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Consistency relations between growth of structure and expansion history observables exist for any
physical explanation of cosmic acceleration, be it a cosmological constant, scalar field quintessence,
or a general component of dark energy that is smooth relative to dark matter on small scales. The
high-quality supernova sample anticipated from an experiment like SNAP and CMB data expected
from Planck thus make strong predictions for growth and expansion observables that additional
observations can test and potentially falsify. We perform an MCMC likelihood exploration of the
strength of these consistency relations based on a complete parametrization of dark energy behavior
by principal components. For ΛCDM, future SN and CMB data make percent level predictions for
growth and expansion observables. For quintessence, many of the predictions are still at a level of
a few percent with most of the additional freedom coming from curvature and early dark energy.
While such freedom is limited for quintessence where phantom equations of state are forbidden,
it is larger in the smooth dark energy class. Nevertheless, even in this general class predictions
relating growth measurements at different redshifts remain robust, although predictions for the
instantaneous growth rate do not. Finally, if observations falsify the whole smooth dark energy
class, new paradigms for cosmic acceleration such as modified gravity or interacting dark matter
and dark energy would be required.

I. INTRODUCTION

A decade after the first firm evidence for the acceler-
ated expansion of the universe [1, 2], the study of dark
energy remains one of the most important yet difficult
endeavors in theoretical cosmology (e.g. [3, 4, 5]). The
quality of data from a variety of cosmological probes has
strengthened in recent years [6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], leading
to multiple, independent lines of evidence for the accel-
erating expansion. In the near future, we can expect a
battery of measurements with unprecedented precision
that will provide stringent tests of any purported expla-
nation of cosmic acceleration.

Despite the tremendous amount of raw information ex-
pected from upcoming Type Ia supernova (SN) surveys,
baryon acoustic oscillations (BAO) from galaxy redshift
surveys, weak lensing, and cluster counting surveys, only
a handful of parameters associated with the dark energy
equation of state can be constrained [27, 28]. This lim-
itation arises because most observables depend on cos-
mological distances and growth, which are integrals over
the expansion rate, which itself contains an integral over
the dark energy equation of state.

Although insensitivity to fine-scale features of the
equation of state is a drawback for measuring dark en-
ergy parameters, it is an advantage for testing the con-
sistency among acceleration observables required by dark
energy paradigms; since the individual probes of dark

energy do not depend strongly on the rapidly oscillating
evolution of the equation of state, neither do the consis-
tency relations between these observables. For example,
it is well known that under a cosmological constant ex-
planation of acceleration or simple parametrizations of
the equation of state, distance measurements predict the
growth of structure in a spatially flat universe. Violation
of this consistency relation would falsify the standard flat
ΛCDM model and its most basic generalizations.

The goal of this study is to extend these ideas of
prediction and falsification from simple dark energy
parametrizations to general classes of dark energy mod-
els with time-dependent equations of state, specifically
scalar field quintessence and dark energy that is spatially
smooth compared with the dark matter on small scales.
We start with SN and cosmic microwave background
(CMB) measurements expected in the next decade and
make predictions for growth and expansion history mea-
surements as a function of redshift within dark energy
model classes parametrized by a complete basis of prin-
cipal components. Where predictions are tight, observa-
tions can falsify the model class. Where predictions are
loose, observations can better pin down the parameters of
the class, in particular those controlling spatial curvature
and dark energy that is significant at early times.

Our study complements previous work [29, 30, 31] on
the observable predictions of classes of dark energy mod-
els, and follows a long history of studies concerning the
best way to probe dark energy using cosmological obser-
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vations [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. To our
knowledge this is the first time that consistency between
growth, distance, and other expansion observables has
been studied in such a general and quantitative way. In
particular, while some previous studies have considered
predictions of dark energy described with a small num-
ber of parameters (e.g. [29, 31, 62]), here we consider
∼ 500 parameters of which about 10 − 15 are necessary
to completely describe to high accuracy the predictions of
current or future data. Although we compute equations
of state for dark energy as an intermediate step between
distance and growth, we emphasize that our goal is not

to reconstruct w(z), unlike many previous studies (e.g.
[37, 71, 72, 73, 74, 75, 76, 77, 78, 79]). Rather than
addressing the quality of constraints on the equation of
state, here we are more interested in using dark energy
parameters only as a tool to study how to falsify basic
paradigms for cosmic acceleration.

This paper is organized as follows. In § II, we describe
our methods for computing predictions for observables
from future cosmological data under different dark en-
ergy paradigms. These predictions can lead to falsifica-
tion and subsequent generalization of each model class
as shown in § III. The main tests of each class are sum-
marized in § IV. Appendices provide additional details
about the inclusion of various data in the construction of
principal components and in the likelihood analysis, our
methodology for computing the principal components,
and tests of the completeness of our parametrization in
the growth and expansion observables.

II. METHODOLOGY

A. Dark energy principal components

We parametrize the dark energy equation of state,
w(z), with a basis of principal components (PCs) [80, 81].
The PC amplitudes are weighted redshift averages of
w(z) ordered by how well they are measured, and can be
straightforwardly computed for a given data set. As we
discuss in § II D and II E, principal components based on
SN distance modulus data in particular provide a nearly
complete basis for other acceleration observables. We
therefore treat the PC amplitudes as simply a convenient
intermediate representation to capture the information in
the distance modulus and translate it into predictions for
other observables.

Principal components can also be defined for other
redshift-dependent quantities such as the dark energy
density ρDE(z) (e.g. [81, 82]) which is related to w(z)
by

ρDE(z) = ρcr,0ΩDE exp

[

3

∫ z

0

dz′
1 + w(z′)

1 + z′

]

, (1)

where ρcr,0 is the critical density and ΩDE is the fraction

of dark energy, both at the present time. Refs. [83, 84]
discuss the advantages of using either w(z) or ρDE(z)
to describe dark energy. Our choice to use w(z) is mo-
tivated by the fact that the model classes we consider
are separated by the allowed values of w: w = −1 for
ΛCDM and −1 ≤ w ≤ 1 for quintessence. (Values of
w outside this range are possible for quintessence mod-
els in which the dark energy density becomes negative,
but such models are inconsistent with current data as we
discuss in § III B.)

Specifically, we compute the PCs based on distances
to Type Ia supernovae with measurement errors mod-
eled after the proposed specifications for the Super-
Nova/Acceleration Probe (SNAP [85]) experiment. We
also assume that 300 low-z SNe will be available for cali-
brating the normalization of the high-z distance-redshift
relation. We supplement the SN observables with con-
straints on the expansion history at earlier times from the
CMB acoustic peaks using the precision expected from
the Planck mission. We take the CMB observables to
be the matter density scaled to the present, Ωmh2, and
the comoving angular diameter distance to last scatter-
ing, D∗ ≡ D(z∗) where z∗ ≈ 1090 [24]. Our assumptions
about these fiducial SN and CMB data sets and addi-
tional priors are detailed in Appendix A. The fiducial
cosmology we assume for the PC construction (and for
likelihood analysis) is flat ΛCDM with present matter
fraction Ωm = 0.24 and Hubble constant h = 0.73, con-
sistent with current data [24, 25].

The principal component functions ei(zj) are eigenvec-
tors of the covariance matrix for the equation of state in
redshift bins {zj}, and they form a basis in which an
arbitrary function w(zj) may be expressed as

w(zj) − wfid(zj) =

Nz,PC
∑

i=1

αiei(zj), (2)

where αi are the PC amplitudes, Nz,PC = 1 + zmax/∆z
is the number of bins in redshift, and zj = (j − 1)∆z.
We adopt a maximum redshift for variations in w(z) of
zmax = 1.7 to match the largest redshift for our fiducial
supernova data, and we use a fiducial model wfid(z) = −1
since ΛCDM is an excellent fit to current data. For these
choices of zmax and wfid(z), Fig. 1 shows the 15 lowest-
variance PCs, which form the basis we use for likelihood
analysis. We comment on how the PCs depend on the
choices of zmax and the fiducial cosmology in Appendix B.

By normalizing the PCs as

Nz,PC
∑

i=1

[ei(zj)]
2 =

Nz,PC
∑

j=1

[ei(zj)]
2 = Nz,PC, (3)

the components approach a “continuum limit” as ∆z → 0
in which the shapes of all but the worst-determined PCs
become smooth and independent of ∆z (or Nz,PC). A
small bin width ∆z <

∼ zSN
min also allows us to resolve

changes in w(z) at redshifts below that of the nearest
supernova in the sample, zSN

min = 0.03, which can evade
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FIG. 1: The first 15 PCs of w(z) (increasing variance from
bottom to top), with 500 redshift bins between z = 0 and
zmax = 1.7. The vertical dashed line shows the minimum
redshift of the data assumed for computing the PCs, zSN

min =
0.03; SNe are distributed between zSN

min and zmax following a
SNAP-like distribution (given in [87]) plus a low-z sample at
zSN

min ≤ z ≤ 0.1 (see Appendix A). When computing the PCs
we include a CMB prior modeled after Planck and marginal-
ize over Ωm, Ωmh2, and the absolute magnitude of the SNe.
The PCs are offset vertically from each other for clarity with
dotted lines showing the zero point for each component.

SN constraints as discussed in Appendix B. We have
chosen to use bins spaced linearly in redshift, and the
exact shapes of the components depend somewhat on
this choice; for example, had we chosen bins with equal
widths in a = (1 + z)−1 or ln(1 + z), the weights of the
PCs would have shifted in redshift [86]. However, the
most important property of the PCs for our purposes is
that they form a complete basis for observables such as
distance and growth (§ II E), and this completeness can
be achieved for a variety of different binning conventions.

Although we use a large number of redshift bins
(Nz,PC ∼ 500) to approach the continuum limit of the
PC shapes, we generally truncate the sum in Eq. (2) to
include only the Nc < Nz,PC modes that are measured
best by the fiducial data. Predictions in § III are based
on a choice of Nc = 15, and we explain how this num-
ber of PCs ensures completeness in various observables
in § II E.

For model classes that restrict w(z) to some range
wmin ≤ w ≤ wmax, we can place priors on the PC am-
plitudes analogous to those introduced in Ref. [88] for
reionization principal components. These priors, which

we define in Appendix A, include top-hat bounds on each
PC amplitude and an upper limit on the sum of squares
of the amplitudes. Due to the truncation of the num-
ber of principal components required for likelihood anal-
ysis, we adopt conservative priors. A combination of PC
amplitudes is only excluded if the resulting equation of
state at some redshift exceeds the bounds on w regard-
less of the amplitudes of the truncated components ({αi}
with i > Nc). Conversely, satisfying the PC priors does
not guarantee that a reasonable set of truncated compo-
nents can bring w(z) back within the bounds. The priors
therefore include all models within a class, but do not
necessarily exclude all models outside that class.

Our baseline dark energy model class is parametrized
by the PC amplitudes, Ωm, and Ωmh2 in a flat universe:

θbase = {α1, . . . , αNc
, Ωm, Ωmh2} . (4)

The Hubble constant, h = H0/(100 km s−1Mpc−1) =
(Ωmh2/Ωm)1/2 is a derived parameter in this representa-
tion.

In this baseline class we take the dark energy density
to be constant at z > zmax. The underlying assumption
in this class is that by z = zmax the dark energy is al-
ready much smaller than the matter density as in ΛCDM,
and enforcing constant dark energy density at z > zmax

assures that it becomes increasingly irrelevant at higher
redshift. Note that our baseline model class includes the
standard ΛCDM model of a cosmological constant in a
flat universe, corresponding to {αi} = 0 for wfid(z) = −1.

B. Early Dark Energy and Curvature

If observations falsify the baseline model class, we can
generalize it by including both dark energy that remains
a substantial fraction of the energy density at z > zmax,
dubbed “early dark energy” [89, 90], and spatial curva-
ture.

To describe early dark energy, we adopt a simple
parametrization by assuming a constant equation of
state, w(z > zmax) = w∞ [86]. The dark energy den-
sity at z > zmax can be extrapolated from its value at
zmax as

ρDE(z) = ρDE(zmax)

(

1 + z

1 + zmax

)3(1+w∞)

. (5)

This description notably accounts for, but is not lim-
ited to, scalar field models that “track” at z > zmax

[91, 92, 93] where the equation of state is determined
by that of the dominant component, in this case matter
(w = 0). We examine the limitations of this parametriza-
tion in Appendix C. Instead of w∞, we use exp(w∞) as
the parameter for likelihood analysis since models with
w∞ ≪ −1 all have rapidly vanishing dark energy den-
sity at z > zmax and are therefore degenerate with each
other in all observables. We allow the early dark energy
parameter to vary within the range 0 ≤ exp(w∞) ≤ 1,
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where the upper limit eliminates w∞ > 0 models with
dark energy density that exceeds the matter density at
early times. We restrict the allowed range for w∞ further
in model classes where the low redshift equation of state
is bounded (see Appendix A for details).

Note that components of dark matter that are smooth
on small scales, for example very light neutrinos, are also
described by the early dark energy parametrization. We
will not distinguish between these two possibilities here
as that would require measurements in a regime where
either the neutrinos or the dark energy were not smooth.

To complete our most general model class, we allow
for the possibility of spatial curvature, parametrized by
ΩK ≡ 1−Ωm−ΩDE. The full parametrization for a dark
energy model class is therefore

θfull = {α1, . . . , αNc
, Ωm, Ωmh2, exp(w∞), ΩK}. (6)

The present dark energy density ΩDE is derived from this
parameter set. Setting w∞ = −1 and ΩK = 0 recovers
the baseline model class of Eq. (4).

C. Markov Chain Monte Carlo

We use the Markov Chain Monte Carlo (MCMC) al-
gorithm to estimate the joint posterior distribution of
cosmological parameters and derived observables by sam-
pling the parameter space and evaluating the likelihood
of each proposed model compared with an assumed data
set (e.g. see [94, 95, 96]). The posterior distribution is
obtained using Bayes’ Theorem,

P(θ|x) =
L(x|θ)P(θ)

∫

dθ L(x|θ)P(θ)
, (7)

where L(x|θ) is the likelihood of the data x given the
model parameters θ and P(θ) is the prior probability
density. The MCMC algorithm generates random draws
from the posterior distribution that are fair samples of
the likelihood surface. From these samples, we can es-
timate many properties of the posterior distribution in-
cluding the mean values, covariance, and confidence in-
tervals of both the basic set of parameters and derived
parameters and observables. Convergence of the set of
random samples to a stationary distribution that approx-
imates the joint posterior density P(θ|x) requires a large
number of independent samples. We use a minimum of
four chains per model and determine when these chains
have a sufficient number of samples for convergence by
applying a conservative Gelman-Rubin criterion [97] of
R − 1 <

∼ 0.01.
The full details of the simulated cosmological data and

priors used for the MCMC analysis and their likelihood
functions are given in Appendix A and summarized in
§II D.

We assume that all of the fiducial data are consistent
with a flat ΛCDM model with Ωm = 0.24 and h = 0.73,
given that this model fits current constraints well. We

therefore do not consider here the potential for SN and
CMB data to test this fiducial cosmology. It is, how-
ever, possible that these future measurements will falsify
flat ΛCDM by themselves, even before considering con-
sistency with additional observables such as growth. We
have checked that most of our qualitative conclusions do
not change with allowed alterations of the model under-
lying the SN and CMB data, and we note exceptions in
Appendix C.

Given a parametrization for a model class and the fidu-
cial data, the MCMC posterior distribution then provides
observable predictions for parameters and derived accel-
eration observables that can be used as consistency tests
to attempt to falsify the whole model class.

D. Acceleration observables

In this section, we define a set of redshift dependent
observables that can be probed by future experiments.
We focus on acceleration observables that can be simply
computed from the expansion history, leaving for future
study the detailed relation of these quantities to what
is actually expected to be measured by specific planned
experiments.

We divide the observables into two categories. In the
first are observables that we assume will be measured by a
SNAP-like sample of supernovae and the Planck satellite.
These measurements constitute the data for MCMC like-
lihood analysis, from which we make predictions for the
second category of observables in specific model classes.

Supernova observations constrain the distance modu-
lus, or relative luminosity distance, between objects of
different redshift in the sample. We take the SN data as
a starting point since of the known methods for constrain-
ing the acceleration, it has the finest resolution in redshift
and hence its principal components form the most com-
plete set for providing testable predictions. Supernovae
have an additional advantage of being sensitive to low
redshifts z <

∼ 0.5 where dark energy dominates the en-
ergy budget and where other probes like BAO and weak
lensing do not have enough volume and distance, respec-
tively, in order to strongly constrain dark energy. We
take the same Planck CMB constraints on Ωmh2 and an-
gular diameter distance D∗ as used in the PC construc-
tion.

The SN and CMB data make predictions within a
model class for the remaining observables, which include
the expansion rate H(z), the absolute distance D(z), the
growth function G(z), and the growth rate f(z).

The expansion rate, allowing for a general dark energy
component and spatial curvature, is

H(z) = H0

[

Ωm(1 + z)3 +
ρDE(z)

ρcr,0
+ ΩK(1 + z)2

]1/2

.

(8)
Except when dealing with CMB observables, we generally
ignore the contribution of radiation to the expansion rate
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since it is a negligible fraction of the density at low z.
The absolute distance observable we use is the comoving

(angular diameter) distance

D(z) =
1

(|ΩK|H2
0 )1/2

SK

[

(|ΩK|H
2
0 )1/2

∫ z

0

dz′

H(z′)

]

, (9)

where the function SK(x) is equal to x in a flat universe
(ΩK = 0), sinhx in an open universe (ΩK > 0), and sinx
in a closed universe (ΩK < 0). Luminosity distances,
whose ratios are measured by SNe (see Appendix A), are
simply related to Eq. (9) by dL(z) = (1 + z)D(z).

We define the growth function as G(z) ∝ (1+z)D1(z),
where D1(z) ≡ δ(z)/δ(zinit) describes growth of the
matter overdensity δ normalized at an initial redshift
zinit = 1000 during matter domination. If Ωm(z) ≡
Ωm(1 + z)3[H0/H(z)]2 = 1, then D1(z) ∝ (1 + z)−1 and
G(z) is constant. The growth function obeys

G′′ +

(

4 +
H ′

H

)

G′ +

[

3 +
H ′

H
−

3

2
Ωm(z)

]

G = 0, (10)

where primes denote derivatives with respect to ln a. We
normalize G to its value at zinit, taking the initial condi-
tions to be

G(zinit) = 1, G′(zinit) = −
3

5
(1−w∞)ΩDE(zinit), (11)

where G′ follows from a power-law solution to Eq. (10)
assuming ΩDE(zinit) ≪ 1 and neglecting curvature since
it has little effect on the expansion rate at early times.
We do not include radiation when solving Eq. (10), and
we assume that the dark energy component is smooth on
scales below the horizon at z < zinit.

Because growth measurements can be compared either
to low redshift data sets to obtain the relative growth
G0(z) ≡ G(z)/G(z = 0) between a redshift z and the
present, or to recombination through the CMB acoustic
peaks to obtain G(z), we show predictions for both in the
following sections. The latter will ultimately be limited
by the measurement of the optical depth to reionization
from CMB polarization due to the translation between
the observed acoustic peak amplitude and the intrinsic
fluctuations at recombination.

The logarithmic growth rate is defined as

f(z) ≡
d lnD1

d ln a
= 1 +

G′

G
, (12)

which is commonly approximated as f(z) = Ωγ
m(z) where

the growth index is γ ≈ 0.55 for flat ΛCDM [98, 99].
Measurements of γ have been proposed as a way to test
general relativity; we examine this idea in the context of
various classes of cosmological models in § III D.

In this paper, we remain agnostic about the techniques
that best probe these observables and simply assess the
precision to which they can be predicted in certain model
classes. However, some caveats are useful to keep in
mind. Although we make predictions as a function of red-
shift that can include fine-scale features, measurements

FIG. 2: Redshift dependent quantities for the fiducial flat
ΛCDM cosmology with Ωm = 0.24 and h = 0.73 as assumed
for PC construction and for the default data sets for MCMC,
including the fractions of the total density in matter and dark
energy, Ωm(z) and ΩDE(z) (top; solid blue and dashed red, re-

spectively), comoving angular diameter distance D(z) (mid-

dle, solid blue), inverse of the expansion rate H−1(z) (middle,

dashed red), growth function relative to early times (bottom,

solid blue), and growth rate f = 1 + d ln G/d ln a (bottom,

dashed red). The vertical dotted line is plotted at zmax = 1.7,
the maximum redshift for the PCs and for SNe in the likeli-
hood analysis.

will typically only constrain coarse-grained averages of
the predictions over wide bands in redshift. For exam-
ple, observations of the imprint of baryon acoustic oscilla-
tions (BAO) on galaxy clustering in directions transverse
to the line of sight provide a standard ruler to constrain
absolute distances D(z), and BAO measurements along
the line of sight can constrain the expansion rate, H(z).
However, a volume of >

∼ 1 Gpc3 is required to obtain
accurate measurements of either quantity, resulting in
smearing in redshift.

Likewise, weak lensing measures both the growth func-
tion and ratios of distances, but the broadness of the
lensing kernel and scatter in photometric redshifts again
prevents a purely local measurement. Growth rate mea-
surements that involve the redshift space distortion of
galaxy surveys and galaxy bias information from lensing
suffer from broadening from both data sets. Growth and
growth rate measurements from the cluster abundance
or weak lensing in the nonlinear regime also involve inte-
grals over the past history of growth and not merely the
instantaneous linear growth [100].

Finally, it is useful to place weak current priors on
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parameters related to the observables. In the broadest
model classes that we consider, the SN and CMB mea-
surements alone are not sufficiently predictive to elimi-
nate even highly deviant models. To ensure that we only
include models that are not already ruled out by observa-
tions, we include priors on the fraction of dark energy at
recombination ΩDE(z∗) from WMAP [101], the absolute
distance D(z = 0.35) from current BAO measurements
from SDSS [13], and the Hubble constant H0 from the
HST Key Project [102]. The former represents the im-
pact of the change in the growth function near recombi-
nation on the first few acoustic peaks of the CMB. We
conservatively do not include the expected improvement
on this measurement from Planck. The BAO distance
prior serves mainly to reduce the possible deviations from
a flat geometry for dynamical dark energy models with
spatial curvature. The role of the Hubble constant prior
in this analysis is to limit the variation in w(z) at very
low redshifts as we describe in Appendix B.

In summary, the observables that we predict are the
expansion rate H(z), comoving absolute distances D(z),
the growth history G(z) relative to recombination or
G0 ≡ G(z)/G(z = 0) relative to the present, and the
growth rate f(z). The redshift evolution of these quanti-
ties for the fiducial flat ΛCDM model is plotted in Fig. 2.
Predictions from SN and CMB data are derived by con-
structing these observables from models in the MCMC
samples described in § II C, and we explore the implica-
tions for various dark energy model classes in § III.

E. Completeness

To make predictions that can reliably be used to falsify
paradigms for dark energy, our parametrization must de-
scribe any effects that models within the class might have
on observables. In particular, we must ensure that the
set of principal components that parametrize variation in
w(z) form a complete basis for representing changes in
growth and expansion observables relative to the fiducial
cosmology due to changes in the dark energy equation
of state. In this section we summarize our criteria for
completeness, and refer the reader to more detailed dis-
cussions of these issues in Appendices B and C.

When computing the PCs from the Fisher matrix for
SN and CMB distances, we have a choice of whether to
fix or marginalize over the parameters other than the
binned w(z). These decisions affect PC shapes due to de-
generacies between w(z) and the other parameters. We
choose to fix ΩK and w∞, thereby including degenera-
cies with curvature and early dark energy among the
well-measured PCs. We marginalize Ωm in the PC con-
struction, thus reducing the completeness for represent-
ing sharp transitions in w(z) at z < zSN

min as we describe
in Appendix B. Since these transitions are largely indis-
tinguishable and limited mainly by the external Hubble
constant prior, completeness is not important here. We
therefore choose in this instance to sacrifice completeness

for efficiency in representing the well constrained redshift
range.

Given the set of PCs, the next question is how many
out of the full set of Nz,PC components we need to keep
as parameters (see § II A). Note that neglecting even the
high variance PCs can have large effects on the equation
of state. However, since all of the observables contain
integrals over w(z) the effects of these rapidly oscillat-
ing PCs (see Fig. 1) tend to cancel out for the redshift
dependent quantities of interest, especially the distance
and growth observables. In general, the number of com-
ponents necessary for completeness, Nc, will be larger
than the number of dark energy parameters that can be
measured to some specified accuracy. We typically find
that the predicted range of observables changes fraction-
ally by less than a few percent between MCMC analyses
with 10 and 15 PCs (see Appendix C). The agreement
is somewhat worse for H(z) in some cases, but discrep-
ancies occur mostly at z < zmax where oscillations of
H(z) about the fiducial model would be averaged out in
BAO measurements over wide bins in redshift. We con-
clude that Nc ≈ 10 is sufficient for completeness, but we
present results from the larger set of 15 PCs to further
reduce any remaining artifacts due to incompleteness.

The completeness of the parametrization could in prin-
ciple depend on the choice of fiducial model that we adopt
to represent the true cosmology for future observations.
We assume that the future SN and CMB data will be
consistent with wfid = −1 as is true of current measure-
ments, and we examine an alternate choice of fiducial
model in Appendix C.

Completeness may also depend on the redshift range
over which the PCs are defined, 0 ≤ z ≤ zmax. The
choice of zmax influences the definition of early dark en-
ergy as well, since we ascribe any deviations from w = −1
behavior at z > zmax to early dark energy parametrized
by constant w = w∞. We find that choosing zmax = 1.7
to match the redshift coverage of the fiducial SN data
nicely balances between defining the PCs where cosmo-
logical data have significant support (which argues for
a lower zmax) and having the PCs be a complete rep-
resentation for other observables (arguing for a higher
zmax). Additionally, our parameter w∞ is not intended
to be a complete description of early dark energy but
rather a means of monitoring its observable signatures.
We present tests of both our choice of zmax and the early
dark energy parametrization in Appendix C.

III. TESTING DARK ENERGY PARADIGMS

Distance measurements from SNe and constraints from
the CMB make predictions for the acceleration observ-
ables described in § II D that can be tested by future
experiments. These predictions are made within the con-
text of a paradigm for acceleration, e.g. a cosmological
constant. Where the predictions are weak, the observ-
ables can be used to estimate parameters within the class,
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FIG. 3: Illustration of the model classes (large circles) and
subclasses (represented by points within different regions of
the circles) that we consider in this paper. Open points mark
the initial (simplest) type of model within each class, and
arrows indicate paths to the more complex models in the
class. The ΛCDM class does not contain models with signifi-
cant early dark energy since the dark energy fraction vanishes
rapidly at high z for all allowed cosmological constant models.

and where they are strong, precision measurements can
potentially falsify the whole dark energy paradigm.

In the following sections, we step through the predic-
tions for various dark energy model classes. Guided by
Occam’s razor and criteria for falsifiability, we begin with
the simplest model that satisfies current constraints: flat
ΛCDM. Models of this type make the firmest predictions
and are therefore easiest to falsify. The next simplest
and most predictive model class is ΛCDM with one ad-
ditional parameter, spatial curvature. This more general
class is particularly interesting in that falsification would
rule out a cosmological constant.

Since ΛCDM corresponds to a constant dark energy
equation of state w = −1, our next step in generalizing
the class of models is to allow w to vary with redshift.
We first consider a restricted range, −1 ≤ w ≤ 1, corre-
sponding to the allowed values of the equation of state in
quintessence models where a canonical scalar field is re-
sponsible for cosmic acceleration at late times (e.g. [103]).
Within the quintessence class, we study how the predic-
tions change when early dark energy and nonzero curva-
ture are added to the basic model.

Instead of going directly from a cosmological constant
to arbitrary equations of state, one could test several
intermediate models along the way such as constant w

or the two-parameter model w(a) = w0 + wa(1 − a)
[104, 105], and many authors have used this approach
in analyzing cosmological data. Here, however, we take
the view that unless the dark energy falls into a well de-
fined physical classification such as a cosmological con-
stant or a canonical scalar field, there is no reason to
define a particular functional form of w(z) as a class and
not another.

For the final model class, we allow w to vary over a
much wider range than in the case of quintessence but
retain the requirement that dark energy is smooth com-
pared with dark matter on scales associated with the
measurements of growth. For example, non-canonical ki-
netic terms can lead to equations of state with w < −1
[106]. If such a field has a sound speed substantially be-
low the speed of light, then the growth predictions pre-
sented here would only apply below its sound horizon
[107].

We allow an arbitrary but large range of the equa-
tion of state within ∆w = 4 of the fiducial w = −1,
so −5 ≤ w ≤ 3. We limit the range of w to enable the
MCMC sampling to converge to the joint posterior distri-
bution of the parameters more easily. This range is large
enough to include extreme departures from ΛCDM and
quintessence models, particularly considering the conser-
vative nature of our priors on PC amplitudes (see Ap-
pendix A). As with the quintessence model class, for the
more general class of smooth dark energy models we also
examine the effects of early dark energy and curvature
on predictions for observables.

Figure 3 shows a Venn diagram representation of the
model classes that we study. The ΛCDM model class
forms the innermost circle since it is a subset of all the
other dark energy classes. Quintessence occupies a larger
portion of the model space since the equation of state is
allowed to vary within the range −1 ≤ w ≤ 1, and models
with even more general equations of state are contained
within the outer “smooth dark energy” circle. The four
quadrants of this diagram separate models that are ei-
ther flat or have nonzero curvature and that either do or
do not have a significant fraction of early dark energy.
Within each of the three model classes, an open circle
marks the simplest type of model (flat with no early dark
energy), and arrows lead to other models within the class
with additional degrees of freedom. Since the require-
ment that w = −1 at all times for ΛCDM models implies
that dark energy is always negligible at high redshift (see
Fig. 2), the ΛCDM class has only two types of models in-
stead of four. See § IV for an index relating these model
classes to the figures in the following sections.

The plots we present in the following sections show
the range of fractional deviations in observables relative
to the fiducial flat ΛCDM model that is allowed by the
assumed SN and CMB data, based on the distribution of
MCMC samples. We plot these predictions for various
growth and expansion observables (§ II D) at redshifts
0 ≤ z ≤ 4. Any future measurements that fall outside
the predicted range of values would falsify a model class.
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Since it is impractical to show the whole posterior dis-
tribution at a number of redshifts for several different
observables, we plot only the 68% and 95% limits of the
distributions and a single example model selected from
the MCMC samples. The confidence limits are defined so
that the probability (i.e. number of samples) is equal at
the upper and lower limits, with 68% (or 95%) of the sam-
ples between those limits. This definition corresponds to
the “minimum credible interval” (MCI) of Ref. [108]. A
useful property of these MCI limits is that the confidence
region includes the mode of the samples even when the
distribution is strongly skewed.

The redshift range in our plots of observable predic-
tions extends beyond the coverage of the assumed SN
sample so that we can make predictions for observables
at higher redshift. Such high redshift observations are
especially important for limiting the effects of curvature
and early dark energy parameters that can change ob-
servables at redshifts beyond the reach of the SN data
set, although the CMB distance prior can also play this
role in simpler classes of models.

There are two ways in which a model class may still be
falsified even if future growth and expansion observations
appear to be consistent with the SN and CMB predic-
tions for that class. Observations that point to redshift
evolution of an observable that is inconsistent with the
evolution in the majority of samples would exclude the
corresponding model class despite appearing to be con-
sistent with the predictions at any single redshift. Simi-
larly, measurements of multiple observables could falsify
a model class if they are inconsistent with the predicted
correlations between those observables. Since these types
of inconsistencies between predictions and observations
can be difficult to see in the types of plots shown here,
we use the example models in each figure to help point
out some of the trends in redshift and between observ-
ables.

In this study we do not address the feasibility of mak-
ing the measurements required to falsify various model
classes using future data sets. Instead, we focus here
on determining what types of observables are the most
effective at distinguishing competing theories for accel-
eration and what kind of precision in their measurement
would be required. We leave the task of connecting our
results with realistic expectations for upcoming dark en-
ergy probes for future work.

A. Testing ΛCDM

The flat ΛCDM model has only two free parameters,
Ωm and H0, whose values are closely tied together by
the CMB prior on Ωmh2. With this simple model, the
fiducial SN and CMB data, or even the CMB data alone,
make strong predictions for the other observables (see
Fig. 4).

The uncertainty in the growth function G(z) at red-
shifts approaching recombination is zero by definition,

and only increases to 0.5% by z = 0 (quoting 68% CL
here and throughout this section). The expansion ob-
servables at zmax, D(z = 1.7) and H(z = 1.7), are pre-
dicted with 0.4% and 0.2% accuracy, respectively. At
low z, D and H have equal fractional uncertainties (since
limz→0 D(z) = z/H0), corresponding to an accuracy of
0.7% for H0 [109]. In comparison, current estimates of
H0 have uncertainties of 3.8% from WMAP alone and
1.9% from combined WMAP, SN, and BAO measure-
ments [24]. Note that there is an extremely tight and
potentially falsifiable prediction for H at z ∼ 1 of 0.09%
in flat ΛCDM. This prediction is driven mainly by the
tight CMB distance prior which effectively reduces the
remaining freedom in ΛCDM to one parameter. In a
flat universe, D =

∫

dz/H(z), so allowed variations in
H2 ∝ Ωmh2(1 + z)3 at high z must be compensated at
low z by an opposing variation in H0 to preserve D∗.

Given these strong predictions, which are in large part
already available from current data, any future detec-
tion of deviations in growth, absolute distance, or the
expansion rate at the percent level at any redshift would
provide evidence against flat ΛCDM. The predictions
are driven mainly by the CMB prior and hence the SN
data themselves can be viewed as a stringent test of
flat ΛCDM (see e.g. [110]). Conversely, testing the flat
ΛCDM predictions on other observables does not depend
strongly on having the SNAP SN data set in hand.

Future observations that rule out flat ΛCDM would in-
dicate a need for additional complexity in the model. Al-
though the predictions in Fig. 4 show what measurements
would falsify flat ΛCDM, they do not indicate what kind
of generalizations of the model would give such alternate
predictions. For example, tight predictions of ∆D/D at
z > 3 may not be so interesting if there are no reasonable
models that can generate deviations from the flat ΛCDM
predictions there. Even in the context of falsifying flat
ΛCDM it is important then to look at the predictions of
an extended class of models. Of the possible directions
for generalizing the flat ΛCDM model outlined in Fig. 3,
we first examine the effects of including spatial curva-
ture. We then consider the alternate option of allowing
time variation of the equation of state in the following
sections.

For ΛCDM with curvature, growth and expansion pre-
dictions from the fiducial data are roughly a factor of 2
weaker than for flat ΛCDM but remain at the percent
level (see Fig. 4). The impact of the SN data is much
greater when we allow curvature to vary, since the CMB
constraints alone are no longer sufficient to fix the ob-
servables at low redshifts. The maximum uncertainty, at
z = 0, is 1.1% for G and 1.7% for H0 from D and H .
The pivot point in H at z ∼ 1 also disappears, leading to
the largest fractional change in the precision of predic-
tions. In terms of measuring or constraining curvature
under the ΛCDM paradigm, the redshifts with the weak-
est predictions and the largest change from flat ΛCDM
offer the most fruitful epochs for measurement. Con-
versely, the redshifts with the strongest predictions offer
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FIG. 4: Forecasted predictions from SNAP SN and Planck
CMB data for growth and expansion observables, showing the
influence of curvature on predictions for ΛCDM models. The
growth function G is defined relative to its value at recombina-
tion, and G0 is defined relative to the present value. Absolute
distance D differs from SN relative distances due to uncer-
tainties in H0. Shaded regions enclose 68% CL regions and
curves without shading are upper and lower 95% CL limits,
plotted as fractional differences from the fiducial flat ΛCDM
cosmology. The model classes are flat ΛCDM (light gray) and
ΛCDM with nonzero spatial curvature (dark blue). An exam-
ple model with nonzero curvature is also shown (dashed red

curve). Figures 5−11 and 14 all follow the same format.

the best opportunity to falsify the cosmological constant
altogether. As with flat ΛCDM, with current constraints
these predictions weaken only by a factor of ∼ 2 [111].

In summary, under the assumption of ΛCDM, with or
without curvature, SN and CMB observations make firm
predictions ∼ 1% for growth and expansion observables
at all redshifts. Future measurements that rule out a cos-
mological constant as the source of cosmic acceleration
would represent a significant advance from a standpoint
of fundamental physics. To proceed beyond this point
and determine the best observables and redshifts to tar-
get in order to distinguish among alternate models for
acceleration, we need to widen the model class again.

FIG. 5: Effects of generalization of flat ΛCDM (light gray)
to quintessence (dark blue; example model: dashed red).
Quintessence is defined to have −1 ≤ w ≤ 1 with w(z)
parametrized by 15 PCs. Here w∞ = −1 and ΩK = 0 to
eliminate early dark energy and curvature.

B. Testing quintessence

If measurements of growth or expansion observables
exclude ΛCDM as a viable model, the remaining dark en-
ergy model classes are ones where the dark energy equa-
tion of state at late times (z < zmax) is a free function of
redshift (see Fig. 3). We add this freedom to the models
by parametrizing w(z < zmax) with PCs as described in
§ II A. We use the first 15 PCs of w(z) at z < zmax in
the MCMC likelihood analysis as this number suffices for
completeness in the observables to percent level precision
(see § II E and Appendix C).

As long as the scalar field potential remains positive,
the equation of state for quintessence is bounded in the
interval −1 ≤ w ≤ 1. Negative potentials that violate
this bound in the past either would not produce the re-
quired acceleration or would display easily falsifiable fea-
tures. Our implementation of the canonical scalar field
prior as described in Appendix A is very conservative;
all quintessence models are allowed by the prior but not
all models allowed by the prior can be represented as a
canonical scalar field.
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We begin in Fig. 5 with the predictions for quintessence
in a flat universe with w∞ = −1 to eliminate early dark
energy. Ruling out flatness in the context of ΛCDM
does not necessarily mean that curvature is required in a
more general model class, so we begin with the simplest
quintessence models from Fig. 3 and generalize to models
with curvature and early dark energy later.

There are several notable features of quintessence pre-
dictions when compared with those in the ΛCDM class
of models. The limits on growth are no longer monotonic
with redshift and in particular show that growth suppres-
sion at the 1 − 2% level at z ∼ 1, which would rule out
ΛCDM, is allowed in the more general quintessence con-
text. Distances are typically predicted at a level that is
about twice that of flat ΛCDM at z < zmax and compara-
ble to ΛCDM with curvature. The exception is at z = 0
where the quintessence class allows for sharp changes in
the equation of state at z < zSN

min as described in Ap-
pendix B. The prior on the Hubble constant restricts the
amplitude of such changes. Conversely, with a prior on
the quintessence model class excluding these sharp tran-
sitions, precision Hubble constant measurements would
play the same role as absolute distance D(z) or H(z)
measurements at zSN

min < z <
∼ 0.1 here and in all of the

following cases.

Finally, the quintessence class allows a substantially
wider range of Hubble parameter predictions H(z). How-
ever, most of the allowed variation comes from rapid os-
cillations in the dark energy density, demonstrated by
the example model in Fig. 5. As mentioned in § II D,
observations such as BAO that constrain H are spread
over a wide redshift bin, averaging out much of this oscil-
latory behavior. Constant shifts in the average ∆H/H ∼
−∆D/D that would be allowed by the SN measurements
are still highly constrained in this model context by the
CMB distance measurement. Without curvature or early
dark energy, the absolute distance between zmax and re-
combination is nearly fixed and thus the Planck measure-
ment also fixes shifts in the distance scale below zmax (see
Appendix B).

The flat quintessence class of models with no early dark
energy on the whole remains highly predictive and falsifi-
able. We next examine what kind of observations might
falsify this class by requiring early dark energy or non-flat
geometries.

Fig. 6 shows the predictions for quintessence in a flat
universe with w∞ 6= −1, i.e. with early dark energy. Re-
markably, the predictions for absolute distance observ-
ables remain nearly unchanged. In particular, there is
no substantial increase at z >

∼ zmax nor are compensat-
ing H and D shifts at z < zmax allowed. The lack of
additional freedom in the observables is mainly due to
restricting the equation of state to −1 ≤ w ≤ 1. Early
dark energy allows increased H at z > zmax and hence
decreased distance between zmax and recombination. To
remain consistent with the CMB measurement of D∗,
these changes must be compensated by a reduction in
the average ∆H/H and an increase in absolute distances

FIG. 6: Effects of early dark energy (dark blue; exam-
ple model: dashed red) on quintessence models (light gray).
Quintessence models from Fig. 5 are generalized to have w∞

vary, with ΩK = 0 to eliminate spatial curvature.

below zmax. Given that the fiducial model is ΛCDM with
w = −1, a roughly constant negative shift in H requires
dark energy to decrease with redshift, i.e. a “phantom”
equation of state with w < −1. Since such values of w
are not allowed in the quintessence class, predictions for
D and H remain tight even with early dark energy.

On the other hand, although growth predictions are
still at the ∼ 1 − 2% level they show an interesting fea-
ture that is a signature of early dark energy. Growth
suppression at z >

∼ zmax is allowed at a larger level and
results in a nearly constant offset in growth at lower red-
shifts (see dashed curve in Fig. 6). Positive ∆G/G is not
allowed since the amount of early dark energy can only
increase from the fiducial model, which has almost no
early dark energy due to the assumption of w∞ = −1.
Growth relative to z = 0, ∆G0/G0, is largely unaffected
by the extra freedom allowed by early dark energy. The
smoking gun of early dark energy is therefore a compo-
nent to the growth function deviation that is nearly flat
at z <

∼ zmax.

Fig. 7 shows the predictions for quintessence in a non-
flat universe with w∞ = −1, i.e. with no early dark en-
ergy. Here the first difference is the change in the rel-
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FIG. 7: Effects of curvature (dark blue; example model:
dashed red) on quintessence models (light gray). Quintessence
models from Fig. 5 are generalized to have ΩK vary, with
w∞ = −1 to eliminate early dark energy.

ative growth G0 between zmax and z = 0 that is now
allowed to be several percent. While both early dark en-
ergy and curvature can suppress growth relative to the
early matter dominated epoch, this shift in G0 is a unique
signature of nonzero curvature. A measurement that in-
dicates ∆G0/G0 ∼ 2 − 4% at z ∼ zmax would falsify flat
quintessence models, with or without early dark energy.
A measurement beyond this level (or with the opposite
sign) would falsify non-flat cases as well.

The second main difference due to curvature is that
high redshift negative deviations in D(z) at z >

∼ zmax are
now allowed at the ∼ 4% level. A small curvature affects
the distance to recombination more than it does distances
at lower redshift. In an open universe, D∗ becomes larger
and therefore allows dark energy the freedom to compen-
sate by introducing a constant shift down in ∆D/D and
up in ∆H/H at z < zmax. The allowed amplitude of the
shift is limited by our BAO prior at z = 0.35. Note that
since the shift is constant in redshift, any single absolute
distance measurement at z < zmax also suffices to con-
strain this mode. An example of such a nearly constant
shift is shown by the dashed curve in Fig. 7.

In a closed universe, the required compensation at z <

FIG. 8: Effects of curvature and early dark energy (dark blue;
example model: dashed red) on quintessence models (light
gray). Quintessence models from Fig. 5 are generalized to
have both ΩK and w∞ vary.

zmax to preserve D∗ is in the opposite direction, and as
with early dark energy the w ≥ −1 quintessence prior
limits this possibility. Thus one-sided deviations in D,
average H , and growth relative to z = 0 are signatures
of curvature in the quintessence model class.

Fig. 8 shows the predictions for quintessence with both
curvature and early dark energy. Here a much greater
range of early dark energy densities is allowed since cur-
vature in an open universe can compensate for the de-
creased distance to recombination due to early dark en-
ergy. The main difference is a large increase in the al-
lowed nearly constant offset in the growth G relative
to recombination at z <

∼ zmax which can now approach
20%. The growth deviations are in fact limited by our
early dark energy prior from WMAP (see Appendix A);
without this prior the growth offset could have reached
∼ 40%. Large suppression of the growth relative to re-
combination indicates both early dark energy and curva-
ture in the quintessence context.

Note that the growth at z < zmax relative to z = 0 re-
mains nearly as well predicted as in Fig. 7 with no early
dark energy and hence is equally falsifiable. Likewise,
predictions for D do not weaken further because constant
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deviations in distance are limited by the BAO prior on
D(z = 0.35) in both cases. On the other hand, allowed
models with significant early dark energy do weaken pre-
dictions for H at z >

∼ zmax.
Even in the most general quintessence class, there

are still a few firm, percent level predictions. Neither
the growth G nor the distance D can be appreciably
larger than the ΛCDM prediction, although both can
be smaller. Lower average H than in the fiducial flat
ΛCDM model is not allowed at z < zmax due to the
w ≥ −1 bound and at z > zmax due to the CMB prior
on Ωmh2. Suppression of growth relative to high z at a
level of >

∼ 5% at z = zmax must remain nearly constant
at z <

∼ zmax. Observations that violate these predictions
would falsify the entire quintessence model class.

C. Testing smooth dark energy

Falsification of quintessence would challenge many the-
ories of dark energy and motivate consideration of more
complicated models than single canonical scalar fields.
Our generalization to the smooth dark energy class en-
compasses equations of state with −5 ≤ w ≤ 3 and
requires that the dark energy remain smooth compared
with the matter on scales associated with growth mea-
surements.

Figures 9−11 and 14 show the growth and expansion
predictions from SN and CMB data relative to the fidu-
cial model for the class of general smooth dark energy
models. As with quintessence, we present predictions for
models both with and without curvature and/or early
dark energy. Remarkably, Figure 9 shows that for flat
models without early dark energy the effect of dropping
the quintessence bounds on w(z) weakens predictions by
less than a factor of two. Thus the more general class
of smooth dark energy without curvature or early dark
energy is nearly as falsifiable as flat quintessence.

Including early dark energy in smooth dark energy
models relaxes the predictions in ways qualitatively sim-
ilar to the quintessence case, but with allowed devia-
tions that are somewhat larger at 68% CL and noticeably
larger at 95% CL. The additional freedom in growth and
distances comes mainly from dropping the lower bound
on w(z) and allowing phantom dark energy models with
w < −1. This change enables a reduction of the dark
energy density at z < zmax from the fiducial w = −1
model, which can compensate for and thereby allow a
higher fraction of early dark energy while maintaining
consistency with the CMB distance prior. Since dark en-
ergy is the dominant component at late times, decreasing
its density typically results in lower total density at low z,
which increases absolute distances there. The extra early
dark energy suppresses the growth at z > zmax, and the
reduced dark energy density at low z raises growth back
up toward the fiducial model slightly by z = 0. Com-
paring Figs. 8 and 10, we find that these models with
significantly lower H(z < zmax) are the only flat smooth

FIG. 9: Effects of generalizing −1 ≤ w ≤ 1 quintessence
models (light gray) to smooth dark energy with −5 ≤ w ≤ 3
(dark blue; example model: dashed red). The smooth dark
energy model class generalizes the quintessence models from
Fig. 5 using the same 15 PCs for w(z < zmax) with w∞ =
−1 and ΩK = 0 to eliminate early dark energy and spatial
curvature.

dark energy models that would not already be excluded
if observations had falsified all quintessence models.

In contrast, allowing spatial curvature to vary in the
smooth dark energy model class produces models with
qualitatively new types of behavior not seen in the
quintessence models. These new observable deviations
from flat ΛCDM provide smoking-gun signatures of cur-
vature and an equation of state beyond quintessence.

Although some of the model classes examined so far
allow growth relative to early times to be suppressed by
∼ 20% or more compared with the fiducial flat ΛCDM
model, none of the previous cases allow growth to be
enhanced by more than ∼ 2%. However, models with
weak bounds on w(z) and nonzero spatial curvature can
have G(z) be as much as 10−15% higher than the fiducial
model at z = 0, as shown in Figure 11. Likewise, the
growth G0 relative to z = 0 can be lower than in the
fiducial model by 5 − 10% or more at z >

∼ zmax, whereas
it was previously limited to deviations of at most a few
percent in this direction. Both effects correspond to an
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FIG. 10: Effects of early dark energy (dark blue; exam-
ple model: dashed red) on smooth dark energy models (light
gray). Smooth dark energy models from Fig. 9 are generalized
to have w∞ vary, with ΩK = 0 to eliminate spatial curvature.

enhancement of growth at z <
∼ zmax that occurs in closed

models (ΩK < 0).

The reason why such models become viable when we
abandon the −1 ≤ w ≤ 1 prior is similar to the expla-
nation for the differences in the early dark energy pre-
dictions of quintessence and smooth dark energy mod-
els. Closed universes have smaller distances to recom-
bination, so without some other means to increase the
distance, the models with ΩK < 0 are inconsistent with
the CMB distance prior for the fiducial cosmology. Re-
moving the quintessence bounds on w(z) allows for lower
dark energy density (with w < −1) at low z, which in-
creases the total distance to last scattering and allows
closed models to match the CMB constraints. The lower
dark energy density at z < zmax and resulting enhance-
ment of distances are also reflected in the predictions for
H and D in Fig. 11. Having ΩK < 0 and ΩDE(z < zmax)
lower than the fiducial value means that Ωm(z < zmax) is
higher than in the fiducial model, which also contributes
to the additional growth of structure at low redshift.

Although the average H(z) at low redshift can be re-
duced considerably relative to flat ΛCDM, predictions
for H(z) at high redshift have a sharp lower limit. The

FIG. 11: Effects of curvature (dark blue; example model:
dashed red) on smooth dark energy models (light gray).
Smooth dark energy models from Fig. 9 are generalized to
have ΩK vary, with w∞ = −1 to eliminate early dark energy.

CMB constraint on Ωmh2 places a strong lower bound on
H(z) corresponding to the expansion rate in an Einstein-
de Sitter universe. Closed models can exceed this bound
slightly since the curvature slows the expansion, but for
allowed values of ΩK this is a small effect. This lower
limit is present in all previous model classes as well but
its impact is less visible.

Like the non-flat quintessence predictions of Fig. 7, the
predictions for smooth dark energy models with curva-
ture are asymmetric about the fiducial model. In fact, as
Fig. 11 shows, the confidence regions are so skewed to-
ward the closed models that the fiducial model lies on the
edge of the 68% regions. This is in spite of the fact that
the fiducial model has the maximum likelihood by defini-
tion, and that the definition of confidence limits we use
is chosen to include the peak probability. Moreover, the
allowed regions of the observables in Fig. 11 are skewed
in the opposite direction of the predictions for the cor-
responding quintessence models in Fig. 7 and therefore
appear inconsistent with those predictions, despite the
fact that the quintessence class is a subset of the more
general smooth dark energy class. The reason for these
discrepancies is that predictions in the non-flat cases with
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FIG. 12: Effects of priors on the degeneracy between curva-
ture and w(z) PCs for the smooth dark energy models with
curvature (but not early dark energy) in Fig. 11. Top: 1D
marginalized posterior probability P (ΩK) for the default pri-
ors that are flat in PC amplitudes αi (solid, dark blue), and
for alternate priors that are flat in the density of each PC at
zmax relative to z = 0, ρi(zmax)/ρi(0) as defined in Eq. (13)
(dot-dashed, red). The dotted curve is the mean likelihood
distribution for flat αi priors. Bottom: Probability contours
of ΩK vs. α2 at 68% and 95% CL for the same priors on PCs
as in the top panel. Dashed lines mark the fiducial values,
ΩK = 0 and α2 = 0.

large variations in w(z) both above and below w = −1
are so weak that the shapes of priors on the PC ampli-
tudes become important in determining the extent of the
confidence regions.

The influence of priors on the predictions is illustrated
in Fig. 12, where we show distributions of ΩK for two dif-
ferent choices of priors. With our usual top-hat prior on
{αi}, the posterior probability for ΩK is strongly skewed
toward closed models. The distribution of the mean like-
lihood of MCMC samples, on the other hand, is peaked
at the fiducial value of ΩK = 0 as expected (dotted curve
in Fig. 12).

The discrepancy between posterior probability and
mean likelihood can be traced to a volume effect in the
parameter space (e.g. see [112]). Models with more neg-
ative ΩK have a wider range of values of αi that fit the
data well; this is demonstrated by the banana-shaped
contours for ΩK and α2 in the lower panel of Fig. 12, and
other PCs show similar widening of the parameter vol-
ume at more negative ΩK. When other parameters are
marginalized to obtain the 1D posterior distribution for
ΩK, or for one of the growth and expansion observables

FIG. 13: Effects of priors on smooth dark energy models with
nonzero curvature. Dark blue: flat top-hat priors on αi as in
Fig. 11. Light gray : flat priors on the density of individual
PCs, ρi(zmax)/ρi(0).

at some redshift, the result is a skewed distribution.
The basic reason for this volume effect is that the dark

energy density depends exponentially on w(z), which is
a linear combination of the PCs, so changes in {αi} at
small ρDE have less effect on observables than changes at
large ρDE. To test how much the observable predictions
are affected by the priors, we use alternate priors that
are flat in the contribution of each principal component
to the dark energy density at zmax relative to z = 0 (see
Appendix A),

ρi(zmax)

ρi(0)
≡ exp

[

3αi

∫ zmax

0

dz
ei(z)

1 + z

]

, (13)

so that the total dark energy density at zmax is
ρDE(zmax) = ρDE(0)

∏

i[ρi(zmax)/ρi(0)]. Figure 13 shows
that with this new prior, the predictions become more
symmetric around the fiducial model and also allow mod-
els that are acceptable under the quintessence subclass.

These ∼ 1σ shifts indicate that the predictions from
cosmological data alone are so weak that the exact con-
fidence region depends on arbitrary theoretical priors on
the measure in dark energy model space. Therefore, any
measurement of these observables at a level of precision
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FIG. 14: Effects of curvature and early dark energy (dark
blue; example model: dashed red) on smooth dark energy
models (light gray). Smooth dark energy models from Fig. 9
are generalized to have both w∞ and ΩK vary.

comparable to the predictions is interesting in the con-
text of smooth dark energy with curvature regardless of
the sign of the deviation from flat ΛCDM. At the same
time, conclusive falsification of general smooth dark en-
ergy models with curvature would require much larger
deviations where there are no models with good likeli-
hood values.

Note that the dependence on PC priors is only sig-
nificant for classes of models that allow w < −1 and
have nonzero curvature. For all of the previous cases –
ΛCDM, quintessence, and ΩK = 0 smooth dark energy –
the confidence limits of observables shift by only <

∼ 1%
when we switch from one set of PC priors to the other
(except for H , for which the limits change by up to a
few percent at some redshifts near zmax). The volume
effect is not a consequence of our particular parametriza-
tion of w(z); for example, there is a similar shift toward
ΩK < 0 for non-flat dark energy models parametrized as
w(a) = w0 +wa(1−a) when the priors are flat in w0 and
wa [111].

Using the priors that are flat in the PC amplitudes, the
addition of early dark energy to smooth dark energy mod-
els with curvature (Fig. 14) appears to make little differ-

FIG. 15: Effects of priors on smooth dark energy models
with curvature and early dark energy. Same as Fig. 13, but
comparing priors for the dark blue model in Fig. 14.

ence to the qualitative predictions, except in some of the
95% limits. However, much of the effect of early dark
energy on these models is masked by the flat-{αi} PC
prior. As Fig. 15 shows, changing the priors to be flat in
ρi(zmax)/ρi(0) affects the observable predictions in ways
that are similar to the previous case without early dark
energy, e.g. making many of the distributions of allowed
models more symmetric around the fiducial model. With
this alternate prior we see that the additional freedom in
early dark energy combined with nonzero curvature en-
ables models with significant growth suppression relative
to high z and increased H(z >

∼ zmax) to fit the assumed
data sets, as it does in the corresponding quintessence
predictions of Fig. 8.

The sensitivity to the priors and the weakness of the
predictions in general means that despite the great poten-
tial of future observations for measuring spatial curvature
and early dark energy in models with general equation of
state variation at low redshift, statements about falsifi-

cation of the entire smooth dark energy model class must
be made with care.
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D. Beyond Smooth Dark Energy

One lesson from the analysis in the previous section is
that the combination of general variation in the dark en-
ergy equation of state with early dark energy and nonzero
spatial curvature allow a wide variety of cosmological
models to fit future SN and CMB data. Falsification of
the most general smooth dark energy model class there-
fore appears to be quite difficult, especially given the
dependence of the growth and expansion observable pre-
dictions on priors that must be set arbitrarily in the ab-
sence of an underlying theory for dark energy. However,
even these very general models make some firm predic-
tions about the relations between observables that could
potentially be falsified by future measurements.

One example of a robust prediction for the observ-
ables is the following: given the flat ΛCDM model that
matches the SN and CMB data and assuming that the
dark energy always contributes positively to energy den-
sity, H(z) at z >

∼ 2 can be no more than ∼ 5% lower than
in ΛCDM. This limit was noted in § III C) in the context
of non-flat smooth dark energy models with w∞ = −1,
and it still holds when we include early dark energy.

More interestingly, the predicted redshift evolution of
expansion and growth observables still exhibits certain
regularities. Notice in Fig. 10 that before we introduce
curvature, the growth history, absolute distances, and
expansion rate are predicted at the few percent level by
SN and CMB data. Freedom in the spatial curvature
greatly reduces the precision of these predictions. How-
ever, the curvature is set by a single parameter ΩK with
well defined effects on each of the observables. By taking
advantage of our knowledge of the impact of curvature,
we can effectively regain much of the predictive power
that exists for flat models.

As an example, consider the growth function. In the
most general model class, the majority of the freedom
in growth comes from curvature and early dark energy.
We can distinguish between the two by noting that the
deviations in growth from the fiducial flat ΛCDM model
have different redshift dependence, as illustrated by the
sample growth histories allowed by either curvature or
early dark energy plotted in Fig. 16. The main effect of
early dark energy is to suppress growth by a constant fac-
tor at early times, so growth functions in a flat universe
with varying amounts of early dark energy have similar
shapes but different amplitudes at low z. On the other
hand, curvature tends to have a more gradual effect on
growth continuing to z = 0, and also allows more en-
hanced growth relative to the fiducial model than early
dark energy.

An observed growth history that cannot be described
by some combination of the effects of curvature and early
dark energy would present a major challenge to the dark
energy paradigm. For example, growth at z < zmax rela-
tive to today (G0) that is >

∼ 5% higher than expected in
flat ΛCDM would be difficult to explain with dark energy
for allowed values of the spatial curvature.

FIG. 16: Growth functions of MCMC samples in the smooth
dark energy model class (−5 ≤ w ≤ 3) that include either
early dark energy (EDE) at z > zmax (w∞ 6= −1; top), cur-
vature (ΩK 6= 0; middle), or both (bottom). We plot growth
relative to early times in the left column of panels, and growth
relative to the present on the right. Dashed red curves show
growth in the fiducial flat ΛCDM model. Samples are selected
randomly from those with likelihoods satisfying ∆χ2 ≤ 4,
but for visual clarity we plot samples that are approximately
evenly spaced in G(z = 0) (left) or G0(z = 4) (right). The
dotted vertical line in each panel marks z = zmax.

Moreover, deviations in G0(z) are nearly a one param-
eter family that is ordered by curvature ΩK. The top
panel of Fig. 17 shows the correlation between ΩK and a
linear combination of G0(zmax) and G(zmax) in smooth
dark energy models. The curvature ΩK mainly depends
on G0(zmax), but the degeneracy in D∗ between ∆H/H
at z < zmax and early dark energy introduces a small
correction since such changes in the expansion rate affect
the growth rate at low z and therefore change G0. The
G(zmax) term can correct for this degeneracy since the
amplitude of G is sensitive to the amount of early dark
energy.

By comparing the combination of G0 and G correlated
with curvature at multiple redshifts, one can test the gen-
eral class of smooth dark energy models with early dark
energy and curvature. For example, the lower panel of
Fig. 17 shows these combinations of growth observables
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FIG. 17: Comparison of ΩK and linear combinations of the
growth function relative to flat ΛCDM, ∆G0(z) and ∆G(z),
at z = zmax and z = 1 for randomly selected models (with
∆χ2 ≤ 4) in the smooth dark energy class with early dark
energy and curvature. The coefficients used here are K1(z =
1) = 0.24, K2(z = 1) = 0.10, K1(z = zmax) = 0.17, and
K2(z = zmax) = 0.09. Note that these specific values may
not produce accurate estimates of ΩK for fiducial cosmologies
other than the one assumed here.

at zmax = 1.7 and at z = 1; observations that give dif-
ferent values for the linear combinations of G0 and G at
these two redshifts would falsify this most general model
class.

This regularity in the growth relative to today can
be viewed as a generalization of tests involving the
linear growth rate f(z). In particular, the relation-
ship f(z) = Ωγ

m(z) with γ ≈ 0.55 has been proposed
as a potential test of all smooth dark energy models
[99, 113, 114, 115, 116]. In Figs. 18−20, we plot the
predictions from the forecasted SNAP supernovae and
Planck CMB data for the growth rate and growth in-
dex for selected model classes from the previous sections,
allowing a redshift dependent growth index

γ(z) =
ln[f(z)]

ln[Ωm(z)]
. (14)

Note that the growth index is somewhat different from
our other observables since measurement of γ requires not

FIG. 18: Effects of curvature on the ΛCDM growth rate.
Predictions from future SN and CMB data for the growth
rate f = 1 + d ln G/d ln a, plotted relative to the fiducial
model, and for the growth index γ = ln f/ ln[Ωm(z)]. The
model classes here are ΛCDM either assuming flat geometry
(light gray) or allowing nonzero curvature (dark blue; exam-
ple model: dashed red). Shaded regions enclose 68% of the
allowed models and curves without shading are upper and
lower 95% confidence limits (not visible for flat ΛCDM pre-
dictions of γ due to the tightness of those constraints). The
three example models plotted here and in Figs. 19 and 20 are
the same as the ones in Figs. 4, 8, and 14, respectively.

only the growth rate but also some method for determin-
ing the fractional matter density Ωm(z) at the same red-
shift. A measurement of H(z) combined with the CMB
constraint on Ωmh2 could provide an estimate of the lat-
ter quantity, since Ωm(z) ∝ Ωmh2(1 + z)3H−2(z).

In the context of ΛCDM, Figure 18 shows that both
f and γ are precisely predicted by future SN and CMB
data as expected given the tight constraints on other ob-
servables within this model class. The growth index is
nearly constant, with a small slope at low redshifts when
the cosmological constant dominates, and deviations of
∼ 0.5% by z = 4 for models with nonzero curvature.

In the context of quintessence, both predictions weaken
substantially as shown in Fig. 19. The growth rate is
not as well predicted as the difference in growth between
z = 0 and zmax used in Fig. 17. Like H , it effectively has
only one integral over the time-varying equation of state
instead of two as for distances and the integrated growth
history. It is therefore equally sensitive to features in
w(z).

In fact, the redshift dependence of the predictions for
f(z) in Fig. 19 closely mimic those for H(z) in Fig. 8, but

17



FIG. 19: Effects of curvature and early dark energy on
the quintessence growth rate. Same as Fig. 18 but for flat
quintessence models with w∞ = −1, i.e. no early dark energy
(light gray), and quintessence with both nonzero curvature
and early dark energy (dark blue; example model: dashed

red).

with opposite sign. Since Ωm(z) is tied to H(z) via the
CMB prior on Ωmh2, the similarity between deviations
in f and in H suggests a strong connection between f
and Ωm(z), consistent with a constant value of γ. How-
ever, the predicted values of γ shown in the lower panel
of Fig. 19 cover a much wider range for quintessence than
for ΛCDM, with significant variation of γ with redshift
in some models. For flat models without early dark en-
ergy, the extra freedom in γ only appears at z < zmax,
but including curvature and early dark energy allows 5%
deviations in γ above the fiducial value at z > zmax, only
slightly less than the uncertainty in f or H at these red-
shifts. These nearly constant deviations in γ at high z are
well approximated by the expected dependence on early
dark energy given by Ref. [114], modified for nonzero
curvature,

γ(z > zmax) ≈
3(1 − w∞)

5 − 6w∞

fDE +
4

7
fK, (15)

where fi = Ωi(z)/[1 − Ωm(z)]. For ΩK = 0 and w∞ =
−1 we recover the usual growth index from this formula,
γ = 6/11 ≈ 0.55.

One of the more interesting features of the predictions
for γ in the quintessence class is the widening in the un-
certainty at z ∼ 1. As Eq. (15) shows, deviation from
w = −1 changes the value of γ at high redshift. Likewise,
low-redshift variation in w can perturb the growth index

FIG. 20: Effects of curvature and early dark energy on the
smooth dark energy growth rate. Same as Fig. 19 but for
smooth dark energy models (−5 ≤ w ≤ 3).

from its usual value of γ ≈ 0.55. At z <
∼ 0.5, SN distance

constraints ensure that while w may oscillate rapidly with
redshift, it never deviates far from w = −1 on average.
However, as z approaches zmax the constraints from SNe
weaken, allowing w to vary significantly from −1 over
longer periods of time; this variation enables γ to deviate
from the ΛCDM prediction. Furthermore, at z >

∼ 1 where
Ωm(z) is typically near unity, ln[Ωm(z)] is close to zero
and therefore the value of γ derived from Eq. (14) is more
sensitive to small changes in the relation between f(z)
and Ωm(z). For example, the model plotted in Figs. 8
and 19 has significant changes in H and f between z = 1
and z = 1.5 relative to the fiducial flat ΛCDM cosmology,
leading to a bump in γ for this model at z ∼ 1.

Generalizing to smooth dark energy models with −5 ≤
w ≤ 3 reveals another potential problem with using γ to
test smooth dark energy. Recall from the previous section
that a closed universe is allowed for models in this class,
and is favored if priors are flat in the PC amplitudes. In
closed models where ΩK is sufficiently negative, Ωm(z)
can cross unity with Ωm(z) > 1 at high z and Ωm(z) < 1
at low z, and the same is true of f(z). Since these two
functions do not cross at exactly the same redshift due
to the slight lag between density and growth, the growth
index of Eq. (14) has a singularity when Ωm(z) = 1.
The dashed curve in Fig. 20 is one example of such a
model. As a result, the predictions for γ, particularly
in the tails of the distribution, blow up at z >

∼ 1 where
these singularities occur. This effect is an artifact of the
γ parametrization since γ can take any value when f ≈ 1
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and Ωm(z) ≈ 1, but it makes it difficult to interpret limits
on γ beyond z ∼ 1 for the most general class of smooth
dark energy models.

Although constant γ remains a good approximation for
many dark energy models, large variations in the dark en-
ergy density or spatial curvature with ΩK < 0 can weaken
the link between f(z) and Ωm(z) (or H(z)). An observed
deviation from the expected value and near constancy of
γ would certainly falsify ΛCDM and some simple dark
energy models, but using the growth index as a test of
smooth dark energy in general may require refinement
of the standard parametrization of Eq. (14) to account
for significant w(z) variation and crossing of Ωm(z) = 1.
Alternatively, one can adopt the more general approach
of examining the integrated growth function at various
redshifts as discussed above.

There are also other, more fundamental but more qual-
itative means of testing smooth dark energy. By defi-
nition, on scales where the dark energy remains smooth
there is no particular scale for growth in the linear regime.
Models of acceleration that involve coupling of dark en-
ergy to dark matter or modifications of gravity that in-
troduce new scales in addition to the Hubble scale gener-
ically imply scale dependent linear growth (e.g. [117]).
Such models can also feature differences in dynamical
and lensing mass measurements. Generically, modified
gravity models that satisfy local constraints on gravity
also break the relationship between the linear and non-
linear growth of structure again by the introduction of a
new scale to the problem [118, 119, 120].

Another way in which the standard cosmological
paradigm might be falsified is through observed viola-
tions of the relation dL(z) = (1 + z)D(z) between lu-
minosity distances and comoving angular diameter dis-
tances. Examples of mechanisms for violating this re-
lation include photon-axion mixing, photon decay, and
nonzero torsion in the gravity theory (e.g. [121, 122,
123]). Therefore, the “duality relation” between the two
distances is an interesting test of exotic new physics pos-
sibly related to acceleration. There also exists a more
general (but related) consistency relation between the
comoving distance D(z) and the Hubble parameter H(z)
that holds in any homogeneous and isotropic FRW model
[124] and can be tested using accurate cosmological ob-
servations of the two functions at any redshift. Our stan-
dard assumptions could also be falsified through observed
violations of homogeneity or isotropy signaling a break-
down in the validity of the FRW metric, or by observing
time variation in fundamental constants.

We have shown that dark energy degrees of freedom
and spatial curvature permit the basic distance, expan-
sion, and growth observables to vary greatly. Neverthe-
less, there are still many ways in which the dark energy
paradigm for acceleration could be falsified.

IV. CONCLUSIONS

Using a combination of quantitative tools including
principal components of the dark energy equation of
state and MCMC analysis with simulated future data,
we demonstrate that combined constraints on dark en-
ergy from the measurement of distances, growth, and
the expansion rate provide many ways to test not only
specific dark energy models, but also general classes of
models. In particular, a high-quality supernova sample
such as that anticipated from SNAP and the CMB data
expected from Planck make strong predictions for other
observables in the context of a wide variety of models.
Follow-up observations of the predicted observables of-
fer the exciting possibility of falsifying model classes and
demonstrating the need for a new paradigm for acceler-
ation.

Figure 21 summarizes the basic dark energy model
classes and their generalizations, arranged by the allowed
values of w and the total number of MCMC parameters
[Eq. (6)]. In general, observations that falsify classes to-
ward the upper left corner of this “tree” of model classes
require adding more freedom to the models by moving
down and/or to the right in the tree. This diagram serves
as an index to the figures in § III; each line between a
pair of model classes is labeled by the number of the fig-
ure in which a comparison of observable predictions for
those two classes may be found.

In the context of the current standard model, flat
ΛCDM, predictions for acceleration observables come
mainly from the CMB. The SNAP SN data themselves
provide one stringent test of flat ΛCDM predictions from
Planck. Other types of observations are also well suited
for testing flat ΛCDM. In particular, constraints from fu-
ture SN and CMB data have a narrow pivot point in the
expansion rate where H(z = 1) is predicted to ∼ 0.1%
(at 68% CL), making such a measurement an especially
interesting target for future BAO experiments and other
probes of H . Likewise, growth observables are predicted
to better than 0.5% at all redshifts.

Even if we drop the assumption of flatness, ΛCDM
remains highly predictive. The pivot point in H(z) pre-
dictions disappears when nonzero spatial curvature is al-
lowed, but the ΛCDM model class can still be falsified
with >

∼ 1% deviations in any of the acceleration observ-
ables at any redshift.

Remarkably, allowing general time variation of the
dark energy equation of state w(z) within the class of
quintessence models (−1 ≤ w ≤ 1) does not significantly
weaken predictions if we assume flatness. For these mod-
els, SN and CMB data predict growth and absolute dis-
tance to ∼ 1 − 2% precision.

Including the possibility of early dark energy, e.g. a
scalar field that tracks the matter density at high red-
shift, does not weaken these predictions substantially as
long as the SN and CMB observations remain consistent
with a cosmological constant as current data suggest. An
increased fraction of early dark energy reduces the dis-
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FIG. 21: Index for dark energy model classes compared in figures in § III. The number of parameters varied in the MCMC
likelihood analysis increases from left to right. For extensions to the baseline model within each class, the additional parameters
(ΩK, w∞, or both) are listed. Red numbers along lines connecting two models indicate the number of the figure in this paper
in which we plot growth and expansion predictions for that pair of models.

tance to recombination, D∗, and must be compensated
by either allowing nonzero curvature or reducing the dark
energy density at late times. The latter option requires
w < −1 which is forbidden for quintessence models with
positive potentials, so a large fraction of early dark en-
ergy is not allowed for quintessence in a flat universe.

The same w = −1 barrier for quintessence leads to pre-
dictions of one-sided deviations from flat ΛCDM observ-
ables when spatial curvature is allowed to vary. Closed
universes reduce D∗, so matching CMB constraints re-
quires the ability to lower the dark energy density with
w < −1. Therefore, quintessence predictions from SN
and CMB data consistent with w = −1 favor open uni-
verses. Curvature in open universes causes additional
growth suppression, particularly at z <

∼ 2.
Open quintessence models can also have significant

early dark energy that suppresses growth by a constant
factor at low redshift. Even with the additional freedom
in curvature and early dark energy, SN and CMB data
still provide general predictions for quintessence. For ex-
ample, neither the growth relative to recombination nor
absolute distances at low redshift can be significantly
larger than in flat ΛCDM. Growth relative to the present
out to z ∼ 2 cannot differ from its standard behavior by
more than ∼ 2 − 4%.

Allowing the low-redshift dark energy equation of state

to vary beyond the range of quintessence enables new
types of models since the absence of the w ≥ −1 bound
permits deviations in dark energy density both above and
below the constant density of flat ΛCDM. These general
smooth dark energy models are therefore able to have sig-
nificant early dark energy in a flat universe, and closed
universes consistent with the SN and CMB data are also
possible. As a result, smooth dark energy models can
have both larger and smaller growth and absolute dis-
tances relative to flat ΛCDM, unlike the one-sided pre-
dictions of quintessence.

Even the most general model class including large dark
energy variations at low redshift, early dark energy, and
nonzero curvature makes some generic predictions given
future SN and CMB data. Growth at z <

∼ 2 normalized
to its present value can be no more than ∼ 5% larger and
the expansion rate at z >

∼ 2 no more than ∼ 5% smaller
than their values in a flat ΛCDM cosmology. The growth
index γ as it is typically defined is tightly constrained
by SN and CMB data in ΛCDM, but not for more gen-
eral dark energy models since both time variation of the
dark energy equation of state and the possibility of cross-
ing Ωm(z) = 1 in closed universes weaken the relation
between growth rate and matter fraction. Fortunately,
growth measurements at different redshifts still give tight
predictions since the growth evolution at low redshift de-
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pends mainly on curvature. Additional tests outside the
scope of this work, such as searching for scale depen-
dence of linear growth, could also falsify all smooth dark
energy models. Falsification of the most general smooth
dark energy predictions would require new paradigms for
cosmic acceleration and possibly even gravity itself.
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APPENDIX A: FISHER MATRICES AND

LIKELIHOOD FUNCTIONS

In this Appendix, we describe the (future) cosmological
data and priors that we assume for this study. We give
expressions for the Fisher matrices for these data, which
we use to compute the principal components of the dark
energy equation of state, and for the likelihood functions
that we use in MCMC analysis.

The Fisher matrix for supernovae is [32]

F SN
ij =

∑

α

σ−2
α

dm(zα)

dθi

dm(zα)

dθj
, (A1)

where m(zα) = 5 log[H0dL(zα)] +M is the average mag-
nitude of the SNe in the redshift bin denoted by zα,
σα is the error in the average magnitude, and M =
M − 5 log(H0/Mpc−1) + 25 is a constant related to the
unknown absolute magnitude of the SNe.

For the fiducial supernova data, we take the expected
redshift distribution for SNAP [87] plus a low-z sample of
300 SNe at 0.03 < z < 0.1. The SNAP magnitude errors
include both statistical and systematic components:

σ2
α =

(

∆z

∆zsub

)

[

0.152

Nα
+ 0.022

(

1 + z

2.7

)2
]

, (A2)

where Nα is the number of SNe in each bin of width
∆z (∆z = 0.1 except for the statistical uncertainties in
the low-z SN bin, for which ∆z = 0.1 − zSN

min = 0.07),
and ∆zsub is the width of the sub-bins used to smooth
the distribution of SNe in redshift. We use 500 sub-bins
up to zmax = 1.7. The second term on the right hand
side of Eq. (A2) models a systematic floor that increases
linearly with z up to a maximum at zmax of 0.02 mag per
∆z = 0.1 bin [125].

For the Planck CMB constraint, we start with the 2×2
covariance matrix C̃CMB for the parameters

θ̃ = {ln(D∗/Mpc), Ωmh2} . (A3)

Here D∗ is the comoving angular diameter distance to
recombination. We ignore additional CMB information

about dark energy from the ISW effect except in the cur-
rent prior on early dark energy described below. The
elements of the covariance matrix are C̃CMB

11 = (0.0018)2

and C̃CMB
22 = (0.0011)2 and C̃CMB

12 = −(0.0014)2. Rotat-
ing to the space of MCMC parameters, e.g. θfull [Eq. (6)]

gives FCMB = D[C̃CMB]−1DT, where Dij = dθ̃j/dθi. As
we shall see, for the likelihood evaluation it is more conve-
nient to project the MCMC parameters onto the original
basis of Eq. (A3). For a similar treatment of CMB priors
on dark energy models, see Refs. [82, 109].

Priors on additional parameters can be included by
adding the assumed inverse covariance to the appropriate
entry of the Fisher matrix. The Fisher matrix for the full
set of parameters is

F tot
ij = F SN

ij + FCMB
ij + F prior

ij . (A4)

The priors and the parameters in the Fisher matrix de-
pend on the particular application and differ between the
PC construction and the the likelihood analysis. The pro-
cedure for computing PCs from the Fisher matrices and
the assumed priors are described in Appendix B.

For the MCMC analysis described in § II C we assume
a Gaussian likelihood, L ∝ exp(−χ2/2), described by

χ2 = χ2
SN + χ2

CMB + χ2
prior (A5)

which includes contributions from the SNAP SN data,
Planck CMB data, and our external priors.

We model the SN χ2 term as

χ2
SN = A −

B2

C
, (A6)

A = 5
∑

α

[∆ log(H0dL(zα))]2

σ2
α

,

B = 5
∑

α

∆log(H0dL(zα))

σ2
α

,

C =
∑

α

1

σ2
α

,

where ∆ log(H0dL) refers to the difference between a
model H0dL derived from MCMC parameters and the
fiducial value. The variance σ2

α is modeled as in Eq. (A2).
The B2/C term in χ2

SN comes from the marginaliza-
tion over M. Because of this marginalization, the SN
data are insensitive to redshift-independent shifts in the
magnitudes m(zα) caused by changes in combinations
of other cosmological parameters, e.g. Ωm and the PC
amplitudes for w(z). This shift in magnitudes corre-
sponds to multiplying the distances by a constant factor:
H0dL(z) → (1 + δ)H0dL(z).

The CMB contribution to χ2 is

χ2
CMB =

2
∑

i,j=1

δθ̃i[C
CMB
ij ]−1δθ̃j , (A7)

where θ̃i is the same as in Eq. (A3) and δθ̃i = θ̃i− θ̃i|fid is
the difference in lnD∗ and Ωmh2 from the fiducial model
with D∗ derived from the MCMC parameters.
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When computing χ2 we set the SN magnitudes, D∗,
and Ωmh2 to have the exact values predicted for the fidu-
cial cosmology without any scatter in the simulated mea-
surements. The resulting constraints from the data are
therefore expected to be centered on the fiducial param-
eter values rather than shifted away from them by ∼ 1 σ.
We do this because we are mainly interested in the width
of predictions for observables and not their central values
for a particular realization of the measurement errors.

In the MCMC likelihood analysis we employ three ex-
ternal priors based on current data to limit our study
to reasonable cosmologies, and one internal theoretical
prior:

χ2
prior = χ2

H + χ2
BAO + χ2

EDE + χ2
w, (A8)

where the terms on the right hand side respectively re-
fer to an HST Key Project prior on the Hubble constant
of width σ(h) = 0.08 [102], a BAO prior on the angular
diameter distance to z = 0.35 with σ(ln D(z = 0.35)) =
0.037, roughly corresponding to the constraint from the
SDSS LRG sample [13], and a WMAP prior on the
fraction of early dark energy with σ(ΩDE(z∗)) = 0.025,
based on the constraints on early dark energy models in
Ref. [101].

In addition to constraints from current data, the last
term in Eq. (A8) includes theoretical limits on the dark
energy equation of state, wmin ≤ w ≤ wmax. These lim-
its are typically implemented as an infinite barrier in χ2

w

corresponding to some range allowed by the model class,
i.e. a top hat prior on the MCMC parameters. To com-
pute these priors, we start with the projection of w(z)
onto PC amplitudes,

αi =
1

Nz,PC

Nz,PC
∑

j=1

[w(zj) − wfid]ei(zj), (A9)

where wfid = −1 unless otherwise specified. By finding
the values of w(zj) within the allowed range [wmin, wmax]
that maximize or minimize αi, we obtain limits on the

amplitude of each PC, α
(−)
i ≤ αi ≤ α

(+)
i , where

α
(±)
i ≡

1

2Nz,PC

Nz,PC
∑

j=1

[(wmin + wmax − 2wfid)ei(zj)

±(wmax − wmin)|ei(zj)| ]. (A10)

The width of this prior, α
(+)
i −α

(−)
i , depends on the width

of the allowed range of w but not the value of wfid.
We find a second prior on {αi} using the fact that

restricting the range of w(z) places an upper limit on
∑

i[w(zi) − wfid]2. From Eqs. (2) and (3),

Nz,PC
∑

i=1

[w(zi) − wfid]2 = Nz,PC

Nz,PC
∑

i=1

α2
i . (A11)

The bounds on w(z) impose an upper limit on this sum,

[w(zi) − wfid]2 ≤ Vmax, (A12)

Vmax ≡ max[(wmax − wfid)2, (wmin − wfid)
2].

FIG. 22: Examples of equations of state constructed from the
15 PCs in Fig. (1), where the PC amplitudes satisfy the priors
given by Eqs. (A10) and (A13) for −1 ≤ w ≤ 1 (solid black)
and −5 ≤ w ≤ 3 (dashed red).

Combining Eqs. (A11) and (A12) we find that the PC
amplitudes must lie within a sphere in the parameter
space:

Nc
∑

i=1

α2
i ≤

Nz,PC
∑

i=1

α2
i ≤ Vmax, (A13)

where Nc < Nz,PC is the number of components in
the truncated set of PCs used for likelihood analysis
(see § II A). For a given allowed range of w, the con-
straint on PC amplitudes from this inequality is strongest
when the fiducial model lies in the center of that range,
wfid = (wmin + wmax)/2, but in general the limits in
Eq. (A10) are the stronger of the two PC priors.

Figure 22 shows examples of w(z) parametrized by 15
PCs that satisfy the bounds in Eqs. (A10) and (A13) cor-
responding to the quintessence model class, with wmin =
−1 and wmax = 1, and the smooth dark energy class,
with wmin = −5 and wmax = 3. In each case, the sum
of the 15 components is allowed to violate the bounds
on w at some redshifts. For some models, the addition
of higher-variance PCs can correct for these deviations
from the allowed range so that wmin ≤ w ≤ wmax every-
where. However, this is not necessarily true for all models
that satisfy the PC priors; the most important property
of these priors is that they retain any model that does
obey the limits on w while excluding a large number of
unacceptable models. For more details on the derivation
of these priors, see Ref. [88] where similar bounds are
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used in the context of reionization models to constrain
the ionized fraction of hydrogen to the range 0 ≤ xe ≤ 1.

When switching to alternate priors to test volume ef-
fects related to curvature as described in § III C, we trans-
form the PC priors either by adding an additional term
to the likelihood in the MCMC analysis or by modifying
the weights of samples in the chain as a post-processing
step. In either case we convert the usual top-hat PC pri-
ors to ones that are flat in the density of each PC at zmax

relative to z = 0 [Eq. 13] by multiplying L or the sample
weight by exp(−χ2

PC/2), where

χ2
PC = −2

∑

i

[

3αi

∫ zmax

0

dz
ei(z)

1 + z

]

. (A14)

In addition to priors on the low-z equation of state, we
place a top-hat prior on the early dark energy at z > zmax

corresponding to wmin ≤ w∞ ≤ min(0, wmax). Since the
early dark energy MCMC parameter is actually ew∞ , in
practice the prior we use for MCMC is e−1 ≤ ew∞ ≤ 0
for quintessence and e−5 ≤ ew∞ ≤ 0 for smooth dark
energy.

APPENDIX B: PRINCIPAL COMPONENT

METHODOLOGY

To compute the principal components of w(z) from

the Fisher matrices of Appendix A (with F prior
ij speci-

fied below), we first take the Nz,PC × Nz,PC submatrix
of (F tot

ij )−1 corresponding to the redshift binned dark
energy equation of state, w(zi). We then invert the
Nz,PC × Nz,PC matrix to get Fw

ij , which is the origi-
nal Fisher matrix marginalized over everything except
{w(zi)}. Finally, we compute the eigenvectors of Fw

ij ,
which are the PC functions and normalized as in Eq. (3),
and the eigenvalues, which are the inverse variances of
the PC amplitudes.

We evaluate F tot
ij at the same fiducial model as for the

MCMC likelihood, i.e. flat ΛCDM with Ωm = 0.24 and
h = 0.73. This model is consistent with current data,
which should minimize the number of principal compo-
nents needed to accurately parametrize viable dark en-
ergy models. The exact choice of fiducial cosmology is
unimportant as principal component shapes do not vary
greatly with changes in the fiducial model that are con-
sistent with current data.

Our default binning scheme is Nz,PC = 500 bins be-
tween z = 0 and zmax. These bins are fine enough to
obtain reasonably continuous PC shapes and to allow
varying w(z) at z < zSN

min, which has important conse-
quences as we describe later.

We choose zmax = 1.7 to match the assumed maximum
redshift of the SN sample. A smaller choice of zmax would
not significantly change the PC shapes at lower z but
would result in a less complete set of PCs due to neglect-
ing some of the SN data. Increasing zmax would require
additional support from SNe or other data at z > 1.7 for

the PCs to have any weight at higher redshift; the CMB
distance constraint helps somewhat but is still only a
single data point for constraining the additional w(zi).
Furthermore, if the expansion history at low z is near
the fiducial flat ΛCDM model then the lack of weight in
the PCs at high z is mainly a consequence of dark energy
becoming less significant as redshift increases [80].

Unlike the MCMC likelihood analysis, we do not in-
clude external priors from current data or priors on PC
amplitudes in the F prior

ij term. However, we do use pri-
ors that correspond to fixing certain parameters besides
{w(zi)}, i.e. Ωm, ΩK, and w∞. In the rest of this section
we explain our choices of which of the other parameters
are fixed and which are marginalized over. Note that
we do not consider Ωmh2 here because it is nearly fixed
automatically due to the constraint in FCMB

ij .

The question of fixing or marginalizing parameters is
essentially a question of whether or not we wish to in-
clude degeneracies between those parameters and w(z) in
the low-variance PCs that we retain for MCMC analysis.
Marginalizing these other parameters eliminates from the
low-variance PCs the modes in w(z) that have a degen-
erate effect in the SN distances and CMB data but are
not necessarily degenerate in other acceleration observ-
ables. Since this marginalization generally results in an
incomplete PC basis, the better choice is typically to fix
the non-w(z) parameters with F prior

ij so that the modes of

w(z) degenerate with them are assumed to be well mea-
sured and therefore are included in the low-variance PCs.
Fixing these additional parameters ensures that the PCs
we use are as complete as possible in the acceleration
observables, and so we fix ΩK and w∞ when computing
the PCs. However, Ωm is an exception to this rule where
having a fully complete basis for w(z) is not desirable.

There are two types of degeneracy that can in principle
exist between Ωm and w(z) in the assumed SN and CMB
data. First, the dark energy can mimic some fraction of
the matter density (leaving H0dL(z) unchanged) by ap-
proaching w = 0 at high z (e.g. [126]). In the context
of a spatially flat geometry with no early dark energy,
this degeneracy is eliminated by the CMB constraints on
D∗ and Ωmh2. The impact of these constraints weakens
if we allow for the freedom to adjust either curvature or
early dark energy. By constructing PCs with curvature
and early dark energy fixed, we assume that the matter-
mimicking mode of w(z) can be measured by the SN dis-
tances and CMB constraints. This assumption ensures
that the PCs are complete with respect to this mode, re-
gardless of whether we marginalize or fix Ωm in the PC
construction. This type of degeneracy between Ωm and
w(z) is therefore properly included in the MCMC pre-
dictions for model classes with curvature and early dark
energy.

A second type of degeneracy is introduced by the min-
imum redshift for which SNe can be measured in the
Hubble flow. The ability to determine H0dL(z) from
SN observations depends on how well we can anchor the
relative distances to z = 0. As noted in Appendix A,
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marginalization over the nuisance parameter M causes
the SN observations to be insensitive to constant shifts
in relative distances of the form

H0dL(z) → (1 + δ)H0dL(z), (B1)

M → M− 5 log(1 + δ).

We are not free to change H0dL(z) at all redshifts since
H0dL(z) = z at low z independent of the cosmology.
However, it is possible (if unlikely) that a large variation
in w(z) near z = 0 changes the SN distances by a nearly
constant factor at all redshifts except at z <

∼ zSN
min, where

zSN
min is the minimum SN redshift. When including the

CMB data this effect creates a degeneracy between w(z)
and Ωm since the shift in Eq. (B1) requires changes in
Ωm and H0 to satisfy CMB constraints on D∗ and Ωmh2.

If we fix Ωm when computing the PCs, then we assume
that the behavior of w(z) at z < zSN

min is well constrained
and therefore large variations in the equation of state at
low redshift are included in the low-variance PCs. In-
stead, we choose to reduce the impact of this degenerate
mode of w(z) by marginalizing Ωm in the PC construc-
tion. Our basis for w(z) is therefore incomplete with
respect to this mode, but there are several reasons for
neglecting large variations in w(z) at z < zSN

min. One
benefit of this approach is that by reducing the degen-
eracy between Ωm and the PC amplitudes we improve
convergence of MCMC samples; in the presence of the
full degeneracy, it is difficult to obtain well-converged
chains even for the simplest class of models with PC-
parametrized w(z). Furthermore, apart from the Hub-
ble constant itself and the interpretation of SN data as
measuring H0dL(z) as opposed to dL(z)/dL(zSN

min), accel-
eration observables are not significantly affected by this
degeneracy. Finally, despite marginalizing Ωm when com-
puting PCs we still retain enough of this degeneracy that
predictions for the z → 0 behavior of D(z) and H(z) is
appropriately uncertain and limited by our prior on H0,
as shown in Fig. 5, for example.

Improving measurements of H0 beyond the current
level would further limit the possibility of these ultra-
low redshift changes in w. Conversely, in the absence of
such variation in w(z), precision H0 measurements play
the same role as low redshift D and H measurements in
all cases considered in the main paper.

In summary, when constructing the PCs we take priors
that fix ΩK = 0 and w∞ = −1 but marginalize Ωm. We
do not employ the additional current priors from BAO
distance to z = 0.35, HST Key Project measurement of
H0, or WMAP limits on early dark energy that are added
to the likelihood analysis.

APPENDIX C: COMPLETENESS TESTS

When making predictions for general classes of mod-
els, we need to make sure that the parametrization we use
has sufficient freedom to explore all types of effects that

models can have on the acceleration observables. In this
appendix we present several tests of the completeness of
our parametrization. We begin by justifying the num-
ber of principal components of w(z) used in the MCMC
likelihood analysis. We then examine the sensitivity of
our results to the choices of fiducial model and maximum
redshift for principal components. Finally, we discuss the
limitations of our early dark energy parametrization.

The PCs form a complete basis for w(z) ordered by
how well they can be measured by the fiducial SN and
CMB data. This ordering allows us to truncate the set
of PCs to some small number that have the greatest im-
pact on the fiducial data. Retaining a limited number of
PCs is a practical necessity to make parameter estimation
feasible, but we must make sure that the higher-variance
PCs that we ignore do not make significant contributions
to the expansion or growth observables predicted in the
main paper.

It is important to emphasize that we do not expect
or demand completeness in unobservable quantities like
w(z) itself; the high-variance PCs that we neglect can
have large effects on the equation of state, but since all
of the observables contain integrals over w(z) the effects
of these rapidly oscillating PCs (see Fig. 1) tend to cancel
out for the redshift-dependent quantities of interest. This
is especially true for distances and integrated growth,
each of which involves essentially two integrals of w(z)
over redshift. Completeness is more difficult to attain
for observables with a single redshift integral such as the
expansion rate and growth rate, but the practical require-
ment of a large volume for such observations makes any
rapid evolution with redshift unobservable in practice.

Our basic strategy for determining the number of PCs
required for completeness, Nc, is to repeat the MCMC
analysis for each class of models using varying numbers
of PCs. As we increase the number of components of
w(z), we expect the resulting predictions for observables
to eventually converge once we have reached the neces-
sary number of PCs. This approach makes the value of
Nc to some extent dependent on what we assume about
the data and the allowed models. For example, it may
be that the Nc + 1 component can have a significant ef-
fect on certain observables if its amplitude αNc+1 is un-
constrained, but limits on this amplitude from the data
and/or priors keep the impact of this eigenmode on the
observables small. Similarly, it is possible that the value
of Nc changes as we add the additional freedom of spatial
curvature and early dark energy to the baseline model.

Since our definition of completeness is based on the
precision of predictions for a variety of acceleration ob-
servables, Nc will generally differ from (and be larger
than) the number of dark energy parameters that can be
measured to some specified accuracy [27, 28, 127] or the
number of parameters required by the data in a Bayesian
model selection sense [e.g., 21, 61].

Figure 23 shows a comparison of observable predictions
for the baseline quintessence class (ΩK = 0, w∞ = −1),
using either 10 or 15 PCs. There is little difference
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FIG. 23: Test of PC completeness for quintessence mod-
els. Predictions for growth and expansion observables from
MCMC with 10 (light gray) and 15 (dark blue) PCs for flat
quintessence models (−1 ≤ w ≤ 1) with w∞ = −1 (no early
dark energy).

between the two sets of predictions, suggesting that
Nc ∼ 10 is sufficient for this model class. In contrast,
predictions in this class using only 5 PCs are significantly
tighter than those with 10 PCs.

Including both curvature and early dark energy in the
quintessence model class does not alter the agreement
between the predictions for 10 and 15 PCs, as shown in
Fig. 24. There is slightly more variation in the limits on
observables at z > zmax, but we do not expect perfect
completeness at high redshift anyway due to our simplis-
tic early dark energy parametrization (see below). Even
in our most general model class where we weaken the
quintessence prior to −5 ≤ w ≤ 3 while continuing to
include curvature and early dark energy, as in Fig. 25,
the predictions remain robust to increasing the number
of PCs from 10 to 15.

These comparisons indicate that Nc ∼ 10 is sufficient
for completeness in all model classes that we study here.
In the main sections of this paper we present results from
the larger, “overcomplete” set of 15 PCs.

In our predictions throughout this paper, we have as-
sumed a particular flat ΛCDM model both for PC con-

FIG. 24: Same as Fig. 23 for non-flat quintessence models
with early dark energy.

struction and for creating the fiducial SN and CMB data
for MCMC likelihoods. Since the true cosmology could
be somewhat different, we can ask how the predictions
for observables would change had we assumed a different
fiducial model. To test this dependence, we have redone
the MCMC analysis using fiducial cosmologies with var-
ious values of constant wfid 6= −1. For simulated SN
and CMB data based on wfid = −0.93 (approximately
the 68% upper limit of combined constraints on constant
w from WMAP and current BAO and SN data [24]),
the predictions for growth and expansion observables in
the context of quintessence models with either curvature
or early dark energy have similar uncertainties to those
with a fiducial ΛCDM cosmology (Figs. 6 and 7). The
main effect of increasing wfid is that it slightly weakens
the impact of the quintessence w = −1 barrier; moving
wfid away from this barrier makes it possible to slightly
reduce the dark energy density at z < zmax from its fidu-
cial level, and therefore the predictions for quintessence
models include some features that were previously only
allowed in the more general smooth dark energy class.
For example, compared with the flat ΛCDM growth his-
tory, flat quintessence models with early dark energy are
allowed to have ∆G/G ∼ −5% at 68% CL instead of
−2%, and curved quintessence models with no early dark
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FIG. 25: Same as Fig. 23 for smooth dark energy models
(−5 ≤ w ≤ 3) including curvature and early dark energy.

energy can have ∆G/G ∼ 3% at z = 0 (68% CL) where
previously only downward variations in G(z = 0) were
possible in this class of models. The ability to falsify cer-
tain model classes therefore depends on how consistent
future SN and CMB data sets are with the standard flat
ΛCDM cosmology; any significant variation would be in-
teresting in its own right and would make some changes
to the model testing results presented here but not the
methodology or the logic of the results themselves.

Another technical issue related to completeness is
whether our choice of zmax = 1.7 affects the predic-
tions for observables. This choice enters into both the
definition of w(z) principal components as discussed in
Appendix B and the likelihood for MCMC as the maxi-
mum redshift of the fiducial SN sample. To distinguish
between the two, let us call the maximum redshift for
PCs zPC

max and for the MCMC likelihood zLmax. Note that
the choice of zPC

max also influences our definition of “early
dark energy” by setting the minimum redshift at which

w = w∞.

If we keep zLmax = 1.7 but extend the PCs to zPC
max = 2.5

(assuming a flat SN distribution at 1.7 ≤ z ≤ 2.5 with
the number per bin equal to the number at z = 1.7 in
the original distribution), the resulting predictions for
observables in the flat, no early dark energy quintessence
class are similar to those in Fig. 5. The predictions are
slightly weaker, particularly at 95% CL, due to the ex-
tra freedom in w(z) at 1.7 < z < 2.5. The fact that
width and redshift dependence of constraints on observ-
ables change little with increased zPC

max indicates that
our results are not strongly influenced by the choice of
zPC
max = 1.7. For example, the tightening of constraints on

G, D, and H at high z in Fig. 5 is more a consequence of
the transition from accelerated expansion to deceleration
at z ∼ 1 than it is of setting zPC

max = 1.7.

As another test of sensitivity to zmax, we set zPC
max = 2.5

as before and also extend the SN distribution for the
MCMC analysis to zLmax = 2.5 (with constant number per
bin at z > 1.7 as for the PCs). The resulting predictions
for flat quintessence without early dark energy are nearly
identical at z >

∼ 2 to the ones in Fig. 5. At lower red-
shifts, observables are slightly better constrained due to
the additional SN data; the largest changes are at z = 1,
with new 68% limits of ∆G/G >

∼ −1% and ∆D/D <
∼ 1%

(68% CL). Predictions for growth and expansion observ-
ables are relatively insensitive to increasing both zPC

max

and zLmax.

At redshifts above our default choice of zmax = 1.7,
we make predictions for observables by specifying w(z >
zmax) through an early dark energy ansatz with a con-
stant equation of state, w = w∞. While w∞ is not a com-
plete parameterization of early dark energy, it does pro-
vide guidance for predictions. For example, even though
a constant equation of state at z > 1.7 is a poor fit
to the Albrecht-Skordis model in which a quintessence
scalar field has an exponential potential modified by a
quadratic polynomial [128], w∞ as an effective parame-
ter can nevertheless simultaneously fit the CMB distance
to the required Planck precision and the growth function
at zmax to ∼ 2% accuracy. The early dark energy pa-
rameterization acts as a diagnostic for whether the dark
energy can ever become a substantial fraction of the en-
ergy density at z >

∼ zmax given CMB constraints on the
distance and energy densities at z ∼ z∗. Our philosophy
is to use an incomplete but representative parameteriza-
tion that can be used to monitor the need for early dark
energy. If a substantial fraction of early dark energy is re-
quired by observations under this parameterization, then
more complete descriptions and more detailed observa-
tions will be required.
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