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Observational Limits on Patchy Reionization: Implications for B-modes
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The recent detection of secondary CMB anisotropy by the South Pole Telescope places a con-
servative bound on temperature fluctuations from the optical depth-modulated Doppler effect of
T3000 <

√
13µK at multipoles ℓ ∼ 3000. This bound is the first empirical constraint on reionization

optical depth fluctuations at arcminute scales, τ3000 = 0.001 T3000/µK, implying that these fluctu-
ations are no more than a few percent of the mean. Optical depth modulation of the quadrupole
source to polarization generates B-modes that are correspondingly bounded as B3000 = 0.003 T3000.
The maximal extrapolation to the ℓ ∼ 100 gravitational wave regime yields B100 = 0.1 T3000 and
remains in excess of gravitational lensing if the effective comoving size of the ionizing regions is
R >

∼ 80Mpc. If patchy reionization is responsible for much of the observed arcminute scale temper-
ature fluctuations, current bounds on B100 already require R <

∼ 200Mpc and can be expected to
improve rapidly. Frequency separation of thermal Sunyaev-Zel’dovich contributions to the measured
secondary anisotropy would also substantially improve the limits on optical depth fluctuations and
B-modes from reionization.

I. INTRODUCTION

Recent observations by the South Pole Telescope
(SPT) [1, 2] and the Atacama Cosmology Telescope
(ACT) [3] are ushering in a new era in which our un-
derstanding of secondary anisotropy in the cosmic mi-
crowave background (CMB) will be revolutionized. Sec-
ondary anisotropy is generated after recombination by
gravitational and scattering processes. It is thus more
dependent on astrophysical processes than the primary
anisotropy that has been so useful in determining fun-
damental cosmological parameters. However, certain re-
lationships between the various CMB secondary observ-
ables can be used to scale out and, in principle, determine
the unknown astrophysics.
In this Brief Report, we discuss the example of these

scaling relations provided by patchy reionization. Taken
as an upper bound to account for contributions from
other secondary effects, SPT measurements limit opti-
cal depth fluctuations on arcminute scales. These same
fluctuations generate B-mode polarization [4] and so the
implied limits at arcminute scales are relatively free of
both cosmological and ionization model assumptions.
By making a maximal extrapolation to the degree

scales relevant for gravitational wave detection, we place
upper limits on the contamination by patchy reioniza-
tion B-modes. Conversely, observational limits on degree
scale B-modes constrain the ionization model, in particu-
lar the size distribution of the ionized regions, when com-
bined with arcminute scale temperature measurements.

II. SCALING RELATIONS

Thomson scattering of CMB photons off free electrons
in linear velocity flows generates temperature fluctua-
tions via the Doppler effect. The first order effect from

the mean optical depth during reionization is highly sup-
pressed on subhorizon scales and the dominant contri-
butions on arcminute scales reflect optical depth modu-
lation. Optical depth modulations can arise from linear
density fluctuations (Ostriker-Vishniac effect), non-linear
objects (kinetic Sunyaev-Zel’dovich effect), or ionization
fluctuations (patchy reionization).
Given a measurement or an upper limit on the tem-

perature anisotropy due to this effect, one can constrain
optical depth fluctuations and the corresponding effect
on B-mode polarization. For notational convenience, we
call the temperature power assigned to the modulated
Doppler effect at a multipole of ℓ = 3000

T
2(v)
3000 ≡

ℓ(ℓ+ 1)

2π
C

TT (v)
ℓ

∣

∣

∣

ℓ=3000
. (1)

Likewise, we use the general shorthand notation

X
2(s)
ℓ ≡

ℓ(ℓ+ 1)

2π
C

XX(s)
ℓ (2)

for optical depth (X = τ) and B-mode polarization (X =
B) fluctuations; for B-modes, s denotes the contribution
from a particular source field.
A conservative interpretation of the SPT detection of

secondary anisotropy is that it places an upper limit of

T
2(v)
3000 < 13µK2 at 95% CL. This limit assumes that all

of the measured anisotropy is assigned to the modulated
Doppler effect and considers the detection as an upper
limit [1]. For reasonable cosmological models, one would
expect the thermal Sunyaev-Zel’dovich fluctuations from
unresolved clusters and groups to dominate the signal.

Thus T
2(v)
3000

<∼ 5µK2 might serve as a more typical, al-
beit model dependent, limit [2]. For this reason, we will

preserve the dependence of our main results on T
2(v)
3000.

Optical depth fluctuations with a power spectrum Cττ
ℓ

modulate the Doppler effect from a velocity field with
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FIG. 1: Predicted range of vrms(z) (shading: 68% CL region;
curves: 95% CL region) for flat ΛCDM (light gray) and non-
flat quintessence (dark blue) models constrained by current
data.

rms vrms to produce a temperature power spectrum [4]

C
TT (v)
ℓ ≈

1

3
Cττ

ℓ v2rms (3)

below the coherence scale of the flows. The factor of 3
here accounts for the line-of-sight nature of the Doppler
effect. Note that for simplicity we assume optically
thin conditions throughout and ignore the 10–20% effects
from the finite mean opacity during reionization. Given
the linear theory matter power spectrum today, Plin(k),
the rms velocity is computed as

v2rms(z) =

[

H(z)

1 + z

dD1

d ln a

]2 ∫
dk

2π2
Plin(k), (4)

where D1 is the linear growth function for density fluc-
tuations. Figure 1 shows the range of vrms(z) allowed by
current constraints on flat ΛCDM models and non-flat
quintessence models with arbitrary variations in the dark
energy equation of state at z < 1.7, including measure-
ments of the CMB, supernovae, baryon acoustic oscilla-
tions, and the Hubble constant as described in Ref. [5].
Note that predictions for vrms at z > 2 have little uncer-
tainty from cosmological parameters including variations
in curvature and dark energy, with the possible excep-
tion of the presence of a substantial component of the
energy density in dark energy or massive neutrinos at
high redshift.
The same optical depth fluctuations modulate the gen-

eration of polarization from the primordial quadrupole
with rms Qrms. In the Sachs-Wolfe approximation [4],

Q2
rms(z) ≈

1

60
As(k0)[k0(η(z)− η∗)]

1−nsΓSW(ns) , (5)

where the initial curvature spectrum normalized at the
scale k0 is ∆

2
R
(k) = As(k/k0)

ns , η is conformal time with
η∗ evaluated at recombination, and

ΓSW(ns) = 3
√
π

Γ[(3− ns)/2]Γ[(3 + ns)/2]

Γ[(4− ns)/2]Γ[(9− ns)/2]
. (6)

At plausible redshifts for reionization, z ∼ 10, the pre-
dicted quadrupole for flat ΛCDM models is a nearly con-
stant Qrms = 18.2 ± 0.5 µK, using the same data as for
the vrms predictions in Fig. 1. The uncertainty in Qrms

is negligible compared with vrms.

Modulation destroys the symmetry that produces only
E-modes from scalar perturbations, generating equal
power in E and B polarization. When scaled to the tem-
perature spectrum, the B-mode power spectrum from the
modulated quadrupole becomes [4]

C
BB(Q)
ℓ ≈

9

100

(

Qrms

vrms

)2

C
TT (v)
ℓ . (7)

Note that this scaling relation remains true regardless of
whether the optical depth fluctuations are due to density
effects like the Ostriker-Vishniac anisotropy [6] or ioniza-
tion effects from inhomogeneous reionization. The only
difference between these effects is the effective redshift at
which Qrms/vrms is evaluated, with vrms dominating the
variations. To maintain generality, we keep both Qrms

and vrms in the relations but scale their values to z ∼ 10.

Modulation of the e−τ screening of the primary E-
modes also generates B-modes below the coherence scale
of the E-modes, i.e. the ℓ ∼ 103 damping scale of the
primary anisotropy. On these scales, the screening B-
modes take the form [7]

C
BB(E)
ℓ ≈

3

2

(

Erms

vrms

)2

C
TT (v)
ℓ , (8)

where

E2
rms ≈

∑

ℓ

2ℓ+ 1

4π
CEE

ℓ . (9)

Erms = 6.4µK for the maximum likelihood ΛCDM model
and varies little with cosmological parameters.

From Eq. (3), optical depth fluctuations are related to

the temperature anisotropy T
(v)
3000 as

τ3000 ≈ 0.00095
T

(v)
3000

µK

200 km/s

vrms
. (10)

Hence for the strict upper limit of T
(v)
3000 <

√
13µK, the

rms fluctuation in τ at a few arcminutes is τ3000 < 0.003,
i.e. no more than a few percent of the mean optical depth
(e.g. τ̄ = 0.10 ± 0.02 for general reionization histories
at 6 < z < 30 constrained by 5-year WMAP data [8]).
Models that predict a percent optical depth rms or∼ 10%
of the mean as a typical fluctuation are observationally
unviable (cf. [9]).

For B-modes from the modulated quadrupole [Eq. (7)],

B
(Q)
3000 ≈ 0.003T

(v)
3000

Qrms

18µK

200 km/s

vrms
. (11)
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FIG. 2: Extrapolation of the inferred SPT limit on mod-
ulated quadrupole B-modes (red arrow at ℓ = 3000 with

T
2(v)
3000 < 13µK2, z ≈ 10) to limits at ℓ ∼ 100 (black dots)

using the sharp peak model with a single bubble size of
Reff = 200 Mpc (black dashed lines) or Reff = 50 Mpc (black
dot-dashed lines). For Reff

<
∼ 40 Mpc, we take a more conser-

vative upper limit shown by the horizontal dotted line. For
reference, solid blue curves show the contributions to B2

ℓ ex-
pected from lensing and gravitational waves with tensor-to-
scalar ratio r = 0.03 for the best fit flat ΛCDM model.

Combining quadrupole and E-mode screening modula-
tion yields

B
2(Q+E)
3000 ≈

(

0.003T
(v)
3000

200 km/s

vrms

)2

(12)

×

[

(

Qrms

18µK

)2

+ 2.1

(

Erms

6.4µK

)2
]

as the total B-modes from reionization at ℓ = 3000. Thus
upper limits on T

(v)
3000 place stringent bounds on patchy

reionization B-modes given predictions for vrms, Qrms,

and Erms. For the strict upper limit T
(v)
3000 <

√
13µK,

B
(Q)
3000 < 0.01µK.

III. LARGE ANGLE B-MODE LIMITS

To relate the B-mode contributions at ℓ = 3000 to the
large angle regime at ℓ ∼ 100 relevant for gravitational
wave studies we require a model for the optical depth
fluctuations. Note that the screening contributions die
off as white noise for ℓ < ℓA ∼ 300 given the acoustic
scale and cannot generate large contributions at ℓ ∼ 100
[7]. We thus need to relate the modulated quadrupole
contributions between the two scales.

To place upper limits on the B-mode contribution we
begin by assuming all of the temperature power is due to
ionization fluctuations since the B-mode signal from den-
sity fluctuations is expected to be well below that of grav-
itational lensing at all scales [10]. For a variety of simple
analytic models of patchy reionization that assume com-
pletely ionized, spherical bubbles with a lognormal distri-
bution of bubble radii [11, 12], the modulated quadrupole
contribution to B-modes can be approximated as a single
peak in B2

ℓ that rises as ℓ2 at ℓ ≪ ℓpeak and falls as ℓ−2

at ℓ ≫ ℓpeak, where ℓpeak ≈ 2 × 104(Reff/Mpc)−1 [10].
The effective ionized bubble radius Reff is determined
by both the volume-averaged radius of bubbles RV and
the lognormal width of the bubble size distribution σlnR:
Reff = RV exp(2.5σ2

lnR).

Let us start by taking a single bubble size, i.e. a delta
function in the distribution with σlnR → 0. Then the
shape of the patchy reionization signal, shown in Fig. 2,
is approximately described as a sharp peak1

B
2(Q)
ℓ ≈











(

ℓ
ℓpeak

)2

B
2(Q)
ℓpeak

, ℓ ≤ ℓpeak ,
(

ℓ
ℓpeak

)−2

B
2(Q)
ℓpeak

, ℓ > ℓpeak .
(13)

The B-mode rms at ℓ = 100 scales with Reff as

B
(Q)
100 ≈ 2.2×10−6 T

(v)
3000

Qrms

18µK

200 km/s

vrms

(

Reff

Mpc

)2

(14)

for 7 <∼ Reff/Mpc <∼ 200 and saturates outside this range,
as shown in Fig. 3.

This assumption of a sharply peaked spectrum pro-
vides a conservative extrapolation of upper limits from
ℓ ∼ 3000 to ℓ ∼ 100 if ℓpeak <∼ 500 (or Reff

>∼ 40 Mpc).
In this case, realistic bubble size distributions would pro-
duce a flatter spectrum and thus less power at ℓ = 100
(see [10], Fig. 7).

In the opposite limit of Reff
<∼ 40 Mpc, a flatter dis-

tribution would produce more power at ℓ ∼ 100 than

a sharp peak and so we conservatively assume B
(Q)
100 ≥

B
(Q)
3000. Using this model to extrapolate from the SPT

limit at ℓ ∼ 3000 to ℓ ∼ 100 produces an upper bound
shown in Fig. 3 as the shaded excluded region.

Note that as the bubble size increases, the upper limit
at ℓ = 100 saturates. This saturation is essentially model
independent and corresponds to a maximal slope of ℓ−2

connecting the power at ℓ = 100 and 3000. This strict
upper bound is given by

B
(Q)
100 < 0.09T

(v)
3000

Qrms

18µK

200 km/s

vrms
. (15)

1 Ringing in ℓ produced by a delta function distribution is

smoothed out by any more realistic bubble distribution and by

the width in redshift of the reionization transition.
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FIG. 3: Upper limits on the B-mode power from patchy reion-
ization at ℓ = 100 as a function of the effective radius of
ionized bubbles, using T

2(v)
3000 < 13µK2 and assuming z ≈ 10.

The thin solid line extrapolates from the upper limit on B
2(Q)
3000

to ℓ = 100 using the scaling of Eq. (14), and the thick solid
line shows the extrapolation assuming a flat spectrum. The
shaded region above both of these curves is excluded. The
B-mode power at ℓ = 100 from lensing in the best fit flat
ΛCDM model is shown as a dashed line.

With T
(v)
3000 <

√
13µK, this limit still allows more power

than the lensing B-modes, B
2(L)
100 ≈ (2.68 ± 0.25) ×

10−3 µK2 (with fractional errors approximately scaled as
25σ(Ωch

2) [13]).
Conversely, observational limits on B100 can be com-

bined with measurements of T
(v)
3000 to constrain the bub-

ble size distribution. If the distribution is dominated by a
single effective comoving radius, Eq. (14) provides an es-
timate of the required precision to place an upper bound
on this radius of

Reff ∼ 200(B
(Q)
100/0.1T

(v)
3000)

1/2 Mpc (16)

Current bounds of B2
100 < 0.1µK2 (95% CL) from BI-

CEP [14] in fact exclude Reff
>∼ 200Mpc for the maximal

T
(v)
3000 =

√
13µK.

IV. DISCUSSION

We have shown that the SPT detection of secondary
temperature anisotropy interpreted as a limit on modu-
lated Doppler contributions from scattering of <

√
13µK

provide the first empirical bounds on optical depth fluc-
tuations during reionization at a scale of a few arcmin-
utes. Models that produce fluctuations on these scales in
excess of a few percent of the mean are no longer viable.
This limit on optical depth variations in turn produces
a nearly model- and cosmology-independent limit on the
B-mode polarization from reionization of < 0.01µK at
similar scales. We expect both limits to improve dra-
matically once more frequency channels of the data and
larger regions of the sky have been analyzed so that the
presumably dominant thermal Sunyaev-Zel’dovich con-
tribution can be better separated.
Such upper limits can be turned into constraints on

degree scale B-mode contamination of the gravitational
wave signal. The maximal allowed B-modes at ℓ ≈ 100
can still exceed those from gravitational lensing, but only
if the effective radius of the ionized regions is greater than
∼ 80Mpc. In fact, current direct limits on degree scale
B-mode polarization require ionized regions <∼ 200Mpc
for the maximal allowed fluctuations at arcminute scales.
Hence expected improvements in both small angle tem-

perature measurements and large angle B-mode polariza-
tion measurements should rapidly advance our empirical
understanding of reionization.
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