 0.8351 0.8305 0.8291
f
EDE

/fg=0

EDE

- 1 0.31 0.32 0.38
�2

TTTEEE

2346.1 2342.7 2347.4 2344.5 2343.8
��2

tot

0 -17.4 -10.1 -14.6 -14.5

TABLE I. Parameters of the best-fit models to the baseline datasets (CMB + BAO + SNe + H
0

). The first set of rows
includes the fundamental model parameters, the second set the derived parameters, and the third set the goodness of fit, with
��2

tot

relative to the ⇤CDM model.

• Supernovae: Pantheon supernovae dataset of rel-
ative luminosity distances [46].

• H0: SH0ES 2019 Cepheid-Supernova distance lad-
der measurement H

0

= 74.03 ± 1.42 km/s/Mpc
[47].1

We perform the analyses of the tEDS model specified
by Eqs. (10) and (12) using a modified version of CLASS2

[48, 49]. In addition to the six standard ⇤CDM param-
eters (✓s, ⌦bh

2, ⌦ch
2, ⌧ , As, ns), the tEDS model in-

cludes three parameters that exist in the EDE model of
Eq. (9) (potential scale V

0

, field scale f , and initial field
value �i = ✓if) and adds one parameter (the coupling
g). Finally, the index p determines the sharpness of the
transition from the plateau in V (�), which we take to
be fixed to a su�ciently large value to provide a sharp
transition.

In the absence of well-motivated physical priors for
these parameters and to establish a proof of principle
parameter set that resolves the Hubble tension, we use
Cobaya [50] to find the best-fit model rather than sample
the posterior distributions. Since Cobaya minimize can
easily get stuck in a local minimum if the theory model
is complicated (even with the covariance matrix from the
MCMC chains), we develop an iterative minimizer rou-
tine that repeats minimize by setting the starting point
as the last-round minimum until ��2 between the cur-
rent and last-round minima is less than 0.1. Compared

1 We use the SH0ES 2019 measurement to facilitate comparison
with EDE results in the literature, whereas the most recent up-
date gives H

0

= 73.04± 1.04 km/s/Mpc [2].
2

http://class-code.net

to the standard one-round minimizer, this iterative pro-
cedure can improve the result by ��2 ⇠ 3.

These best-fit parameters and ��2 values for tEDS
models with p = 4, 8, 16 are given in Table I, along with
those of the best-fit ⇤CDM and EDE models. For ex-
ample, for the p = 8 tEDS model the fit is better than
⇤CDM by ��2 = �14.6 with four additional free pa-
rameters, and gives H

0

= 70.72 km/s/Mpc. Notice that
this model has a non-zero coupling g = 0.041 and an
initial field position on the plateau of the bare potential
✓i ⇡ 1.1, but near its edge. The fit is only marginally
worse than EDE where ��2 = �17.4, with the addi-
tional parameter g introduced to solve the coincidence
problem rather than added to the EDE bare potential
and optimized to improve its fit. This should be borne
in mind when assessing any model selection criteria.

Since the e↵ective potential at finite g evolves with
redshift and so always dominates over the bare poten-
tial early on, to assess whether the coupling triggers
the field to roll we compute the maximum EDE frac-
tion for g = 0, fg=0

EDE

, with the same other parameters
in the model. In the limit that the coupling has no
e↵ect, the ratio f

EDE

/fg=0

EDE

! 1; whereas if the field
fails to roll at all without the coupling such that EDE
eventually dominates the expansion, fg=0

EDE

! 1 and so
f
EDE

/fg=0

EDE

! f
EDE

. The best-fit p = 8 model has
f
EDE

/fg=0

EDE

= 0.31, indicating that the roll is indeed
triggered by the DM coupling. Thus, condition 2 in
Sec. II is satisfied. Likewise, condition 1 is satisfied since
f
EDE

= 0.11 and zc = 103.85.

Finally, although the trigger mechanism for the back-
ground applies to a wide range of ✓i, satisfying condi-
tion 3, the best-fit prefers a specific value ✓i ⇡ 1.1. We
shall see in the next section that this value best flattens
the CMB TT residuals relative to ⇤CDM, especially for

http://class-code.net
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modes near the horizon at zc, as shown in Fig. 3. The
residuals here are plotted relative to the best-fit ⇤CDM
model, expressed in units of the cosmic variance per mul-
tipole,

�CV

` =

8
>>><

>>>:

q
2

2`+1

CTT
` , TT ;

q
1

2`+1

q
CTT

` CEE
` + (CTE

` )2, TE ;
q

2

2`+1

CEE
` , EE.

(21)

Note that the smooth residuals, especially at high-`, are
compensated by adjusting Planck foreground parame-
ters,3 whose e↵ects are not shown in this figure since the
data points are plotted assuming foreground parameters
for ⇤CDM.

In Table I we also show that the fits are only weakly
sensitive to the sharpness of the transition. Compared to
p = 8, a sharper transition p = 16 fits the data essentially
equally as well, while a smoother transition p = 4 is
marginally worse. Notice that the values of f

EDE

, zc,
and f

EDE

/fg=0

EDE

remain nearly the same. Consequently
we hereafter focus on the p = 8 case.

IV. DYNAMICAL BALANCE IN THE CMB

In the previous section we have shown that the tEDS
model of Sec. II provides an excellent fit to the Hubble
tension data, including the SH0ES H

0

measurement and
Planck 2018 CMB power spectra. The fit is comparable
to that in EDE whilst being free of the EDE coincidence
problem in the background (see Fig. 2).

On the other hand, although the trigger mechanism
works to provide the desired energy density fraction f

EDE

and the correct peak redshift zc to solve the Hubble ten-
sion for a wide range of initial field values ✓i > 1, the
data prefer a specific value where the field gets a small
but finite amount of its roll o↵ the plateau from the bare
potential, as monitored by fg=0

EDE

, the EDE fraction with
vanishing coupling g (see Table I).

The novel feature of the tEDS model is that although
the field can successfully roll from a wide range of ✓i > 1
to the edge of the plateau at ✓ = 1 around zc, the kinetic
energy of the field near ✓ = 1 then necessarily increases
with ✓i. This in turn generates field fluctuations which
compete with those generated from falling o↵ the plateau.
The latter ones are largely independent of ✓i. We shall
see that it is a balance between these two e↵ects that
produces the ✓i preferred by the CMB data.

The consequence of this balance can be seen in the
CMB residuals. To illustrate this, in Fig. 4 we show the

3 The main change is a small increase in A217

cib

, the amplitude of the
cosmic infrared background power spectrum at 217 GHz, which
actually moves slightly closer to its reference value in the Planck
likelihood.

FIG. 3. CMB TT, TE, and EE power spectra residuals
(in units of the CV-limited error bar) for the p = 8 best-
fit model with respect to the best-fit ⇤CDM model and the
Planck 2018 data. Vertical lines represent the position of the
acoustic peaks in this model. Slowly varying residuals versus
⇤CDM are absorbed by foreground parameters in the fit.

CMB TT spectra of the p = 8 model for two examples:
the best-fit model with ✓i = 1.103 and a variation to the
best-fit with a larger value ✓i = 1.3. The EDS coupling g
is adjusted to keep zc fixed with the same V (�), leaving
f
EDE

= 0.111 nearly unchanged.
From Fig. 4 one may appreciate that the increase in

✓i induces a sizeable excess in the CMB TT spectrum in
the multipole range 1000 . ` . 1500, corresponding to
modes that re-entered the horizon around zc. This bump
is not easily compensated by shifts in other cosmological
or foreground parameters, and will remain even when the
other parameters are re-optimized with ✓i held fixed to
the larger value.
We can trace the origin of this bump back to the behav-

ior of the scalar field fluctuations �� on the correspond-
ing scales k ⇡ 0.075Mpc�1. In the absence of isocurva-
ture initial conditions, the scalar field perturbations are
predominantly sourced by the adiabatic metric pertur-
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FIG. 4. CMB TT power spectrum residuals (as in Fig. 3) for
the p = 8 best-fit model with initial field position ✓i = 1.103
and its variation with a higher ✓i = 1.3 and the same zc and
V (�). Other aspects follow Fig. 3.

bations, i.e., the term ḣ�̇ appearing in Eq. (15). The
metric perturbation itself is relatively insensitive to the
EDE, being predominantly sourced by the matter and ra-
diation components of the universe. However, the larger
✓i model, while indistinguishable from any other ✓i at
late times (z � zc), is distinguished by a larger velocity
�̇ at early times (z < zc). This is a consequence of sat-
isfying the trigger condition in Eq. (6), where for a fixed
V
e↵

, ��̇ / �✓i. In our example, we fix zc so that g also
varies somewhat with ✓i. Since zc corresponds roughly to
the epoch at which ✓ = 1, the result is that �̇ / (✓i � 1)
since by construction the field rolls to this position from
its initial value in the time interval t(zc), as seen in the
top panel of Fig. 2. Approximating Eq. (15) on super-
horizon scales and at early times z < zc, we have

�̈� ⇠ aH ˙�� ⇠ �ḣ�̇. (22)

Integrating over time from the initial moment until zc,
and approximating �̇ as a constant, we find �� / (✓i�1),
indicating an early-time growth of �� that itself grows
linearly with the initial condition ✓i.

In Fig. 5 (top panels, solid lines) we compare the field
fluctuations for the two di↵erent ✓i where the shaded
region corresponds to zc > z > z⇤, where z⇤ is the epoch
of recombination when the acoustic CMB fluctuations are
frozen in. For the time variable, we choose the comoving
sound horizon of the photon-baryon fluid

rs(z) =

Z 1

z

cs(z̃)dz̃

H(z̃)
, (23)

where cs is the photon-baryon sound speed to highlight
the relevant epoch for the acoustic oscillations. Here we
have weighted �� by k2 for ease of comparison to the met-
ric sources (dashed lines). Notice the strong dependence
on ✓i for zc < z.

At zc, when the EDE scalar rolls down its potential and
the EDE begins to decay, there is a dramatic increase in

the field velocity �̇ due to the bare potential. The sharp
growth in �̇ imparts a ‘kick’ on the perturbations ��,
again coming from the �̇ḣ source term in Eq. (15), but
now largely independent of ✓i and at a time where the
initial kick has already evolved to a di↵erent phase of its
now subhorizon evolution. In Fig. 2 (top panels, dashed
lines), we can see that the metric sources at z < zc are
nearly indistinguishable between the two ✓i values.

The combination of these two kicks to the field fluctu-
ations, one dependent on ✓i and the other independent,
imply that there is a special value where the kicks are
balanced so that �� is nearly constant in time at the cru-
cial epoch for driving CMB acoustic oscillations around
krs(z) ⇡ ⇡.

The impact on the CMB from the EDS is through its
gravitational e↵ect via the Weyl potential  + � (see,
e.g., [51]), which in turn reflects the energy density fluc-
tuations carried by the field. In Fig. 5 (middle panel), we
separate these fluctuations into the potential (PE) and
kinetic (KE) energy contributions. Because of the rapid
conversion of potential to kinetic energy, the two begin
at z > zc nearly equal and opposite and allow for a much
faster evolution of the total than usually allowed by an
equation of state |w�|  1 [52] as the kinetic energy red-
shifts away. Correspondingly the Weyl potential evolves
rapidly and drives the CMB acoustic oscillations (bottom
panel). This feature is not present in the EDE model and
depends strongly on ✓i.

After zc the potential energy corresponding to a given
field fluctuation sharply declines as the field falls o↵ the
plateau and leaves the dominant energy density fluctua-
tion as contributed by kinetic energy. In this regime, the
counterbalancing metric kicks that leave the field fluctu-
ation nearly constant for ✓i = 1.103 reduce the energy
density fluctuation and hence the impact on the Weyl
potential, especially for the variations on the k�rs ⇠ ⇡
time scale that drive CMB acoustic oscillations. It is this
combination that is responsible for the minimization of
CMB residuals in Fig. 3. For 1 . ✓i . 1.1 this imbalance
shifts in the other direction, though not as dramatically
as for a large increase in ✓i.

In the case of ✓i . 1, the slope of the bare poten-
tial dominates the initial roll and the model e↵ectively
reduces to the g = 0 case with a power-law potential,
which has limited ability to solve the Hubble tension (see,
e.g., [9]).

In summary, the best-fit tEDS model reflects a bal-
ance between the dynamics of the trigger in the back-
ground, which is largely insensitive to the initial field
value ✓i by design, and the dynamics of the perturba-
tions where there is a competition between metric kicks
whose balance depends on ✓i. In this sense, the resolu-
tion of the Hubble tension requires more than just the
resolution of the coincidence problem of the background,
but is nonetheless successfully achieved within the tEDS
model.
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FIG. 5. The evolution of the scalar field perturbation with its metric source (top panel), energy density fluctuations (middle
panel), and the Weyl potential (bottom panel) of the horizon crossing mode at zc with k = 0.075 Mpc�1. The left panel shows
the best-fit p = 8 model with ✓i = 1.103, while the right shows an unbalanced case with a larger ✓i = 1.3, corresponding to the
poorly fitting model in Fig. 4. The Weyl potential is plotted relative to the best-fit ⇤CDM model. The region zc > z > z⇤ is
shaded.

V. S
8

TENSION: TEDS VS. EDE

The tEDS model performs comparably to EDE in re-
solving the Hubble tension, namely, in the fit to the
baseline data set comprised of Planck 2018 CMB pri-
mary anisotropies and CMB lensing, BOSS BAO, Pan-
theon SNIa, and SH0ES. The �2 di↵erence between the
maximum-likelihood tEDS (p = 8) and EDE models is
��2

tot,tEDS�EDE

= +2.8 (see Table I), indicating that
the coincidence-resolving tEDS model is a slightly worse
fit to cosmological data than EDE. However, the two
best-fit models are also distinguished by their S

8

val-
ues: S

8

= 0.8291 and S
8

= 0.8436 in tEDS and EDE,
respectively. This di↵erence reduces the relative tension
between the tEDS model and large-scale structure data:

the EDE model is in 4.0� tension with the Dark Energy
Survey Year-3 (DES-Y3) measurement S

8

= 0.776±0.017
[53], compared to only 3.1� in tEDS. The matter power
spectra for the best-fit tEDS and EDE models to the
baseline data sets are shown with respect to the best-
fit ⇤CDM model in Fig. 6 (solid lines). Notice that the
ns increase compared to ⇤CDM is somewhat reduced in
tEDS compared to EDE, which partially helps lower S

8

in tEDS as does the lower ⌦ch
2.

Of course, these best-fit models for the Hubble tension
would have their parameters readjusted to lower S

8

if the
DES-Y3 data were included, but the trade-o↵s may di↵er
between EDE and tEDS.

Motivated by this potential di↵erence, we supplement
the baseline datasets with additional large-scale structure
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Model EDE tEDS(p=8)
100✓s 1.04139 1.04112
⌦bh

2 0.02281 0.02296
⌦ch

2 0.1287 0.1273
⌧ 0.0581 0.0565

ln(1010As) 3.065 3.054
ns 0.9894 0.9843
✓i 2.763 1.103
g - 0.039

f/M
pl

0.17 0.30
V
0

/eV4 0.040 1.74
f
EDE

0.108 0.112
log

10

zc 3.56 3.83
H

0

71.96 71.21
S
8

0.8236 0.8200
�2

TTTEEE

2345.2 2346.9
�2

tot

� �2

tot,EDE

0 +1.2

TABLE II. Parameters of the best-fit models to the baseline
+ S

8

datasets.

data from the DES-Y3 analysis [53]:

• DES-Y3: Dark Energy Survey Year-3 [53] weak
lensing and galaxy clustering data, namely, galaxy-
galaxy, shear-shear, and galaxy-shear two-point
correlation functions (“3⇥2-point”), implemented
as a Gaussian constraint on S

8

⌘ �
8

(⌦
m

/0.3)0.5

corresponding to the DES-Y3 measurement S
8

=
0.776± 0.017.

We repeat our analysis and search for maximum likeli-
hood parameters again using Cobaya [50]. Note that the
approximation of treating the full DES 3⇥2-point likeli-
hood as an e↵ective Gaussian prior on S

8

was validated
for ⇤CDM and EDE in Ref. [20] (in that case, for DES-
Y1), and thus we adopt this approach here as well.

The maximum-likelihood model parameters when
DES-Y3 data is included are given in Table II. The �2

di↵erence between the models is now ��2

tot,tEDS�EDE

=
+1.2, indicating that the tEDS model becomes even
closer to EDE in goodness of fit. Interestingly, the val-
ues for both H

0

and S
8

of the best fits become closer as
well, with H

0

remaining nearly unchanged in EDE and
actually increasing in tEDS. In Fig. 6 (dashed lines), we
also show the matter power spectra for these +S

8

data
best-fit models.

While these new best-fit cases would apparently reduce
the S

8

and H
0

tensions simultaneously, the overall fit to
the baseline data set without DES is, of course, slightly
worse. This comes primarily from the CMB, where in
both cases ��2

TTTEEE

⇡ +2.5. The poorer fit and pa-
rameter trends can be explained from the residual free-
dom to adjust the ⇤CDM parameters themselves. At the
expense of the Planck 2018 fit for ⌦ch

2, ⇤CDM models
follow the CMB angular diameter distance degeneracy
leading to S

8

/ h�2.3 (e.g., [54]). The best-fit EDE and
tEDS models can then exploit this scaling to lower S

8

without lowering H
0

and compromise between the com-
peting demands of the various datasets.

FIG. 6. Matter power spectra for the tEDS p = 8 and
EDE models with respect to the best-fit ⇤CDM model. Both
best-fit models for the baseline (“best”) and +S

8

datasets are
shown.

VI. DISCUSSION

In this work we have formalized and studied in detail
the coincidence problem of EDE models, working pri-
marily in the context an early dark sector, in which the
mass of the dark matter particle is dependent on the EDE
scalar field. The coincidence problem is naturally a state-
ment pertaining to the background evolution: why is the
decay of the background energy density in the EDE field
anchored to the epoch when the background energy den-
sities of matter and radiation are equal? From this, one
may enumerate the requirements for a coincidence-free
EDS model: 1. Realize the desired EDE-like dynamics
(f

EDE

⇠ 10% and zc ⇠ 103.5), with 2. dark matter trig-
gered decay, and 3. no fine-tuning of initial conditions.
We have demonstrated that a trigger EDS (tEDS) model
with a plateau-like potential V (�) and a quadratic cou-
pling to dark matter, �m

DM

/ (�/M
pl

)2, can naturally
satisfy these conditions on the background evolution.

We find that the tEDS model performs comparably to
EDE when fit to a combined data set comprised of Planck
2018 CMB temperature and polarization anisotropies
and CMB lensing, BOSS BAO, Pantheon SNIa, and the
SH0ES cosmic distance ladder measurement of H

0

. This
fit becomes even closer and essentially indistinguishably
as good if S

8

constraints are included from DES-Y3,
achieving H

0

= 71.2 km/s/Mpc.

However, amongst the trigger solutions that pro-
vide the same background evolution, fitting the CMB
anisotropies associated with perturbations that cross the
horizon around zc selects a specific range of initial con-
ditions for the background value of the EDE scalar. We
find that the optimal tEDS model is one wherein there
is a dynamical balance of e↵ects in the evolution of field



11

fluctuations induced by the trigger and by the bare po-
tential. In our choice of coupling and bare potential, this
balance is enforced by the CMB data rather than built
into the model itself, which suggests that future refine-
ments of the basic trigger mechanism may be possible.

Another novel feature of this optimal parameter choice
is that zc is slightly higher than z

eq

, which leads to ob-
servable di↵erences from the best-fit ⇤CDM and EDE
models that are distinguishable at higher multipole mo-
ments than are well-constrained by the Planck 2018 data.
These predictions can be tested in the near future. Of
course as with the S

8

tension and data, the best-fit pa-
rameters of tEDS may also change with new data sets,
requiring a full analysis of parameter posteriors to as-
sess model performance rather than the best-fit approach
here.

More generally, the assessment of EDE and EDE-like
models is sensitive to the data sets that are included or
excluded in the analysis as well as priors on their param-
eters. This is consistent with past work, such as Ref. [20]
where EDE was analyzed using di↵erent data set combi-
nations and parameter priors (e.g., priors on model pa-
rameters versus on derived parameters f

EDE

, zc) with
dramatically di↵erent outcomes. See also Ref. [28] for re-
lated discussion. With this in mind, an interesting next
step for EDS will be to investigate constraints on the
parameters of this scenario with the ACT DR4 [55, 56]
and SPT-3G 2018 [57, 58] data, particularly in light of

the mild ACT preference for a non-zero EDE component
[59–61], analogous to the EDE analysis in [62], as well as
the BOSS full-shape data, e.g., utilizing an e↵ective field
theory-based large-scale structure likelihood, as done for
EDE in [21, 22]. We leave these and other interesting
directions to future work.
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