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ABSTRACT

On large angular scales, the polarization of the CMB contains information about the evolution of
the average ionization during the epoch of reionization. Interpretation of the polarization spectrum
usually requires the assumption of a fixed functional form for the evolution, e.g. instantaneous reioniza-
tion. We develop a model-independent method where a small set of principal components completely
encapsulate the effects of reionization on the large-angle E-mode polarization for any reionization
history within an adjustable range in redshift. Using Markov Chain Monte Carlo methods, we apply
this approach to both the 3-year WMAP data and simulated future data. WMAP data constrain
two principal components of the reionization history, approximately corresponding to the total optical
depth and the difference between the contributions to the optical depth at high and low redshifts. The
optical depth is consistent with the constraint found in previous analyses of WMAP data that assume
instantaneous reionization, with only slightly larger uncertainty due to the expanded set of models.
Using the principal component approach, WMAP data also place a 95% CL upper limit of 0.08 on the
contribution to the optical depth from redshifts z > 20. With improvements in polarization sensitivity
and foreground modeling, approximately five of the principal components can ultimately be measured.
Constraints on the principal components, which probe the entire reionization history, can test models
of reionization, provide model-independent constraints on the optical depth, and detect signatures of
high-redshift reionization.

Subject headings: cosmic microwave background — cosmology: theory — large-scale structure of

universe

1. INTRODUCTION

The amplitude of the F-mode component of the cos-
mic microwave background (CMB) polarization on large
scales provides the current best constraint on the Thom-
son scattering optical depth to reionization, 7. Using
the first three years of data from the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) and making the sim-
ple assumption that the universe was reionized instan-
taneously, [Spergel et all (2006) find 7 = 0.09 &+ 0.03.
Theoretical studies suggest that the process of reioniza-
tion was too complex to be well described as a sudden
transition (e.g., Barkana & Loeb 2001)). Previous stud-
ies have examined how the constraint on 7 depends on
the evolution of the globally-averaged ionized fraction
during reionization, z.(z), for a variety of specific theo-
retical scenarios. If the assumed form of z.(z) is incor-
rect, the estimated value of 7 can be biased; this bias
can be lessened by considering a wider variety of reion-
ization histories at the expense of increasing the uncer-
tainty in 7 (Kaplinghat et all [2003; [Holder et all 2003;
Colombo et all2005).

The angular scales on which CMB polarization from
reionization is correlated depend on the horizon size at
the redshift of the free electrons: the higher the red-
shift, the higher the multipole, ¢ (e.g., Zaldarriaga [1997;
Hu & White [1997). Varying z.(z) changes the relative
contributions to the polarization coming from different
redshifts, and therefore changes the shape of the large-
scale E-mode angular power spectrum, CéEE . Because
of this dependence, measurements of the low-¢ E-mode
spectrum should place at least weak constraints on the

global reionization history in addition to the constraint
on the total optical depth. Recent studies suggest that
WMAP data provide little information about z.(z) be-
yond 7 (e.g., [Lewis et all 2006), but it is worth asking
what we can ultimately expect to learn about reioniza-
tion from CMB polarization.

Hu & Holdern (2003) proposed using a principal compo-
nent decomposition of the ionization history to quantify
the information contained in the large-scale E-mode po-
larization. The effect of any ionization history on the FE-
modes can be completely described by a small number
of eigenmode parameters, unlike a direct discretization
of z¢(z) in redshift bins. Here we extend the methods of
Hu & Holderd (2003) using Markov Chain Monte Carlo
techniques to find constraints on the principal compo-
nents of z.(z) using both the 3-year WMA P observations
and simulated future data.

Analytic studies and simulations indicate that reion-
ization is an inhomogeneous process, and this inho-
mogeneity is expected to contribute to the small-scale
CMB temperature and polarization anisotropies (e.g., Hu
2000; Iliev_et al.l2006; Mortonson & Hu2007; Doré et al.
2007). Here we focus on the large-scale E-modes only
(¢ <100) where such effects can be neglected, so we only
consider the evolution of the globally-averaged ionized
fraction as a function of redshift.

In the following section, we describe the principal com-
ponent method for parameterizing the ionization history
and show that the effects of z.(z) on large-scale E-mode
polarization can be encapsulated in a small set of param-
eters. The method allows z.(z) to be a free function of
redshift that is not bounded by physical considerations,
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Fi1a. 1.— E-mode polarization angular power spectra and ioniza-
tion histories (inset) for a nearly-instantaneous reionization model
with optical depth 7 = 0.105 (thick curves) and an extended, “dou-
ble” reionization history with 7 = 0.090 (thin). Points with error
bars represent the 3-year WMAP data from [Page et all (2006).

so in § Blwe derive limits that can be placed on the model
parameters to eliminate most of the unphysical models
where z, > 1 or z. < 0. We outline several ways to ap-
ply the principal component approach to constrain the
reionization history with large-scale E-mode data in § [l
Using Markov Chain Monte Carlo methods, we examine
some of these applications in more detail in § [Bl using
both 3-year WMAP data and simulated future CMB po-
larization data. We summarize our findings and conclude

in §[6

2. IONIZATION HISTORY EIGENMODES

Models with similar total optical depth but different
ionization histories can produce markedly different pre-
dictions for the E-mode power spectrum. In an instanta-
neous reionization scenario, the contribution to the op-
tical depth from z.(z) is concentrated at the lowest red-
shifts possible for a given 7, and the F-mode power spec-
trum for such a model is sharply peaked on large scales,
at £ < 10. The main effect of shifting some portion of
the reionization history to higher redshifts while keeping
7 fixed is to reduce the E-mode power on the largest
scales and increase it on smaller scales.

This redistribution of power is illustrated in Figure [l
by the ionization histories and Cf E for two models, one
with nearly instantaneous reionization and the other with
comparable optical depth but with z.(z) concentrated at
higher z. In general, a flatter large-scale E-mode spec-
trum with power extending out to £ ~ 10-20 is a sign of
a large ionized fraction at high redshift. However, there
is not a one-to-one correspondence between ¢ and z; the
ionized fraction within any particular narrow redshift bin
affects CFE over a wide range of angular scales. Ionized
fractions in adjacent redshift bins have highly correlated
effects on CfE , which makes it difficult to extract from
FE-mode polarization data a constraint on x. at a specific
redshift.

As suggested by [Hu & Holder (2003), one can use prin-

cipal components of the reionization history as the model
parameters instead of z. in redshift bins. These com-
ponents are defined to have uncorrelated contributions
to the F-mode power; since each has a unique effect
on CfE , the amplitudes of the components can be in-
ferred from measurements of the large-scale power spec-
trum. Principal component analysis of x.(z) also indi-
cates which components can be determined best from the
data. In this section, we describe the principal compo-
nent method and introduce the notation that we will use
throughout the paper.

Consider a binned ionization history x.(z;), ¢ €
{1,2,...,N.}, with redshift bins of width Az span-
ning zmin < 2 < Zmax, where z1 = zpin + Az and
ZN. = Zmax — Az so that N, + 1 = (Zmax — Zmin)/Az.
Throughout this paper we assume that the ionized frac-
tion is z, ~ 1 for redshifts z < zmi, and 2. ~ 0 at
Z > Zmax- We take znin = 6, consistent with observa-
tions of quasar spectra (Fan et all|2006).

The principal components of z.(z;) are eigenfunctions
of the Fisher matrix, computed by taking derivatives of
CFE with respect to x.(2;):

Lo
o~ 1\ 0lnCFF oInCFF
Fj=> (t+5 £ £ 1

P ( + 2) 0ze(z) Oxe(z) (1)

assuming full sky coverage and neglecting noise. Since
Ze(z;) only significantly contributes to the F-mode spec-
trum at small ¢, we typically truncate the sum in equa-
tion (@) at fmax = 100 where CF¥ is dominated by
the first acoustic peak. The derivatives are evaluated
at a fiducial reionization history, zf9(z;). Following

Hu & Holded (2003) we typically choose xfd(z;) to be
constant during reionization, although other functional
forms may be used.

Since the effects on CF¥ of z.(z;) in adjacent redshift
bins are highly correlated, the Fisher matrix contains
large off-diagonal elements. The principal components

S,.(z;) are the eigenfunctions of Fj;,

N,
Fy=(N.+ 1) Su(20)0,7S,(z), (2)
p=1

where the factor (N, +1)~2 is included so that the eigen-
functions and their amplitudes have certain convenient
properties. The inverse eigenvalues, ai, give the esti-
mated variance of each principal component eigenmode
from the measurement of low-¢ F-modes. We order the
modes so that the best-constrained principal components
(smallest 07) have the lowest values of u, starting at
@ = 1. The noise level and other characteristics of an
experiment can be included in the construction of the
eigenfunctions, but since the effect on S, (2) is small we
always use the noise-free eigenfunctions here.

The eigenfunctions satisfy the orthogonality and com-
pleteness relations

[t 5061500 = G — i), (3

Zmin

N
D Su(z0)Su(z) = (N. +1)3;; . (4)
p=1
The normalization of S,(z) is chosen so that the eigen-
functions are independent of bin width as Az — 0. In
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Fic. 2.— Eigenfunctions for fiducial models with zmax = 30 and
constant ze = 0.15 (top), and zmax = 20 and z. = 0.3 (bottom).
In each case, the first three modes are shown: p = 1 (thick), 2
(medium) and 3 (thin). For both fiducial models, zmin = 6 and
Az =0.25.

equation (B) and elsewhere in this paper where there are
sums over redshift, we assume the continuous limit, re-
placing Y, Az by [ dz. Aslong as the bin width is chosen
to be sufficiently small, the final results we obtain are in-
dependent of the redshift binning. We adopt Az = 0.25
as the default bin width.

The three lowest-variance eigenfunctions for two dif-
ferent fiducial models are shown in Figure[2l The lowest
eigenmode (= 1) is an average of the ionized fraction
over the entire redshift range, weighted at high z. The
¢ = 2 mode can be thought of as a difference between
the amount of ionization at high z and at low z, and
higher modes follow this pattern with weighted averages
of z.(z) that oscillate with higher and higher frequency
in redshift. Eigenfunctions of fiducial models with differ-
ent values of zp.x have similar shapes with the redshift
axis rescaled according to the width of (zmax — Zmin)-
The eigenfunctions are mostly insensitive to the choice
of ionized fraction in the constant-x. fiducial histories.

An arbitrary reionization history can be represented in
terms of the eigenfunctions as

ze(z) = 2l (2) + Y muSi(2), (5)

where the amplitude of eigenmode p for a perturbation
0ze(2) = we(2) — 289(2) is

1 /zmax dz Su(2)0ze(2). (6)

my, =
Zmax — Zmin

min

[Note that our conventions for the normalization of m,
and S, (z) differ from those of Hu & Holder (2003) by fac-

tors of (N, + 1)!/2.] Any global ionization history x.(z)
over the range zmin < 2z < Zmax is completely specified
by a set of mode amplitudes m,,.

If perturbations to the fiducial history are small,
0x.(z) < 1, then the mode amplitudes are uncorrelated,
with covariance matrix (m,m,) = oﬁéw. For a fixed
fiducial model, however, arbitrary reionization histories
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Fic. 3.— Change in InCF¥ per unit m, for fiducial z(z) with
Zmax = 30 (solid) and 20 (dashed), showing the effect on CFZ of
the first two principal components, u = 1 (thick) and 2 (thin).

generally have dx. ~ 1, in which case the amplitudes of
different modes can become correlated as we discuss in
§

The main advantage of using the principal component
eigenmodes of z.(z) instead of some other parameteriza-
tion is that most of the information relevant for large-
scale F-modes is contained in the first few modes. This
means that if one constructs z.(z) from equation (&)
keeping only the first few terms in the sum over u, then
the E-mode spectrum of the resulting ionization history
will closely match that of z.(z) with all modes included
in the sum. The effect of each eigenmode on CF¥ be-
comes smaller as p increases, as shown in Figure [ for
the first two modes. [Hu & Holder (2003) demonstrated
that for a specific fiducial ionization history zfd(z) and
assumed true history, only the first three modes of z.(z)
are needed to produce CfE indistinguishable from the
true E-mode spectrum.

The ionization histories and corresponding E-mode
spectra in Figure M demonstrate this completeness for
a fairly extreme model in which the first ten eigenmodes
all have significant amplitudes. Even in the simplest case
where a single eigenmode is used in place of the original
z.(z), the error in CFF is only ~ 10%. With 3-5 modes,
the error is a few percent or less at all multipoles and
safely smaller than the cosmic variance of

ACFE [ 2
CEE — V2+1" @

The top panel of Figure ] shows that this completeness
does not extend to the ionization history itself: z.(z)
constructed from as many as five eigenmodes is a poor
approximation to the full reionization history.

From this and other similar tests on the completeness
in CfE of the lowest-variance eigenmodes we conclude
that the first 3-5 modes contain essentially all of the
information about the reionization history that is rele-
vant for large-scale E-mode polarization. This fact is
particularly useful for constraining the global reioniza-
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Fic. 4.— Test of completeness in CfE for ionization histories

with truncated sets of eigenfunctions. The base history (top panel,
dashed) is the sum of the first 10 eigenfunctions with comparable
values of |my| for each mode. Solid curves show z(z) (top) and

the error in C’fE (bottom) for histories that retain the first one

(thin curves), three (medium), and five (thick) eigenmodes. The
fiducial model used for the eigenmode decomposition has constant
ze = 0.15 from zyin = 6 up to zmax = 30.

tion history with CMB polarization data using Markov
Chain Monte Carlo techniques. Since the number of pa-
rameters that must be added to a Monte Carlo chain
to describe an arbitrary z.(z) is relatively small, we can
obtain constraints from the data that are independent
of assumptions about the reionization history with min-
imal added computational expense (Hu & Holder [2003).
The exact number of modes required varies depending
on the true ionization history and the fiducial history, so
when analyzing data it is a good idea to check that the
results do not change significantly when the next modes
are included in the sum in equation (&l).

The main caveat to this model independence is that in
practice we must set some maximum redshift for histories
in any particular chain of Monte Carlo samples, ignoring
any contribution to the observed low-¢ C’fE from ioniza-
tion at z > zmax. Since the eigenfunctions of the ion-
ization history are stretched in redshift as zp,.x increases
(Fig. @), at higher zpa.x more modes are needed to ac-
curately represent any particular feature in x.(z). For
example, take the true ionization history to be instanta-
neous reionization at z = 11.5. Figure [l shows the error
in CFE if we truncate the eigenmode sum of equation (&)
at N modes using fiducial histories with zpya.x = 30 and
Zmax = 20. For each fiducial model, the error decreases
as the number of modes in the sum increases, but the
error at fixed N is larger for zmax = 30 than zp.x = 20.
The requirement of retaining a larger set of parame-
ters as zmax increases makes it less practical to study
models with significant reionization at extremely high
redshifts [zmax 2 100; e.g., [Naselsky & Chiang (2004);
Kasuya et all (2004)], but even for zpyax as high as ~ 40
the number of eigenmodes needed is reasonably small
(N <5).

While theories of reionization provide useful priors on
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Fic. 5.— Error in CFP from zc(z) constructed from the first

N eigenmodes of fiducial models with zmax = 30 (solid curves)
and 20 (dashed), taking N = 3 (thin) and N = 5 (thick). The
true zc(z) and CFF are assumed to be those of an instantaneous
reionization model with 7 = 0.09.

Zmax 10 the context of specific models, it would be bet-
ter to be able to constrain zp,.x empirically by mea-
suring the F-mode power accurately up to ¢ ~ 100.
The current 3-year WMAP polarization data have high
enough signal-to-noise to be useful for parameter con-
straints only at £ < 24 (Page et alll2006), so their sensi-
tivity to high-z reionization is limited. Given that ion-
ization at some redshift generates polarization out to a
maximum ¢, WMAP data can still place weak bounds
on the total optical depth contribution above a certain
redshift, even if it cannot distinguish whether these con-
tributions arise from redshifts above a chosen zpax as we
discuss in § [l The values we choose here for zy., are
partly influenced by the fact that few theoretical reion-
ization scenarios predict an ionized fraction at z 2 30
that would significantly affect large-scale CFE. Future
data should better constrain CfE at higher multipoles,
allowing useful limits to be placed on zyax from the data
alone.

The need to consider a limited range in redshift is
shared by other methods, for example those that con-
strain binned z.(z;) instead of the eigenmode amplitudes
(Lewis et alll2006). As already mentioned, the principal
component approach has the unique advantages that re-
sults can be made independent of bin width and that rel-
atively few extra parameters are required. However, this
approach also has a unique difficulty in that the physical-
ity of the reionization history [0 < z.(z) < 1] is not built
in to the method. Hence constraints derived from mea-
surements of the eigenmodes can be weaker than those
from a method that enforces physicality. We can, how-
ever, place some prior constraints on the set of eigenmode
amplitudes that must be satisfied by any physical model,
as we discuss in the next section.

3. PRIORS FROM PHYSICALITY

Although the actual ionized fraction must be between
0 and 1 (neglecting helium reionization and the small



residual ionized fraction after recombination), there is
nothing in the construction of z.(z) from the eigenmodes
in equation () that ensures that the ionized fraction will
obey these limits. Whether or not z. has a physical
value at a particular redshift depends on the amplitudes
of all of the principal components. Even for a physical
ionization history, the truncated sum up to mode N,

N
2™ (z) = 2f4(z) + ) muSu(2), (8)
pn=1

is not necessarily bounded by 0 and 1 at all redshifts.
While formally it is possible to evaluate C£¥ for reioniza-
tion histories with unphysical values of x., we would like
to eliminate as much as possible those models for which

the full sum of the eigenmodes, z.(z) = limy_ 0 2N (2),
is unphysical.

We find the largest and smallest values of m,, that are
consistent with z.(z) € [0, 1] for all z using the definition

of m,, in equation (). We are free to choose zf4(z) €

[0,1] so that —zf4(2) < dz.(2) < 1 — 2119(2), where the
lower limit is strictly negative or zero and the upper limit
is positive or zero. For a particular mode p, the choice
of z.(z) that maximizes m,, is

max _ —:cgd(z), S#(z) <0
O™ (2) = { 1 —2fd(2), S,(z) > 0. (9)

Using this in equation (B)) gives an upper limit on m,.
Similarly, a lower limit can be obtained by reversing the

signs of the inequalities in equation (@). The resulting
physicality bounds are mff) <m, < mﬁr), where
N GO ELIC)
a Zmin 2(2max - Zmin)
If m,, violates these bounds for any u, the reionization
history is guaranteed to be unphysical for some range in
redshift. The opposite is not true, however: even if all
m,, satisfy equation (I0), z.(z) may still be unphysical
for some z.

The parameter space that physical models may oc-
cupy is restricted further by an inequality that must be
satisfied by all eigenmodes simultaneously. Assume for
simplicity that the fiducial model has a constant ionized
fraction, 219 € [0,1], for 2min < 2 < Zmax. Any physical
reionization history z.(z) must satisfy

/Z%X dz[ze(2) = 20 < (2max — Zmin) 4 ()

Zmin

(10)

where f = max[(zf9)2, (1 — 2fi4)2]. Using equation (),
the left side of the inequality can also be written

2
/ dzfe(z) — ] = / dz Zmuwz)]
z z lu‘

min min

= (Zmax - Zmin) Z mi ) (12)
o

where the second line follows from the orthogonality of
the eigenfunctions (eq. [B]). Comparing equations (II)
and (I2) we obtain a constraint on the sum of the squares
of the mode amplitudes,

> mi<f, (13)
o

5

where 0.25 < f < 1, depending on the value of zd.
As with the physicality bounds of equation (IQI), this
upper limit is a necessary but not sufficient condition for
physicality.

Since in practice we can only constrain a limited set
of eigenmodes, the uncertainty in modes higher than the
first few prevents us from simply excluding all models
where x. < 0 or . > 1 at any redshift because the higher
modes can have a significant effect on z.(z). However, as
shown in §[l the higher modes do not affect the polariza-
tion power spectrum since the high-frequency oscillations
in redshift of higher modes are averaged out. Similarly,
such eigenmodes have a small effect on the optical depth
from a sufficiently large range in redshift. For example,
the optical depth from 15 < z < 30 due to modes p > 5
subject to the physicality constraints of this section can
be no larger than ~ 0.01, and is likely to be smaller for
realistic reionization scenarios. Because of this, we as-
sume that we can place priors on the optical depth that
correspond to 0 < z, < 1 over the relevant range in red-
shift. Reionization histories with an unphysical optical
depth over a large range in redshift are considered to be
unphysical models since the addition of higher modes can
not perturb the optical depth enough to give it a physical
value.

4. APPLICATIONS OF THE PRINCIPAL COMPONENT
METHOD

Once constraints on the principal components of the
reionization history have been obtained from CMB po-
larization data, there are several ways to use those con-
straints to place limits on observables such as 7 or to test
theories of reionization (Hu & Holder|2003). We describe
some possible applications in this section, and in § Bl we
put these ideas into practice using the 3-year WMAP
data and simulated future data.

As mentioned in §[I the constraint on the total opti-
cal depth to reionization depends on the assumed model
for x.(z). The principal component method allows us to
explore all globally-averaged ionization histories within
a chosen redshift range, zpin < 2z < Zmax. For a given
set of eigenmode amplitudes, {m,}, equation (@) yields
the corresponding ionization history which can then be
integrated to find the optical depth between any two red-
shifts z; and z»,

2 (14 2)?
= 0.0691(1 — Y,)Q2ph dz———x.(2).
(2, 22) -Ypuh [ et ()
(14)
In particular, the total optical depth to reionization is
T = T(O, Zmin) + T(Zminu Zmax)u (15)

where 7(0, Zmin) & 0.04 for zymin = 6. The principal com-
ponent approach provides a model-independent way to
constrain 7, so we expect the results to be unbiased and
the uncertainty in 7 to accurately reflect the present un-
certainty about z.(z). Moreover, the information about
T(Zmin, Zmax) 18 encapsulated in the first few eigenmodes,
i.e. the truncated ionization history of equation (&),

2 (z), with N = 3-5 for typical fiducial models.

The total optical depth and the first principal compo-
nent amplitude, m, are similar quantities in that they
are both averages of z.(z) weighted at high z. As we
show in the next section, CMB FE-mode polarization
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data can constrain higher eigenmodes as well (u > 2).
In particular, the second mode should be the next best
constrained quantity since it is constructed to have the
smallest variance after mq. Since ms is related to the dif-
ference in x. between high redshift and low redshift (see
Fig. 2)), we might guess that besides total 7 the data are
mainly constraining the fraction of optical depth com-
ing from high redshift versus low redshift. Given any
set of mode amplitudes defining an ionization history,
we can compute a low-z optical depth, 7(zmin, Zmid), and
a high-z optical depth, 7(zmid, Zmax), for some choice of
intermediate redshift, zmyiq.

Note that if either of the redshift ranges [zmin, Zmid| or
[2mid; Zmax]) 18 too narrow, constraints on the partial op-
tical depths will be influenced by the physicality priors
(since 0 < z, < 1 sets limits on 7 in redshift intervals as
discussed in §B]) and by the uncertainty in modes higher
than those included in the chain, which have greater ef-
fect on the optical depth in narrower redshift intervals.
For these reasons, zyiq should be chosen to be not too
close to either zmin Or Zmax-

Given an appropriately chosen value of zpiq, con-
straints on the principal components can be converted
into constraints on the optical depths at high and low
redshift. These partial optical depths are observables in
the sense that high-z and low-z optical depth affect the
large-scale E-modes over different ranges of multipoles.
For example, compare the two reionization models in Fig-
ure [Il Both have similar total optical depth, but in one
case 7 only comes from z < 15, resulting in more power
at ¢ < 8 and less power at £ > 8 than the other model in
which the optical depth primarily comes from z > 15.

Besides learning about the relative amount of ioniza-
tion at z < zmiq and z > zmiq, the partial optical depth
constraints also provide a way to empirically set the max-
imum redshift, zp,.x. If some set of data are found to
place a tight upper bound on 7(2zmid, Zmax) for fairly con-
servative (i.e. large) values of zpmiq and zmax, then for
analyses of future data this value of zpjq can be used
as a new, lower value for zy .y since optical depth from
higher redshifts is small. This approach assumes that
there is essentially no reionization earlier than the orig-
inal zpax, but as long as this initial maximum redshift
is taken to be large the presence or absence of high-z
ionization can be tested in this way over a wide range of
redshifts. We explore this idea further in § Bl

While we do not examine constraints on specific reion-
ization models in this paper, the principal component ap-
proach is well suited to model testing. Consider a model
of the global reionization history, z.(z; ), parameterized
by 0. This could be a simple toy model (for example, in-
stantaneous reionization where 6 is a single parameter,
the redshift of reionization) or a more physical model
where @ might include parameters that govern proper-
ties of the ionizing sources. For a particular choice of
2f19(2), the principal component amplitudes of the reion-
ization model follow from equation (@), giving a set of
mode amplitudes that depend on the model parameters,
{m,(0)}. Then constraints on the mode amplitudes from
CMB polarization data (defined using the same fiducial
history) can be mapped to constraints on the parameters
of the reionization model.

Applying this method to a model that has as one of
its parameters a maximum redshift allows one to obtain

constraints on zmax within a class of theoretical models.
Although obtaining good constraints on model parame-
ters does not necessarily imply validation of the model
class, this procedure provides a straightforward method
by which different model classes can tested and falsified
within a single analysis.

Generating Monte Carlo chains to find constraints on
{m,} as described in the next section can be a some-
what time-consuming process, but it only needs to be
done once per redshift range, after which any model of
the global reionization history within this range zpyin <
z < Zmax can be tested using the same parameter chains.
In cases where constraints from the data turn out to be
close to Gaussian, the covariance matrix of the principal
components can be used in place of the full Monte Carlo
chains, reducing the amount of information needed for
model testing from ~ 10° numbers in chains of Monte
Carlo samples to only N(N + 3)/2 numbers when N
eigenmodes are included in the chains [N mean val-
ues plus N(N + 1)/2 entries in the covariance matrix,
(myum,)]. However, near-Gaussian constraints on {m,}
are likely to be possible only for certain realizations of
future data, as discussed in the next section.

5. MARKOV CHAIN MONTE CARLO CONSTRAINTS ON
EIGENMODES

We find reionization constraints from CMB polariza-
tion data using Markov Chain Monte Carlo (MCMC)
techniques to explore the principal component parameter
space (see e.g. [Christensen et all 2001; [Kosowsky et al.
2002; Dunkley et all 2005). Chains of Monte Carlo
samples are generated using the publicly available code
CosmoMC! (Lewis & Bridle 2002), which includes the
code CAMB (Lewis et all[2000) for computing the the-
oretical angular power spectrum at each point in the
{mi,...,my} parameter space. We have modified both
codes to allow specification of an arbitrary reionization
history calculated from a set of mode amplitudes using
equation ([@).

The principal component amplitudes are the only pa-
rameters allowed to vary in the chains. Since nearly all
the information in CfE from reionization is contained
within the first few eigenmodes of z.(z), we include the
modes {m1,...,my} in each chain with 3 < N < 5.
We use only the E-mode polarization data for parame-
ter constraints, and assume that the values of the stan-
dard ACDM parameters (besides 7) are fixed by mea-
surements of the CMB temperature anisotropies. This
leads to a slight underestimate of the error on 7 as we
discuss later, but to a good approximation the effect of
x.(2z) on the large-scale E-modes is independent of the
other parameters.

Specifically, we take Q,h% = 0.0222, Q.h% = 0.106,
1000 = 1.04 (corresponding to h = 0.73), Age 2T =
1.7 x 1079, and n, = 0.96, consistent with results from
the most recent version of the WMAP 3-year likelihood
code. When computing the optical depth to reionization
we take the primordial helium fraction to be Y, = 0.24.
We also assume that zmin, = 6, so that the optical depth
contributed at lower redshifts is fixed at 7(zmin) & 0.04.
The remaining total optical depth from reionization,
T(Zmin, Zmax), 1S determined by the values of {m,} for

! http://cosmologist.info/cosmomc/



each sample in the chains. The default bin width for
our fiducial models z19(z) is Az = 0.25, which is small
enough that numerical effects related to binning should
be negligible.

To get accurate results from MCMC analysis, it is im-
portant to make sure that the parameter chains contain
enough independent samples covering a sufficient volume
of parameter space so that the density of the samples
converges to the actual posterior probability distribution.
For each scenario that we study, we run 4 separate chains
until the Gelman and Rubin convergence statistic R, cor-
responding to the ratio of the variance of parameters be-
tween chains to the variance within each chain, satisfies
R —1<0.01 (Gelman & Rubin 1992; IBrooks & Gelman
1998). The convergence diagnostic of [Raftery & Lewis
(1992) is used to determine how much each chain must
be thinned to obtain independent samples. Both of these
statistics and other diagnostic measures are computed
automatically by CosmoMC.

Since x.(z) during reionization must match onto z. ~
1at 2z = zpin and . = 0 at z = zyay, there are often
sharp transitions at these redshifts since nothing in equa-
tion (Bl forces x.(2) to satisfy these boundary conditions.
To avoid problems with the time integration in CAMB,
we smooth the reionization history by convolving z.(z)
with a Gaussian of width o, = 0.5.

As described in previous sections, we assume that
0 < z. <1 between zpmin and zmax. This assumption
neglects helium reionization, which can make z. slightly
larger than unity, and the small residual ionized fraction
remaining after recombination that prevents . from ever
being exactly zero. These are relatively small effects, es-
pecially since we are not placing constraints on z.(z) di-
rectly but rather on weighted averages of x. over redshift.
The residual ionized fraction at z > 2.y iS accounted for
in the Monte Carlo exploration of reionization histories.

In § BIl we examine the current constraints from
the 3-year WMAP data. We then provide forecasts for
principal component constraints with idealized, cosmic
variance-limited, simulated data in §[5:21 In each case the
likelihood computation includes only the E-mode polar-
ization data, up to £ = 100 for simulated data and £ = 23
for WMAP; the likelihood code for WMAP does not use
CFE at smaller scales due to low signal-to-noise. At mul-
tipoles £ 2 100 the global reionization history only affects
the amplitude of the angular power spectra, which we fix
by setting A;e~27 constant in the Monte Carlo chains. A
comparison of the MCMC results with the Fisher matrix
approximation follows in §

5.1. Constraints from WMAP

In our analysis of WMAP data we use the 3-year
WMAP likelihood code, with settings chosen so that
likelihoods include only contributions from the low-¢
FE-mode polarization. In this regime, the code com-
putes model likelihoods with a pixel-based method in-
stead of using the angular power spectrum (Page et al.
2006). Since the maximum redshift at which there is still
a significant ionized fraction is uncertain, we generate
Monte Carlo chains using different fiducial models with
10 < zpmax < 40. To avoid possible bias due to neglect-
ing the possibility of high-redshift reionization, we focus
here on the results obtained using the more conservative
values of zmax = 30 and 40.

7

The MCMC constraints on the first three principal
components from WMAP are shown in Figure [6] using
fiducial models with zpmax = 30 and zpmax = 40. The
marginalized constraints are plotted within the physical-
ity bounds of equation (I0), mff) < m, < mff), SO
the size of the contours inside each box gives an idea of
the constraining power of the data within the space of
potentially physical models. For both fiducial histories,
the data place a strong upper limit on m; and weakly
constrain ms. It is important to note that although the
parameters {mq, mo, m3} have the same names in both
the zmax = 30 and zp,.x = 40 plots, they are defined with
respect to different fiducial models and so we do not ex-
pect the contours in the left and right plots in Figure
to agree exactly. The qualitative similarity between the
contours simply reflects the fact that the eigenfunctions
for different zmayx have similar shapes (Figure [2)).

Since my and 7 are both averages of x. from zyi, to
Zmax With more weight at high z than low z, the strong
constraint on m mostly reflects the ability of the data to
constrain the total optical depth to reionization. Indeed,
my and 7 are strongly correlated in the Monte Carlo
chains, while the correlations between 7 and higher prin-
cipal components of x.(z) are weaker.

Relative to the physicality bounds, the constraints in
Figure [@ are stronger for the zy,,x = 40 chains than for
Zmax = 30; this is to be expected since the physicality
bounds on {m,} permit a greater variety of ionization
histories, and in particular a wider range in 7, when zp,,x
is larger. The range of eigenmode amplitudes allowed by
the limits of equation (0] is nearly independent of zpax,
but the effect of a unit-amplitude principal component
on Cf E increases with zpmax as illustrated in Figure 3

As described in § Ml principal component constraints
from MCMC yield model-independent constraints on the
total optical depth. For each Monte Carlo sample of the
principal components we compute 7 using equation (IH]).
The constraints on 7 are listed in Table [Il for various val-
ues of zpmax and N, the number of modes in the Monte
Carlo chains. The uncertainty in 7 from the Monte
Carlo chains is slightly underestimated because we fix
all cosmological parameters that are not directly related
to reionization. To estimate the effect of this assump-
tion, we compare constraints on 7 in two cases where in-
stantaneous reionization is assumed instead of using the
model-independent principal component approach: one
in which the non-reionization parameters are fixed as in
the rest of our Monte Carlo chains, and the other, from
the 3-year WMAP analysis of [Spergel et all (2006), in
which these parameters are allowed to vary. These con-
straints, listed in rows 4 and 5 of Table [I suggest that
fixing ACDM parameters besides 7 reduces o, by ~ 10%.

In all cases where we fix the other cosmological param-
eters, the uncertainty in 7 is similar regardless of whether
we use principal components to explore a variety of reion-
ization histories or restrict the analysis to instantaneous
Ze(z). This is somewhat surprising, since in general one
would expect that expanding the model space for z.(z)
would increase the estimated error on 7. The physicality
priors may be responsible for reducing o, slightly — top-
hat priors on {m,} induce a prior on 7 that is flat over a
certain range but falls off approximately linearly at the
edges — but even after accounting for priors, the optical
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Fic. 6.— Marginalized 2D contours (dark shading: 68% CL; light: 95%) for the first three principal components of z¢(z) from MCMC
analysis of 3-year WMAP E-mode polarization data, using fiducial reionization histories with zmax = 30 (left) and zmax = 40 (right). Note
that the mode amplitudes m,, are defined differently in the left and right panels since the fiducial models are different.

TABLE 1

r ‘ T TT ) 1T \/ T TT ] T TT ‘ T TT
CONSTRAINTS ON TOTAL OPTICAL DEPTH TO REIONIZATION. 02 L QCQ/ QQ)/ i}}/ ] | —— all XE(ZL
LSy o/ //Q/ B | — inst. i
B K/ | reion.
- / / / L _
Use PCs Fix other -/ / / b
Data of e(2)?*  Zmax N parameters?? T 07 / / — o B
WMAP3  Yes 20 3 Yes 0.098 + 0.025 / b | |
WMAP3  Yes 30 5  Yes 0.106 + 0.027 / y 1
WMAP3  Yes 40 5 Yes 0.107 £ 0.029 o // / 1% T 7
WMAP3 No - - Yes 0.096+0027 E-0.2 / / -+ .
WMAP3 No — — No 0.089 + 0.030¢ - / B B H
cvd Yes 20 3 Yes 0.103 £ 0.004 2 / B
CV Yes 30 5 Yes 0.108 £ 0.005 - / B B 7
CV No — — Yes 0.108 £ 0.003 -04 / — L i
r/ 1 L i
;/ inst.
reion. i ]
. . . . 706 111 l 1111 I ] [ l L1l
depth constraint is robust to replacing the instantaneous
S . . . -0.1 0 0.1 0.2 0 0.1 0.2
reionization assumption with a model-independent anal- m P

ysis.

The insensitivity of the constraint on 7 to the set of
models considered is partly due to the fact that the de-
generacy in the eigenmode constraints is aligned in the
direction of constant 7, as shown in Figure [ in the
mi1 — ms plane. The set of instantaneous reionization
models, plotted as a curve in Figure [[, cuts across the
WMAP constraints on more general models in a region
of high posterior probability where the distribution of
samples varies slowly along lines of constant 7. This
large overlap between the general reionization histories
favored by the data and the line of instantaneous mod-
els is the main reason why the probability distributions
P(7), plotted in the right panel of Figure [ are simi-
lar for the two classes of models. [The sharp cutoff at
low 7 in the instantaneous reionization P(7) comes from
our zmin = 6 prior.] Note that the fact that the instan-
taneous reionization curve passes through the middle of
the 68% confidence region also indicates that models with
rapid reionization are not at all disfavored by the 3-year
WMAP data. We use two methods to find the posterior

Fic. 7.— Left panel: Marginalized 2D contours (68 and 95%)
from a zmax = 30 WMAP chain of Monte Carlo samples (thick
curves), lines of constant 7 = {0.06, 0.09, 0.12} (dashed lines), and
the set of one-parameter instantaneous reionization models (thin
curve) plotted in the mi — mo plane. Higher eigenmodes (p > 3),
which only weakly influence 7, are fixed to m,, = 0 for the purposes
of plotting the constant-7 lines. Right panel: posterior probability
of the optical depth from 3-year WMAP data, P(7), for arbitrary
Ze(2z) with zmin = 6, Zmax = 30, and N = 5 principal components
(thick curve), and for the one-parameter instantaneous reionization
model with a zpi, = 6 prior (thin curve).

distribution for 7 in the instantaneous reionization case:
one is the usual approach of varying the optical depth
(or reionization redshift) in a Monte Carlo chain, and
the other involves computing P(7) for a subset of sam-
ples from chains in which principal components of z.(z)
are varied, selecting only those samples with {m,} values
close to the 1D instantaneous reionization curve. Both
approaches produce consistent probability distributions;
the former method is used for P(7) plotted in Figure [7
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Fic. 8.— Constraints on optical depth during reionization di-

vided between two wide ranges in redshift, 7(6, 20) and 7(20, zmax),
for Zmax = 30 (left) and 40 (right). The contours are drawn at 68%
(dark gray) and 95% (light gray) 2D marginalized posterior proba-
bility. Dashed lines in each panel are lines of constant total optical
depth: 7 = 0.12 for the upper line, and 7 = 0.06 for the lower line.

The weak mo constraint visible in Figure [0 suggests
that in addition to determining the total optical depth,
WMAP data may provide useful limits on high-z and
low-z optical depth as defined in the previous section.
The 68 and 95% posterior probability contours for the
partial optical depths from WMAP are shown in Fig-
ure [§ for zmia = 20 and zmax = {30,40}. The z, = 0
physicality prior cuts off the contours at 7(z1, 22) = 0; in
both panels, the upper limits set by x. = 1 are outside
the plotted area, so the contours are not strongly influ-
enced by those priors. The error “ellipses” are narrowest
in the direction along which the total optical depth is
constrained, as shown by dashed lines of constant total
optical depth at 7 = 0.06 and 7 = 0.12 [approximately
the upper and lower 1 ¢ limits from the 3-year WMAP
analysis of [Spergel et al! (2006)].

Comparison of the two panels in Figure [§ reveals that
the choice of zy.x does not have a large effect on con-
straints on the optical depth above and below z = 20.
This suggests that 7(20, zmax) should be interpreted as
7(z > 20). We provide further justification for this in-
terpretation in §

The 95% upper limits on the high-redshift optical
depth, 7(z > 20), are 0.076 and 0.078 for zy.x = 30 and
40, respectively, after marginalizing over all other param-
eters. This is not a particularly strong constraint, since
this result is only marginally inconsistent with all of the
optical depth from reionization coming from z > 20, but
with future data it should be possible to either reduce
the upper limit on high-z optical depth or to detect the
presence of a substantial ionized fraction at high redshift
(see § [B.2).

Models of reionization can be tested by computing
the principal components of proposed ionization histories
and comparing with constraints on {m,} from Monte
Carlo chains. The WMAP constraints in Figure [0l are
non-Gaussian, in part because the physicality priors on
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{m,} intersect the posterior probability contours where
the likelihood is large. Because the constraints do not
have a simple Gaussian form, it appears that the full pa-
rameter chains are necessary for accurate model testing,
although the viability of various models can be estimated
by comparing their eigenmode amplitudes with marginal-
ized constraints such as those in Figure [6] keeping in
mind that models favored by marginalized constraints
could be disfavored in the full N-D parameter space.

5.2. Cosmic variance-limited data

To forecast how well principal components of the reion-
ization history could be measured by future CMB polar-
ization experiments, we repeat the analysis of § 5.1l using
simulated realizations of the full-sky, noiseless E-mode
angular power spectrum instead of WMAP data. Any
real experiment will of course involve sky cuts, noise,
foregrounds, and other complications, so the results pre-
sented here represent an optimistic limit on what we can
learn about the global reionization history from low-¢
FE-mode polarization. At the end of this section, we esti-
mate how much the constraints might be degraded from
this idealized case for an experiment with characteristics
similar to those proposed for the Planck satellite.

We generate simulated realizations of CZ¥ drawn from
x? distributions with cosmic variance determined by the
theoretical angular power spectra that we compute using
CAMB. For the jth sample in a chain, the likelihood
including only F-mode polarization is

1 C'EE Cg(%
:Z £+—>< +In—2 —1], (16)
: ( Cup - CFF

Where C’EE is the spectrum of the simulated data and
C I is the theoretical spectrum calculated with the pa-

rameter values at step j in the chain.

We have run Monte Carlo chains for multiple realiza-
tions of CFF drawn from spectra computed assuming a
variety of “true reionization histories, x%""¢(z). We start
by taking the true history to be a model with nearly in-
stantaneous reionization and 7 = 0.105. As a contrasting
model for comparison we also use an extended, double
reionization model with 7 = 0.090. Figure [l shows CF¥
and x.(z) for each of these models.

Since parameter constraints derived using a single draw
of CEF from the underlying power spectrum may contain
features unique to that realization, we generated Monte
Carlo chains for 10 random realizations of the instanta-
neous reionization power spectrum. Two of these real-
izations are plotted as points in Figure[d along with the
theoretical spectrum with cosmic variance bands. The
thick curves in Figure [0 are spectra of the best-fit mod-
els from the Monte Carlo chains for each realization. The
overall best-fit models are similar for the two realizations
and both agree closely with the theoretical CEE . The
dashed curve in the right panel of Figure [ shows an

“alternative” best-fit model that we discuss later.

The 2D marginalized MCMC constraints on principal
components for these two realizations are shown in Fig-
ure The plotted regions are bounded by the physical
top-hat priors on {m,} as in Figure [6] but the eigen-
modes are different here with zp.x = 20 instead of 30
or 40 for the fiducial history. Since we have constructed

—In L(])



10

H
<

11+ 1)CEE /27 [uK?]
o

11+ 1)CEE /27 [uK?]

H
<

,_.
o
&

F1G. 9.— E-mode spectra of the best-fit models from two Monte Carlo chains (thick curves), each using a different realization of simulated
cosmic variance-limited data (points). The realizations are drawn from the same CZEE of the instantaneous reionization model in Figure[I]
plotted as thin curves with shaded regions showing the 1 o cosmic variance limits. The dashed curve in the right panel shows the best fit
model within the high-mo peak in the posterior probability (see Fig. [I0]).
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Fic. 10.— Marginalized 2D contours (68 and 95%) for the first three principal components with two different realizations of cosmic

variance-limited data simulated using the instantaneous reionization history. The fiducial model has maximum redshift zmax = 20, and
only the three modes shown here are varied in the parameter chains. The cross in each panel marks the location of the principal components

of ztrue(z).

z!™(z) to have no ionization at z > 15, we know that
Zmax = 20 should be a large enough maximum redshift;
this choice of zyax also reflects the fact that improved
empirical determination of zy.x will allow it to be set
at lower redshift for future data analysis, assuming that
high-z reionization is not detected.

The contours in Figure [L0l show that cosmic variance-
limited data can constrain models within the physically
allowed parameter space much better than current data
can. The chains used for the results shown here vary the
first 3 eigenmodes; by running chains with N > 3 we
find that cosmic variance-limited data can provide 2 o
constraints that are tighter than the physicality bounds

for the first 4 eigenmodes of a zy,x = 20 fiducial model
and for at least 5 eigenmodes when zp,,x = 30.
Although the only difference in the MCMC setup for
the left and right panels of Figure [I0 is the realization
of CFF (Fig. [), there are some significant differences
in the resulting eigenmode constraints, particularly in
the mo — m3 plane. This kind of variation is typical
among the realizations of simulated data, and is related
to whether features in the theoretical CfE remain in-
tact with the inclusion of cosmic variance. The relevant
features in the spectrum are the small oscillations in the
low-power “valley” in CF¥ on scales 10 < ¢ < 30. In the
example shown here, the feature that matters most is the



bump in the theoretical spectrum at £ ~ 13. In the left
panel of Figure[d, the C’fE realization retains this bump,
while in the right panel the bump is washed out by cosmic
variance. The result is that the left realization is better
able to pick out those reionization models in Monte Carlo
chains that reproduce the true CF¥ | leading to the tight
constraints on the left side of Figure The realization
in the right panel of Figure[@lacks this important “finger-
print” for identifying models that match the theoretical
CFE, so the data allow a wider variety of models as re-
flected in the constraints on the right side of Figure [0l
In this case, there are two best-fit models corresponding
to the two 68% contours separated in the mso direction.
The spectrum of the overall best-fit model (with smaller
mz), which is close to the theoretical spectrum, is plot-
ted as a thick solid curve in the right panel of Figure [0
while the other best-fit model (at larger ms) is plotted as
a dashed curve. These two models have significantly dif-
ferent spectra, but because of the scatter in the random
draw of C’fE they are each able to fit the data better
at some multipoles and worse at others in such a way
that the high-ms best-fit model is only a slightly worse
fit than the low-ms best-fit model.

Among the realizations of simulated data that we ex-
plored with MCMC methods, constraints like those in
the right panel of Figure are a fairly extreme case,
occurring about 10-20% of the time. In general the real-
izations form a sort of continuum between the two pre-
sented here, with about half showing some displacement
of the 95% contour towards larger mo but not as much
as in the second realization that we show as an example.

The extent to which differences between realizations
show up in principal component constraints depends on
zi°(2). For example, the CF¥ for the double reioniza-
tion model (Fig. D) have more pronounced oscillations at
{ ~ 10-30 than the instantaneous reionization spectrum,
so they are not as easily erased by cosmic variance or
noise and the resulting principal component constraints
tend to be more consistent from one realization to the
next and more like the left panel of Figure [I0

The differences between constraints from various re-
alizations of simulated data suggest the interesting pos-
sibility that our ability to learn about the reionization
history from large scale E-mode polarization may ulti-
mately depend on the luck of the draw of CF¥ at our
particular vantage point. In an unlucky draw, cosmic
variance can distort subtle features in the power spec-
trum in a way that would limit constraints on reioniza-
tion eigenmodes to be worse than we might expect from
the Fisher approximation or a more typical draw. The
good news is that even a realization like the one in the
right panels of Figures[@ and [0 would permit constraints
that are far better than what is currently possible. It is
also important to note that although such constraints
are weaker than in the best-case scenario, they are still
consistent with the true parameter values and in general
would not lead us to rule out the true reionization history
based on a principal component analysis of the data.

As with the principal components of z.(z), MCMC
analysis indicates that constraints on the total optical
depth to reionization would be greatly improved with
cosmic variance-limited data: o, =~ 0.005, down a factor
of six from the 3-year WMAP value, o, ~ 0.03. The
constraints on 7 using the realization of instantaneous
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reionization CFF in the left panel of Figure [ are listed
in Table [I] for two fiducial models with zma.x = 20 and
30. Optical depth constraints from the other draw of
CEEE are similar, so estimates of 7 and o, appear not
to be biased for atypical realizations. It makes sense
that differences in realizations do not significantly affect
7 since the optical depth constraint comes mainly from
the peak in CfE on the largest scales whereas differences
in principal component constraints between realizations
arise from the low-power part of the spectrum at higher
L.

The model-independent constraints on 7 are neither
biased nor significantly weaker relative to the constraint
obtained assuming instantaneous reionization (bottom
row in Table [I]), as is true for the WMAP data. This
should not be surprising since we have assumed that
x%¥(2) is an instantaneous reionization model. How-
ever, if z'™¢(z) is in fact very different from the instan-
taneous model, the estimate of 7 obtained under the as-
sumption of instantaneous reionization will be incorrect.
For example, if we take z'™"¢(z) to be the double reion-
ization model of Figure [II the model-independent ap-
proach yields an optical depth constraint consistent with
the true value of 7 = 0.090. On the other hand, MCMC
analysis restricted to instantaneous reionization histories
gives a significantly biased estimate, 7 = 0.135 4 0.005.
In this case, the 1D curve of instantaneous reionization
models in the space of eigenmodes never lies near the
principal component values favored by the data, so any
analysis that only considers such models would never find
a good fit to the data. This illustrates the importance
of a model-independent approach: although results from
current data may not be significantly affected by the as-
sumption of a specific form of z.(z), future data will
be sensitive enough to the reionization history that the
choice of a specific model can greatly impact the results
(Holder et all[2003; [Colombo et all[2005).

Though constraints on the contributions to 7 from high
and low z are currently limited to weak upper bounds,
future polarization data will likely enable more defini-
tive detections of high-z reionization if it is present, or
tighter upper limits if absent. The left and right panels
of Figure [1] show these constraints from Monte Carlo
chains using the Cf E plotted in the left and right panels
of Figure[d respectively. The true ionization history has
zero ionized fraction at z > 15, and the MCMC analysis
places a 95% CL upper limit on 7(z > 15) of ~ 0.03.
Figure [[2 shows MCMC constraints on the same partial
optical depths using simulated data where the true model
is instead taken to be the extended, double reionization
history plotted as a thin curve in the inset of Figure [II
In this case, most of 7(Zmin, Zmax) comes from z > 15,
and using the principal components of x.(z) the high-z
optical depth can be detected at a high level of confi-
dence and measured to an accuracy of ~ 0.01. Note that
the constraints in both Figures 1] and [2] are consistent
with the WMAP constraints in Figure 8

As with WMAP data, most of the constraints from
simulated data in Figures [[I] and do not appear to
depend strongly on the choice of zy.x. For the instan-
taneous reionization model used for Figure [IT] this is to
be expected since we know that the simulated C’f £ have
no contribution from z 2 20. Each set of contours in
Figure [I] is consistent with the values of 7(6,15) and
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Fic. 11.— Same as Figure [§ for simulated cosmic variance-limited data using the two realizations of instantaneous reionization CZEE

shown in Figure[@ Crosses indicate the partial optical depths for the true reionization history. The redshifts chosen for zy;q and zmax are
also lower here than for the WMAP analysis, reflecting the expectation that future data may permit better empirical constraints on zmax-
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Fic. 12.— Same as Figure [[I] but assuming that zf™e(z) is
a double reionization history with zmax = 23 (thin curves in Fig-
ure[l). Crosses mark the true partial optical depths for this model;
note that unlike in Figure[IT] 7(15,20) # 7(15, 30) for the expected
values here since z!™¢(z) has a nonzero ionized fraction between
redshifts 20 and 30.

7(15, Zmax) for zt¢(z). The constraints in the second
panel in Figure [l extend to larger high-z optical depth
than those in the first panel because the effect of the
physicality priors is not as strong at larger zmax, as noted
in § 5.1} the leftmost 2,2 = 20 contours would stretch to
larger 7(15,20) and smaller 7(6,15) if we did not apply
the physicality bounds. The two panels on the right side
of Figure[I1] show weaker constraints on the partial opti-
cal depths because the principal component constraints
for that realization of Cf E are weaker.

In the extended, double reionization model used for
Figure [[2] reionization actually starts at z = 23, so the
choice of zpax = 20 is not appropriate for this model.

The result of such an error is that the constraint on
7(15,20) is inconsistent with the true value, marked by
a cross in the left panel of Figure The zmax = 30
constraints in the right panel are consistent with the
expected value, although not in perfect agreement due
to cosmic variance. It is interesting that although the
value chosen for zp.x in the left panel is too low for this
model, the constraints on 7(z > 15) for zmax = 20 and
Zmax = 30 are still consistent with each other. This sup-
ports the interpretation of constraints on 7(zmid, Zmax)
as 7(z > zmia) in § BT

While the cosmic variance-limited simulated data are
useful for determining how well the reionization history
could possibly be constrained by large-scale F-mode po-
larization measurements, it is also interesting to ask how
well we can do with future experiments that fall some-
what short of the idealized case that we have considered
so far. In particular, the upcoming Planck satellite is
expected to improve our knowledge of the large-scale E-
mode spectrum substantially (The Planck Collaboration
2006); what does this imply for constraints on z.(z)?
To estimate what might be possible with Planck data,
we assume that after subtracting foregrounds a single
foreground-free frequency channel remains for constrain-
ing the low-¢ E-mode polarization. We take this to be
the 143 GHz channel with a white noise power level of
w;1/2 = 81 pK’ and beam size Opwam = 7.1/, and we
assume that the sky coverage is fsky, = 0.8 after cut-
ting out the Galactic plane (The Planck Collaboration
2006; |Albrecht et all 2006). We compute the likelihood
of Monte Carlo samples using the routines provided in
CosmoMC and analyze parameter chains with the prin-
cipal component method as described for WMAP and
cosmic variance-limited data.

For various choices of zf4(z) and z%¢(z) we find
that going from full-sky cosmic variance-limited data to
Planck-like data increases the uncertainty in x.(z) prin-
cipal components, o,, and in the optical depth, o, by
roughly a factor of two. Based on these results, it should
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FiGc. 13.— Monte Carlo constraints in the mj-msg plane from the
left panel of Figure [I0] (68 and 95% contours) compared with the
estimated constraints from the Fisher matrix (shaded contours).

be possible to constrain about three eigenmodes at ~ 2 o
within the space of physical models, and we expect T
to be determined to an accuracy of about £0.01. This
is consistent with previous estimates of the Planck op-
tical depth uncertainty when considering more general
reionization models than instantaneous reionization (e.g.,
Holder et al![2003; Hu & Holder 2003).

5.3. Fisher matrix predictions versus MCMC' results

The Fisher matrix analysis of § [2] predicts that the
principal components of z.(z) should be uncorrelated,
with errors given by o, from equation () (in the ide-
alized limit of full sky, noiseless observations). These
characteristics rely on the assumption that the differ-
ence between the true and fiducial reionization histories
is small: dzfe(2) = xte(z) — 29(2) <« 1. Clearly this
assumption will not hold for any single fiducial history if
one wants to consider a variety of possible true histories,
and the consequence is that (m,m,) differs from Uﬁéwj.

As an example of the difference between the Fisher
approximation and the full Monte Carlo analysis, in Fig-
ure [I3] the marginalized constraints in the my; — mao
plane from the left panel of Figure [I0 are compared
with the Fisher matrix error ellipses, centered on the
true (my, mg) for the same choices of z!™°(z) (instanta-
neous reionization with 7 = 0.105) and z4(2) (constant
e = 0.15 out t0 zmax = 20). The MCMC constraints
have correlated values of m; and ms with somewhat
larger uncertainties than the Fisher matrix {o,}. The
eigenfunctions, S, (z), are constructed to have orthogo-
nal effects on CF¥ in the vicinity of the fiducial model,
but for large dz.(z) the orthogonality breaks down. For-
tunately the errors on 7 remain largely unaffected be-
cause the mi1 — msy correlation is oriented such that the
increased errors are along the direction of constant total
T (see Figure 7).

One can compute new eigenfunctions by evaluating
O CFE [0z (z) at z'™°(z) and see that their depen-

dence on redshift differs from the original S, (z). It is
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possible to decorrelate the principal components by di-
agonalizing the covariance matrix from the Monte Carlo
chains and rotating the eigenmodes into the new basis.
However, this procedure is unnecessary for most appli-
cations; the most important property of the principal
components for constraining z.(z) is that the first few
modes form a complete basis for CFF on large scales,
accurate within cosmic variance limits. Completeness of
the eigenmodes holds true even if they are not exactly
orthogonal.

Finally, note that if the true ionization history and the
draw of C’fE permit constraints on principal components
similar to those in the left panel of Figure [0l then these
constraints may be close enough to Gaussian so that the
covariance matrix would be sufficient to describe the in-
formation in the CF¥ for finding constraints on reion-
ization models. However, if what we see looks more like
the right panel of Figure[IQ then the full chains of Monte
Carlo samples may be necessary for further applications
even if we can measure the E-mode polarization per-
fectly.

6. DISCUSSION

Observations of the large-scale E-mode polarization of
the CMB in the near future are expected to yield new in-
formation about the spatially-averaged reionization his-
tory of the universe. The principal components of the
reionization history are a promising tool for extracting
as much of that information as possible from the data.
We have shown that the principal component method
can be usefully applied to real, currently available data,
and forecasts from simulated data suggest that there is
room to substantially improve constraints on the reion-
ization history using this method as measurements of the
large-scale E-modes improve.

We find that the key features of the principal compo-
nent analysis put forward by [Hu & Holder (2003) con-
tinue to apply when we go from the Fisher matrix ap-
proximation to an exploration of the full likelihood sur-
face using Markov Chain Monte Carlo methods. For
fairly conservative choices of the maximum redshift of
reionization (zmax ~ 30-40), only the first five principal
components at most are needed for a complete represen-
tation of the F-mode angular power spectrum to within
cosmic variance. To account for arbitrary reionization
histories in the analysis of CMB data, only a few addi-
tional parameters must be included in chains of Monte
Carlo samples if those parameters are taken to be the
lowest-variance principal components of z(z).

Specific models of reionization can be tested easily
by computing their eigenmode amplitudes and compar-
ing with constraints on the eigenmodes from the data.
Constraints on derived parameters, such as total opti-
cal depth or the optical depth from a certain range in
redshift, represent other applications of the MCMC con-
straints on principal components of z.(z).

Often, estimates of the optical depth to reionization are
computed assuming instantaneous reionization or some
other simple form for z.(z). Here we extend the analysis
of the 3-year WMAP data to allow a more general set of
models of the global reionization history. We find that
expanding the model space does not significantly widen
the uncertainty in 7 beyond the instantaneous reioniza-
tion value of o, = 0.03. Robust 7 constraints are impor-
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tant for tests of the dark energy based on the growth of
structure since they control the uncertainty on the am-
plitude of the initial spectrum.

Moreover, even with current data the principal compo-
nent constraints are beginning to show the possibility of
determining properties of reionization in addition to 7.
By comparing the optical depth from high z with that
from low z, we obtain an upper limit on the contribution
to the optical depth from high redshift: 7(z > 20) < 0.08
at 95% confidence, assuming that there is no significant
episode of reionization at z > 40.

Due to the limitations of noise and foreground con-
tamination, only the first two eigenmodes of the reioniza-
tion history, m; and ms, can be determined with present
polarization data to any reasonable degree of accuracy.
Constraints on these two modes come primarily from the
main, broad peak in F-mode power at low £ from reion-
ization.

As measurements of the E-mode polarization improve,
for example from additional WMAP data or through
planned future experiments such as Planck, better knowl-
edge of the low-power “trough” in CFF between the main
reionization peak and the first acoustic peak should en-
able constraints on the third and higher principal com-
ponents, up to about ms for near cosmic variance-limited

data. Since constraints on these higher modes rely on the
ability to identify subtle features in the trough of CFF,
the ultimate accuracy to which the eigenmodes can be
determined may depend on whether or not the necessary
features are well reproduced in the particular random
draw of C’fE that is available to us. However, even if we
are unlucky enough to have a realization in which some
of the important features of the spectrum are washed out
by randomness, it should still be possible to measure sev-
eral of the principal components to better accuracy than
is currently possible. Knowledge of the i > 3 eigenmodes
of z.(z), along with improved constraints on m; and ma,
will allow more stringent tests of reionization models and
a better understanding of the global reionization history.
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