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Given a class of dark energy models, constraints from one set of cosmic acceleration observables
make predictions for other observables. Here we present the allowed ranges for the expansion
rate H(z), distances D(z), and the linear growth function G(z) (as well as other, derived growth
observables) from the current combination of cosmological measurements of supernovae, the cosmic
microwave background, baryon acoustic oscillations, and the Hubble constant. With a cosmological
constant as the dark energy and assuming near-minimal neutrino masses, the growth function is
already predicted to better than 2% precision at any redshift, with or without spatial curvature.
Direct measurements of growth that match this precision offer the opportunity to stringently test and
potentially rule out a cosmological constant. While predictions in the broader class of quintessence
models are weaker, it is remarkable that they are typically within a factor of 2 − 3 of forecasts
for future space-based supernovae and Planck CMB measurements. In particular, measurements of
growth at any redshift, or the Hubble constant H0, that exceed ΛCDM predictions by substantially
more than 2% would rule out not only a cosmological constant but also the whole quintessence
class, with or without curvature and early dark energy. Barring additional systematic errors hiding
in the data, such a discovery would require more exotic explanations of cosmic acceleration such as
phantom dark energy, dark energy clustering, or modifications of gravity.

I. INTRODUCTION

Within a fixed class of dark energy models, such as the
cosmological constant or scalar field quintessence, vari-
ous cosmological observables are all interrelated by the
properties of the class itself. The narrower the class, the
higher the expected correlation between measurements
of different observables. Therefore, given a class of dark
energy models, constraints from one set of cosmic acceler-
ation observables make predictions for other observables.
For example, it is well known that since the first release
of WMAP data [1], the Hubble constant in a spatially
flat universe with a cosmological constant and cold dark
matter (ΛCDM) has been predicted to a precision better
than it has yet been measured. Predictions like this one
therefore offer the opportunity for more precise measure-
ments to falsify the dark energy model (in this case, flat
ΛCDM) [2].

In a previous paper (hereafter MHH) [3], we showed
how this idea can be generalized to additional accelera-
tion observables and wider classes of dark energy models.
Other observables include the expansion rate H(z), the
comoving angular diameter distance D(z), and the linear
growth function G(z). The model classes we considered
include a cosmological constant, with and without spatial
curvature, and scalar field quintessence models, with and
without early dark energy and spatial curvature compo-
nents. Using forecasts for a Stage IV [4] SN sample and
Planck CMB data, we found that future data sets will
provide numerous strong predictions that we may use to
attempt to falsify various acceleration paradigms.

In this paper, we evaluate the predictive power of cur-
rent measurements to constrain the expansion rate, dis-
tance, and growth as a function of redshift. Specifically,
we consider current measurements of supernovae (SN),
the cosmic microwave background (CMB), baryon acous-
tic oscillations (BAO), and the Hubble constant (H0).
These predictions target the redshift ranges and required
precision for future measurements seeking to rule out
whole classes of models for cosmic acceleration.

Our approach complements studies that seek to con-
strain an ever expanding set of parameters of the dark
energy. The most ambitious analyses currently utilize
∼ 5 parameters to describe the dark energy equation of
state w(z) [5, 6, 7, 8, 9, 10, 11, 12]. We take these studies
in a new direction: rather than constraining parameters
associated with the equation of state, we propagate con-
straints from the data into allowed ranges for H(z), D(z),
G(z), and auxiliary observables that can be constructed
from them through a principal component representation
of w(z) that is complete in these observables for z < 1.7.
This work goes beyond previous studies that are similar
in spirit (e.g. [13, 14, 15, 16, 17]) by directly applying
constraints from current data sets to complete represen-
tations of several dark energy model classes and making
concrete predictions for a number of observable quanti-
ties.

This paper is organized as follows. We begin in Sec. II
with a discussion of the methodology of predicting ob-
servables within classes of dark energy models, including
descriptions of each of the acceleration observables, cos-
mological data sets, and model classes. We present our
predictions from current data in Sec. III and discuss the
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results in Sec. IV.

II. METHODOLOGY

A. Acceleration Observables

There are two general types of acceleration observ-
ables: those related to the expansion history and geom-
etry of the universe, and those related to the growth of
structure. In terms of a general evolution for the dark
energy equation of state w(z), the expansion history ob-
servables are the Hubble expansion rate

H(z) = H0

[

Ωm(1 + z)3 + ΩDEf(z) + ΩK(1 + z)2
]1/2

,

f(z) = exp

[

3

∫ z

0
dz′

1 + w(z′)

1 + z′

]

, (1)

where Ωm and ΩDE are the present matter and dark en-
ergy densities, respectively, as fractions of the critical
density for flatness, spatial curvature is parametrized by
ΩK ≡ 1 − Ωm − ΩDE, and the small contribution of ra-
diation at z ∼ 1 is neglected; and the comoving angular
diameter distance

D(z) =
1

(|ΩK|H2
0 )1/2

SK

[

(|ΩK|H2
0 )1/2

∫ z

0

dz′

H(z′)

]

, (2)

where the function SK(x) is equal to x in a flat universe
(ΩK = 0), sinhx in an open universe (ΩK > 0), and
sin x in a closed universe (ΩK < 0). The growth of linear
density perturbations δ ∝ Ga is given by

G′′ +

(

4 +
H ′

H

)

G′ +

[

3 +
H ′

H
−

3

2
Ωm(z)

]

G = 0, (3)

where primes denote derivatives with respect to ln a
and Ωm(z) = ΩmH2

0 (1 + z)3/H2(z). We assume scales
for which the dark energy density is spatially smooth
compared with the matter and normalize G(z) = 1 at
z = 103.

There are several auxiliary quantities related to the
growth function that are also interesting to examine.
Since growth measurements like the evolution of the clus-
ter abundance often compare the change in growth rela-
tive to the present, we also consider a different normal-
ization for the growth function,

G0(z) ≡
G(z)

G(0)
. (4)

Velocity field measurements, on the other hand, are sen-
sitive to the growth rate

f(z) ≡ 1 +
G′

G
. (5)

Specifically, the amplitude of the velocity power spec-
trum can be measured from redshift space distortions

and constrains f(z)G(z) independently of galaxy bias
(e.g. see [20]). Finally, given that the growth rate is ap-
proximately related to expansion history observables by
f(z) = [Ωm(z)]γ where the growth index is γ ≈ 0.55 for
flat ΛCDM [21, 22] we also consider predictions for

γ(z) ≡
ln[f(z)]

ln[Ωm(z)]
. (6)

Note however that γ(z) is not a direct observable but
rather must be inferred from a combination of measure-
ments in a specific dark energy context.

We ignore the influence of massive neutrinos through-
out this study. The effect of massive neutrinos on the
growth of structure is significantly scale-dependent, but
on present linear scales well below the horizon, k ∼
0.01 − 0.1 h Mpc−1, the growth suppression from a nor-
mal neutrino mass hierarchy with

∑

mν ∼ 0.05 eV [18] is
<∼ 1% in G(z) and f(z)G(z) and smaller for other observ-
ables. The maximum decrement in growth from nearly-
degenerate neutrinos with

∑

mν ∼ 0.5 eV (e.g. [19]) is
∼ 1− 10% on these scales. In the predictions we present
here, these effects would appear as an additional “early”
dark energy component with w ≈ 0. Future precise mea-
surements of

∑

mν from independent data could be used
to correct the growth predictions here by scaling them by
the appropriate suppression factor.

B. Constraints from Current Data

The main observational constraints we consider when
making predictions for acceleration observables include
relative distances at z <∼ 1.5 from Type Ia SNe and abso-
lute distances at z∗ = 1090 from the CMB, zBAO ≈ 0.35
from BAO, and zh ≈ 0.04 from low-redshift SNe cal-
ibrated with maser and Cepheid distances. Since low-z
distances mainly probe the Hubble constant for smoothly
varying w(z), we refer to the low-z SN calibration as
an H0 constraint. The CMB data additionally constrain
parameters that impact dark energy models such as the
matter density Ωmh2 and the fraction of dark energy den-
sity at recombination.

In the simplest classes of models, the SN and CMB
data suffice to make accurate predictions for expansion
and growth observables. In more complex classes, BAO
and H0 constraints on distances are necessary. Even in
these cases, predictive power is still retained in that mea-
sured distances to a few specific redshifts constrain H(z),
D(z), and G(z) at all redshifts. We now describe each of
these data sets in more detail.

The Type Ia SN sample we use is the Union compi-
lation [23]. These SN observations measure relative dis-
tances, D(z1)/D(z2), over a range of redshifts spanning
0.015 ≤ z ≤ 1.551, with most SNe at z <∼ 1. We add the
SN constraints using the likelihood code for the Union
data sets [24], which includes estimated systematic er-
rors for the SN data [23].
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For the CMB, we use the most recent, 5-year release
of data from the WMAP satellite [25, 26, 27] employ-
ing the likelihood code available at the LAMBDA web
site [28]. Unlike the CMB distance priors on D(z∗) and
Ωmh2 used for the forecasts in MHH, the likelihood used
here contains the full information from the CMB angular
power spectra; in particular this provides sensitivity to
large fractions of early dark energy at recombination as
well as information about late-time dark energy and spa-
tial curvature from the ISW effect without necessitating
additional priors. We compute the CMB angular power
spectra using the code CAMB [29, 30] modified with the
parametrized post-Friedmann (PPF) dark energy module
[31, 32] to include models with general dark energy equa-
tion of state evolution where w(z) may cross w = −1.
Note that while our predictions for growth observables
apply to scales on which dark energy is smooth relative to
matter, the CAMB+PPF code self-consistently accounts
for the effects of scale-dependent dark energy perturba-
tions on the CMB anisotropies.

The BAO constraint we use is based on the measure-
ment of the correlation function of SDSS Luminous Red
Galaxies (LRGs) [33], which determines the distance and
expansion rate at zBAO ≈ 0.35 through the combination
DV (z) ≡ [zD2(z)/H(z)]1/3. We implement this con-
straint by taking the volume average of this quantity,
〈DV 〉, over the LRG redshifts, 0.16 < z < 0.47, and com-
paring with the value of A ≡ 〈DV 〉

√
Ωmh2/zBAO given

in Ref. [33], A = 0.472±0.017 (taking the scalar spectral
tilt to be ns = 0.96). We discuss the expected impact of
more recent BAO measurements [34] on our predictions
in Sec. IV.

Finally, we include the recent Hubble constant con-
straint from the SHOES team [35], based on SN distances
at 0.023 < z < 0.1 that are linked to a maser-determined
absolute distance using Cepheids observed in both the
maser galaxy and nearby galaxies hosting Type Ia SNe.
The SHOES measurement determines the absolute dis-
tance to a mean SN redshift of zh = 0.04, which effec-
tively corresponds to a constraint on H0 for models with
relatively smooth dark energy evolution in the recent past
such that limz→0 D(z) = cz/H0. Sharp transitions in
the dark energy density at ultra-low redshifts can break
the relationship between low-redshift distances and H0

as described in Ref. [36], but the principal component
parametrization we use is constructed to largely eliminate
such possibilities (see MHH, Appendix B). Nonetheless,
given that the observations relate distance and redshift,
and distances are more robust to variations in the equa-
tion of state at low redshift than is the instantaneous ex-
pansion rate, we implement the H0 constraint as a mea-
surement of D(zh) = czh/(74.2 ± 3.6 km s−1 Mpc−1).

C. Model Classes

Our basic model classes are (1) “ΛCDM,” where dark
energy is a cosmological constant Λ with equation of state

w = −1, and (2) “quintessence,” the general class of
scalar field models with arbitrary but bounded equation
of state evolution −1 ≤ w(z) ≤ 1. For these two cases we
maintain a complete description of the observable degrees
of freedom. Finally, there is (3) “smooth dark energy”
which is the generalization of quintessence to unbounded
w(z), assuming that dark energy is unclustered relative
to matter. Unlike the forecasts in MHH, we do not main-
tain completeness for smooth dark energy but rather take
a fixed functional form w(z) = w0+(1−a)wa. This choice
allows us to simply identify observables that could poten-
tially falsify quintessence in favor of smooth dark energy
but does not allow us to make predictions that could fal-
sify the broader class as a whole. It also allows us to iden-
tify how predictions in the quintessence class change if
we require smooth, monotonic evolution in w(z). In each
case, the model class can either be restricted to spatially
flat cosmologies or allow spatial curvature, parametrized
by ΩK

For the quintessence class, we follow the procedure de-
scribed in MHH and parametrize w(z) at z < zmax = 1.7
with a basis of principal components (PCs) [37, 38]. For
our purposes, the PCs simply act as an intermediate ba-
sis to represent observables, required to be complete for
arbitrary variations in w(z) at z < zmax. We construct
the PCs using the specifications of a Stage IV SN ex-
periment, specifically the SuperNova/Acceleration Probe
(SNAP) [39], combined with CMB information from the
recently launched Planck satellite.

Specifically, the principal component functions ei(zj)
are eigenvectors of the SNAP+Planck covariance matrix
for the equation of state in redshift bins zj , and they
form a basis in which an arbitrary function w(zj) may
be expressed as

w(zj) − wfid(zj) =

Nz,PC
∑

i=1

αiei(zj), (7)

where αi are the PC amplitudes, Nz,PC = 1 + zmax/∆z
is the number of redshift bins of width ∆z, and zj =
(j − 1)∆z. The maximum redshift for variations in w(z)
(zmax = 1.7) matches the largest redshift for the SNAP
supernova data, and we use a fiducial model wfid(z) = −1
since ΛCDM is an excellent fit to current data.

Since the highest-variance PCs correspond to modes of
w(z) to which both data and predicted observables are
insensitive, we truncate the sum in Eq. (7) with Nmax <
Nz,PC PCs. As shown in MHH, for our choices of zmax

and wfid(z), the 10 lowest-variance PCs (Nmax = 10)
form a basis which, for the classes of models we consider
here, is sufficiently complete for future Stage IV measure-
ments and so more than suffice for the current data. We
have also explicitly checked that there is little difference
in predictions between Nmax = 5 and Nmax = 10 for one
of the model classes, flat quintessence without early dark
energy.

Quintessence models describe dark energy as a scalar
field with kinetic and potential contributions to energy
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TABLE I: Dark energy model classes, their defining parameter sets and priors, and figures in which predictions appear.

Model Class Parameters Priors Figures

flat ΛCDM θΛ ΩK = 0 1, 2, 3, 8

non-flat ΛCDM θΛ none 2

flat PC quintessence without early dark energy θQ {αi} priorsa, ΩK = 0, w∞ = −1 3, 4, 5, 6, 8

flat PC quintessence with early dark energy θQ {αi} priors, ΩK = 0 5

non-flat PC quintessence without early dark energy θQ {αi} priors, w∞ = −1 6, 7

non-flat PC quintessence with early dark energy θQ {αi} priors 7, 8

flat w0 − wa with quintessence priors θS −1 ≤ w0 ≤ 1, −1 ≤ w0 + wa ≤ 1, ΩK = 0 9

non-flat w0 − wa with quintessence priors θS −1 ≤ w0 ≤ 1, −1 ≤ w0 + wa ≤ 1 10

flat w0 − wa (no w prior; smooth dark energy) θS ΩK = 0 9

non-flat w0 − wa (no w prior; smooth dark energy) θS none 10

aConservative quintessence priors on PC amplitudes; see Sec. II C.

and pressure. Barring models where large kinetic and
(negative) potential contributions cancel, quintessence
equations of state are restricted to −1 ≤ w(z) ≤ 1. Fol-
lowing MHH, this bound is conservatively implemented
with uncorrelated top-hat priors on the PC amplitudes
αi. Any combination of PC amplitudes that is rejected
by these priors must arise from an equation of state w(z)
that violates the bound on w(z), but not all models that
are allowed by the priors strictly satisfy this bound; the
set of models we consider is therefore “complete” but not
“pure.” This ambiguity arises since we truncate the prin-
cipal components at Nmax = 10 and we wish to allow for
the possibility that the omitted components may conspire
to satisfy the bound. For the purposes of falsifying dark
energy model classes a complete but impure sampling of
quintessence models is sufficient, although more efficient
rejection of models that violate the −1 ≤ w(z) ≤ 1 bound
could result in somewhat tighter observable predictions
[40]. Further details on the construction of the PCs and
implementation of the priors can be found in MHH.

The above prescription only includes dark energy vari-
ations at the relatively late times that are probed by
SN data, z < zmax. To describe “early dark energy” at
z > zmax, we adopt a simple parametrization by assum-
ing a constant equation of state, w(z > zmax) = w∞,
restricted to −1 ≤ w∞ ≤ 1. The dark energy density at
z > zmax can be extrapolated from its value at zmax as

ρDE(z) = ρDE(zmax)

(

1 + z

1 + zmax

)3(1+w∞)

. (8)

For more restricted model classes where we assume that
there is no significant early dark energy, we fix w∞ = −1
since a constant dark energy density rapidly becomes
negligible relative to the matter density at increasing
redshift. Note that the possibility of early dark en-
ergy is automatically included in the smooth w0 − wa

model class where the equation of state at high redshift
is w ≈ w0 + wa.

In addition to the dark energy parameters described

above (θDE), we include cosmological parameters that
affect the CMB angular power spectra but not the ac-
celeration observables (θnuis): the physical baryon den-
sity Ωbh2, the normalization and tilt of the primordial
curvature spectrum ∆2

R
= As(k/k0)ns−1 with k0 =

0.05 Mpc−1, and the optical depth to reionization τ .
This brings our full set of parameters for ΛCDM to
θΛ = θDE,Λ + θnuis, and for quintessence and smooth
w0 − wa dark energy we define the analogous parameter
sets with

θDE,Λ = {Ωmh2,Ωm,ΩK} ,

θDE,Q = θDE,Λ + {α1, . . . , αNmax
, w∞} ,

θDE,S = θDE,Λ + {w0, wa} ,

θnuis = {Ωbh
2, ns, As, τ} , (9)

where we count Ωm and ΩK as dark energy parameters
since ΩDE = 1−Ωm−ΩK. Note that the Hubble constant
is a derived parameter, h = H0/(100 km s−1Mpc−1) =
(Ωmh2/Ωm)1/2. Although the observable predictions
mainly depend on constraints on the dark energy pa-
rameters θDE, we include the additional “nuisance” pa-
rameters θnuis due to degeneracies between θDE and θnuis

parameters in current CMB data; these nuisance param-
eters are marginalized over in our predictions for accel-
eration observables. The parameter sets and priors on
the parameters for each model class are summarized in
Table I.

D. MCMC Predictions

To make predictions for the acceleration observables
using constraints from current data, we use a Markov
Chain Monte Carlo (MCMC) likelihood analysis. Given
a dark energy model class parametrized by θΛ, θQ, or θS,
the MCMC algorithm estimates the joint posterior dis-
tribution of cosmological parameters and predicted ob-
servables by sampling the parameter space and evaluat-
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ing the likelihood of each proposed model compared with
the data described in Sec. II B (e.g. see [41, 42, 43]). We
use the code CosmoMC [44, 45] for the MCMC analysis.

The posterior distribution is obtained using Bayes’
Theorem,

P(θ|x) =
L(x|θ)P(θ)

∫

dθ L(x|θ)P(θ)
, (10)

where L(x|θ) is the likelihood of the data x given the
model parameters θ and P(θ) is the prior probability
density. The MCMC algorithm generates random draws
from the posterior distribution that are fair samples of
the likelihood surface. We test convergence of the sam-
ples to a stationary distribution that approximates the
joint posterior density P(θ|x) by applying a conservative
Gelman-Rubin criterion [46] of R − 1 <∼ 0.01 across a
minimum of four chains for each model class.

As described in MHH, the MCMC approach allows us
to straightforwardly calculate confidence regions for the
acceleration observables by computing H(z), D(z), G(z)
and the auxiliary observables G0(z), f(z)G(z), and γ(z)
for each MCMC sample using Eqs. (1)−(6). The pos-
terior distribution of the model parameters θ thus maps
onto a distribution of each acceleration observable at each
redshift. These redshift-dependent distributions of the
expansion and growth observables form the predictions
that we describe in the next section.

III. DARK ENERGY MODEL PREDICTIONS

In this section, we show the predictions for growth and
expansion observables from the combined current CMB,
SN, BAO, and H0 constraints. Since plotting full dis-
tributions for the six observables define in Sec. II A at
several different redshifts is impractical, we instead plot
only the regions enclosing 68% and 95% of the models
at each redshift, defined such that the number density of
models is equal at the upper and lower limit of each re-
gion. (When describing the predictions, we will typically
quote the 68% CL limits.) To provide examples of fea-
tures of individual models that may not be apparent from
the 68% and 95% CL limits, we also plot the evolution
of observables for the maximum likelihood (ML) MCMC
model within each model class. We caution, however,
that the MCMC algorithm is designed to approximate
the overall shape of the likelihood and is not optimized
for precisely computing the ML parameters, so the “best
fit” models shown here may be slightly displaced from
the true ML points.

In most figures in this section, we compare the predic-
tions for two model classes, one of which is a subclass of
the second, more general class (for example, ΛCDM and
quintessence). The potential to falsify the simpler class
in favor of the more complex one is greatest where the
two sets of predictions differ most, i.e. where one class
gives strong predictions and the other does not.

FIG. 1: Flat ΛCDM predictions for growth and expansion
observables, showing the 68% CL (shading) and 95% CL
(curves) regions allowed by current CMB, SN, BAO, and H0

data. Observables include the linear growth function normal-
ized in two different ways, G(z) equal to unity at high red-
shift and G0(z) = G(z)/G(0); the product of the differential
growth rate and the growth function f(z)G(z); the growth
index γ(z) which relates f(z) and Ωm(z); the expansion rate
H(z); and the comoving distance D(z) (scaled by a factor of
1/10 in the lower panel). Note that the separation between
the 68% and 95% CL regions is not visible where the observ-
ables are extremely well predicted, e.g. in the γ(z) predictions
in the middle panel.

A. ΛCDM

We begin with the simplest and most predictive model
class: flat ΛCDM. Since ΩK = 0, this model has only two
free dark energy parameters in Eq. (9), Ωm and Ωmh2 (or
H0), providing very little freedom to alter the accelera-
tion observables at any redshift as shown in Fig. 1: H(z),
D(z), and G(z) are currently predicted with a precision
of ∼ 2% (68% CL) or better everywhere. The velocity
observable f(z)G(z) is predicted to better than 5% and
the growth index γ to 0.1%. These predictions are more
precise than current measurements of the acceleration
observables at any redshift.

The strong predictions for flat ΛCDM arise largely due
to CMB constraints: the two parameters Ωm and H0

are tied together by the measurement of Ωmh2, and the
remaining freedom in H0 or the extragalactic distance
scale is fixed by the measurement of the distance to z∗.
However, given the present uncertainties in Ωmh2 and
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FIG. 2: Predicted growth and expansion observables for non-
flat (dark blue) and flat (light gray) ΛCDM, plotted relative
to the reference cosmology (the best fit model for flat ΛCDM).
Here and in subsequent figures, 68% CL regions are marked
by shading, 95% CL regions are bounded by solid curves, and
red curves outlined in white show the best fit model of the
more general (dark blue) model class (in this case, non-flat
ΛCDM).

D(z∗), the addition of the other data (SN, BAO, and
H0) increases the precision of the predictions by almost
a factor of 2 relative to WMAP constraints alone.

The flat ΛCDM model is therefore highly falsifiable in
that future measurements may find that these quantities
deviate substantially from the predictions. For example,
an H0 measurement with <∼ 2% accuracy would match
the precision of the predictions and hence provide a sharp
test of flat ΛCDM. These predictions are only a factor of
2 − 3 weaker than the Stage IV SN and CMB forecasts
from MHH. Since flat ΛCDM is the current standard
model of the cosmic expansion history and structure for-
mation, falsifying it would represent the most important
observational breakthrough since the discovery of cosmic
acceleration and would require revision of basic assump-
tions about the nature of dark energy, spatial curvature,
or the theory of gravity.

Generalizing the model to ΛCDM with curvature in-
creases the range of predictions by less than a factor
of 2. In Fig. 2, we plot the predictions for flat and
non-flat ΛCDM relative to the ML flat ΛCDM model
with Ωm = 0.268, h = 0.711. Curvature opens up the
ability to free the extragalactic distance scale from the
constraints imposed by the CMB acoustic peak measure-
ments. The tight constraints on SN, H0, and BAO dis-
tances limit this freedom. Since the forecasts from MHH

FIG. 3: Flat quintessence models without early dark energy
(dark blue) vs. flat ΛCDM (light gray). Other aspects here
and in later figures follow Fig. 2.

used only the current BAO measurement and a weaker
H0 constraint as priors, the relative impact of curvature
here is substantially smaller. In particular, predictions of
the growth function are nearly unchanged by curvature
and still vary by less than 2%. Likewise, fG is nearly un-
affected by curvature. Although the growth index, γ(z),
is not as perfectly determined for non-flat ΛCDM, espe-
cially at high redshift, it is still predicted to better than
1% at z <∼ 3, and both D(z) and H(z) are predicted to
better than 3%. Any measurement that deviates by sig-
nificantly more than these amounts would prove that the
dark energy is not a cosmological constant.1

B. Quintessence

If ΛCDM is falsified, then in the context of dark en-
ergy we must consider models with w(z) *= −1. Our
next class of models are therefore flat quintessence mod-
els with w(z) parametrized by 10 principal components
at z < 1.7, assuming no early dark energy (“w∞ = −1”).
The predictions for acceleration observables within this
model class are compared with the flat ΛCDM predic-
tions in Fig. 3.

1 A substantial decrement in growth from high redshifts, which in
the context of our treatment would be interpreted as evidence
for early dark energy thus falsifying ΛCDM, could alternately
indicate neutrinos with more than the minimal allowed masses.
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FIG. 4: Upper panel: Comparison of distance constraints
from SN data and best fit models, plotted relative to the
best fit H0D(z) for flat ΛCDM (dotted line). Blue points
with error bars show the Union SN data in redshift bins of
width ∆ log z = 0.05. The best fit model for flat quintessence
without early dark energy is plotted as a dashed curve, and
the solid curve shows how the relative distances are affected
by smoothing w(z) for this model by a Gaussian of width
σz = 0.1. The full distribution of relative distance predictions
for this quintessence model class is also shown with light gray
shading (68% CL) and curves (95% CL). Lower panel: w(z)
for each of the models from the upper panel.

Interestingly, the quintessence predictions are no
longer centered on the flat ΛCDM ML model. From
the H(z) predictions which mainly reflect variation in
evolution of the dark energy density, we see that on av-
erage the data favor a smaller low-redshift (z <∼ 0.5) and
larger intermediate-redshift (0.5 <∼ z <∼ 2) dark energy
density. Correspondingly, the best fit growth function
G(z) of ΛCDM is higher than that of ∼ 85% of the
quintessence models in the chain. Therefore a measure-
ment of the growth relative to high redshift that is smaller
than the ΛCDM prediction by more than a few percent
not only rules out a cosmological constant but actually fa-
vors these quintessence models. The additional freedom
in growth opens up predictions for γ to include 2 − 3%
deviations at z <∼ 1.

Many of the shifts in the predictions relative to flat
ΛCDM are reflected in the evolution of w(z) in the max-
imum likelihood model for flat quintessence without early
dark energy. The ML model in this class marginally im-
proves the fit to the current data sets relative to the
ΛCDM ML model, largely due to variations in the SN
data with redshift that are fit marginally better by dy-

FIG. 5: Flat quintessence models with (dark blue) and with-
out (light gray) early dark energy.

namical dark energy than by a cosmological constant.
Figure 4 compares ML models, quintessence predictions,
and relative distance constraints from the Union SN data
sets at z <∼ 1. Freedom in w(z) at these redshifts allows
changes in the dark energy density to improve the fit
to SN distances by −2∆ lnL ∼ 4.5. However, some of
this improvement is due to the large oscillations in the
equation of state at z ∼ 0.1, which are allowed to vi-
olate the −1 ≤ w ≤ 1 bound due to the conservative
implementation of the quintessence prior on PC ampli-
tudes described in Sec. II C. Smoothing the ML w(z)
by a Gaussian with width σz ∼ 0.1 or requiring w(z)
to satisfy stricter quintessence bounds reduces the im-
provement relative to ΛCDM to −2∆ lnL ∼ 2, but has
little effect on the overall distributions of the predicted
observables.

Although differences in the ML models cause
quintessence to not be centered around ΛCDM, the al-
lowed width of quintessence predictions around the max-
imum likelihood relative to ΛCDM follows the expecta-
tions of the Stage IV predictions from MHH except for
being weaker by a factor of 2− 3. The PCs allow for os-
cillatory variations in H(z), f(z)G(z), and γ(z) at z < 1
that would not be readily observable with expansion his-
tory or growth measures due to limited resolution in red-
shift. On the other hand, G(z), G0(z), and D(z) are still
predicted with ∼ 2 − 3% precision, so the class of flat
quintessence models without early dark energy remains
highly falsifiable.

Adding early dark energy to flat quintessence (Fig. 5)
has very little impact on the 68% CL predictions of most
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FIG. 6: Non-flat (dark blue) and flat (light gray) quintessence
models without early dark energy.

observables due to the restriction that w ≥ −1 for a
canonical scalar field. To satisfy CMB distance con-
straints, any increase in the expansion rate due to early
dark energy must be compensated by a lower expansion
rate at intermediate redshift relative to z = 0, i.e. a dark
energy density that decreases with increasing redshift re-
quiring w < −1. While adding early dark energy does al-
low a larger suppression of growth at high redshift (which
is also a possible sign of massive neutrinos given current
upper limits), a measurement of a >∼ 10−15% decrement
or >∼ 2% increment in the growth relative to high red-
shift would still suggest that a broader class of models is
necessary. This freedom in growth leaves the amplitude
relative to z = 0 practically unchanged as the G0(z) pre-
dictions show. The only qualitative change with early
dark energy is to open up the allowed range in γ(z) so
that the high redshift end has as much freedom as the
low redshift end. All of these trends for early dark en-
ergy without curvature reflect those of the forecasts in
MHH.

Including curvature in the quintessence class, but not
early dark energy, opens up more freedom as shown in
Fig. 6. Now z > 2 deviations in D(z) are allowed at
the ∼ 5% level relative to ΛCDM. Thus a BAO distance
measurement at z > 2 could falsify flat quintessence in
favor of quintessence with curvature. As discussed in
MHH, because of the w ≥ −1 quintessence bound, this
additional freedom skews to smaller distances and lower
growth relative to high redshift.

Predictions from the most general quintessence class
which includes both curvature and early dark energy,

FIG. 7: Non-flat quintessence models with (dark blue) and
without (light gray) early dark energy.

shown in Fig. 7, combine features of the previous
quintessence classes in ways that are similar to the Stage
IV predictions in MHH. The ML model in this class im-
proves the fit to the combined data by −2∆ lnL ∼ 4,
mostly due to changing the SN likelihood by −2∆ lnL ∼
5; however, removing the large low-z oscillations by
smoothing w(z) reduces the improvement in the SN fit
to −2∆ lnL ∼ 2 − 3.

The predictions for G0(z), D(z), and H(z), which were
affected little by early dark energy alone, are nearly the
same as those for non-flat quintessence without early
dark energy. The other observables show a mixture of
the effects of curvature at low z and early dark energy at
high z. Large suppression (>∼ 20%) of G(z) (and similarly
fG) relative to ΛCDM is allowed, but enhancement of the
growth function over the ΛCDM best fit is still limited
at the ∼ 2% level. Note that this upper limit on G(z)
is robust to neutrino mass uncertainties. Likewise, low-
redshift distances (including zhH−1

0 ) cannot be smaller
than in ΛCDM by substantially more than ∼ 2%. As
in Fig. 5, the high redshift predictions for γ(z) in Fig. 7
weaken substantially but only in the positive direction.
Indeed, all of the observables display similar asymmetric
weakening of the predictions with the addition of curva-
ture and early dark energy, which can be understood in
terms of the w ≥ −1 quintessence bound.

The existence of an upper or lower bound on each ob-
servable that is robust to freedom in curvature and early
dark energy provides the possibility of falsifying the en-
tire quintessence model class. In fact, in this most gen-
eral class, the statistical predictions from current SN and
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CMB bounds are already comparable to those that can
be achieved by a Stage IV version of these probes, which
can be understood from the fact that the forecasts from
MHH used current BAO and H0 measurements.

The comparable predictions in large part reflect the
fact that curvature is already well constrained through
the BAO and H0 measurements. The constraint in this
most general class of quintessence models is −0.006 <
ΩK < 0.033 (95% CL), a factor of ∼ 2 weaker than for
non-flat ΛCDM and skewed toward open models due to
the quintessence prior on w(z).

Finally, as an example of the use of the asymmetric
quintessence predictions, we consider the application of
these results to observables which measure some combi-
nation of σ8 and Ωm. To compute predictions for σ8 given
our predictions for the raw acceleration observables, we
use the fitting formula [47]

σ8 =
G(z = 0)

0.76

[

As(k = 0.05 Mpc−1)

3.12 × 10−9

]1/2 (

Ωbh2

0.024

)−1/3

×
(

Ωmh2

0.14

)0.563 (

h

0.72

)0.693

(3.123h)(ns−1)/2 (11)

for each model sampled in the MCMC likelihood analysis.
Note that on top of allowed variations in G(z = 0), σ8

predictions include uncertainties in the reionization op-
tical depth τ through its covariance with As. While this
analysis assumes instantaneous reionization, the uncer-
tainty introduced by more general ionization histories is
small [48]. We have checked that the σ8 distributions ob-
tained using Eq. (11) closely match those from the more
accurate computation of σ8 using CAMB. The joint pre-
dictions for σ8 and Ωm from the current SN, CMB, BAO,
and H0 constraints are shown in Fig. 8 for flat ΛCDM
and two quintessence model classes.

In particular, in the context of flat ΛCDM the cur-
rent SN, CMB, BAO, and H0 data predict the combi-
nation best measured by the local abundance of massive
galaxy clusters to be 0.394 < σ8Ω0.5

m < 0.441 (68% CL).
Flat quintessence without early dark energy weakens the
lower end somewhat but leaves the upper limit nearly
unchanged: 0.358 < σ8Ω0.5

m < 0.419. Quintessence with
both early dark energy and curvature yields 0.306 <
σ8Ω0.5

m < 0.396. Therefore a measurement of a local clus-
ter abundance in significant excess of the flat ΛCDM pre-
dictions rules out the whole quintessence class, whereas
a measurement that is substantially lower would remain
consistent with quintessence but would rule out a cosmo-
logical constant (see also [49]). A measurement below the
flat ΛCDM prediction by <∼ 10% could also indicate large
neutrino masses, but an excess cluster abundance could
not be alternately explained by massive neutrinos. Cur-
rent cluster surveys, with ∼ 5% measurements of similar
combinations of σ8 and Ωm [50, 51, 52], are beginning to
reach the precision necessary to test these predictions. In
fact, the lack of an observed excess already places strong
constraints on modified gravity explanations of cosmic
acceleration [53].

FIG. 8: Predictions for σ8 and Ωm for flat ΛCDM (gray con-
tours, top), flat quintessence without early dark energy (red
contours, middle), and non-flat quintessence with early dark
energy (blue contours, bottom), showing 68% CL (light) and
95% CL (dark) regions.

C. Smooth w0 − wa Dark Energy

As a final case we consider the class of models defined
by an equation of state w(z) = w0+(1−a)wa [54, 55] un-
der the assumption that dark energy is smooth relative to
matter. Unlike our previous cases, this class does not de-
fine a physical candidate for dark energy such as the cos-
mological constant or a scalar field but rather represents
a simple but illustrative phenomenological parametriza-
tion. Note that early dark energy is included in this
parametrization since limz→∞ w(z) = w0 + wa.

The predictions for the w0 − wa model class serve
two purposes. First, the comparison of predictions for
smooth, monotonic w0 − wa models with those for PC
quintessence models test the dependence of the predic-
tions on rapid transitions and non-monotonic evolution
of the equation of state. The second use of the w0 − wa

predictions is to illustrate how predictions are affected
by the −1 ≤ w(z) ≤ 1 quintessence bound. Unlike the
model classes where w(z) is parametrized by principal
components, it is simple to impose a strict quintessence
prior on w0 − wa models by requiring −1 ≤ w0 ≤ 1 and
−1 ≤ w0 + wa ≤ 1. We compare predictions using this
prior with the more general case, where the priors are
weak enough that constraints on w0 and wa are deter-
mined solely by the data (“no w prior”).

A fair comparison can be made between the predictions
for flat and non-flat w0−wa models with the −1 ≤ w ≤ 1
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prior (light gray contours in Figs. 9 and 10) and PC
quintessence models with early dark energy (dark blue
contours in Figs. 5 and 7). In particular, observables
relatively insensitive to both the amount of early dark
energy and large changes in the PC equation of state at
low redshift, such as G0(z) and D(z), are generally in
good agreement. The expansion rate and growth rate
are more sensitive to sudden changes in w(z) than the
distances and the integrated growth function. Therefore,
the impact of large, low-z oscillations in the PCs is great-
est for H(z), f(z)G(z), and γ(z) at z <∼ 1, increasing
the width of those predictions relative to the correspond-
ing predictions for the smooth w0 − wa models. The PC
quintessence models also have more freedom in early dark
energy than w0 − wa models since w∞, unlike w0 + wa,
is completely free from the low-redshift SN, BAO, and
H0 constraints. As a result, w0−wa predictions for G(z)
and the high-redshift values of γ(z) and f(z)G(z) are
stronger than, but still qualitatively similar to, those for
PC quintessence with early dark energy.

Like the PC quintessence predictions, the predictions
for w0 − wa models bounded by −1 ≤ w ≤ 1 are shifted
relative to flat ΛCDM due to marginal improvements in
the fit to SN data (−2∆ lnL ∼ 0.5 for the ML model)
enabled by an evolving equation of state. This is a
somewhat smaller change in the likelihood than for PC
quintessence models, but the magnitude of the ML model
shift in the observables is similar for w0 − wa and PC
quintessence, at least for those observables that depend
little on early dark energy.

Comparing the two sets of predictions in Figs. 9 and 10
(no w prior vs. the −1 ≤ w ≤ 1 prior) shows the effect
on the w0 − wa predictions of allowing freedom in w(z)
beyond that allowed by the quintessence bounds. As
discussed in MHH, eliminating these bounds makes the
range in predictions for observables such as growth more
symmetric around the best fit for flat ΛCDM since w(z)
is allowed to cross below w = −1. In particular, growth
in excess of flat ΛCDM is now allowed. Based on the
analysis of MHH, we expect the amount of the remain-
ing skewness in the predictions around flat ΛCDM to be
affected by the available volume of parameter space as de-
termined by how priors on dark energy parameters weight
models with w < −1 relative to those with w > −1.

Removing the quintessence bounds also allows mod-
els with greater amounts of early dark energy, and (for
non-flat w0 −wa) more closed models, to fit the data. A
notable consequence for models with nonzero curvature is
that the predictions for γ(z) at 95% CL diverge at z > 1.
This is the same effect noted in MHH for γ(z) forecasts
in the non-flat smooth dark energy model class. The di-
vergence in the tails of the high-redshift γ(z) distribution
is caused by the appearance of a singularity in γ(z) for
closed models where ΩK is sufficiently negative so that
Ωm(z) crosses unity at some redshift; when Ωm(z) = 1,
γ(z) is no longer well defined by Eq. (6). Such caveats
must be kept in mind when using γ as a test of not only
quintessence but of all smooth dark energy models.

FIG. 9: Flat w0 −wa without priors on w(z) (dark blue) and
with quintessence priors (−1 ≤ w0 ≤ 1, −1 ≤ w0 + wa ≤ 1;
light gray).

FIG. 10: Non-flat w0−wa without priors on w(z) (dark blue)
and with quintessence priors (−1 ≤ w0 ≤ 1, −1 ≤ w0 + wa ≤
1; light gray).
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IV. DISCUSSION

Any given class of dark energy models makes concrete
predictions for the relationship between the expansion
history, geometry, and growth of structure as a func-
tion of redshift. Therefore, current distance-based mea-
surements, though limited in redshift, make predictions
for other dark energy observables that can be used to
test and potentially rule out whole classes of dark energy
models.

In this paper we present the allowed ranges for the
expansion rate H(z), distances D(z), the linear growth
rate G(z), and several auxiliary growth observables from
the current combination of cosmological measurements
of supernovae, the cosmic microwave background, baryon
acoustic oscillations, and the Hubble constant. In partic-
ular, growth at any redshift or a Hubble constant in sig-
nificant excess of 2% (68% CL range) of the current best
fit ΛCDM model would falsify both a cosmological con-
stant and more general quintessence models with or with-
out curvature and early dark energy. On the other hand,
comparable measurements of a decrement in these quan-
tities would rule out a cosmological constant but would
be fully consistent with quintessence. Alternately, a sub-
stantial reduction in growth relative to the expectation
for ΛCDM could indicate neutrinos with large masses
(
∑

mν > 0.05 eV).
Remarkably, predictions for the main acceleration ob-

servables, H(z), D(z), and G(z), are only weaker than
Stage IV SN and CMB predictions (MHH) by a factor
of ∼ 2 − 3. However, this improvement applies across
a wide range of redshifts, indicating that multiple phe-
nomenological parameters may each be improved by this
factor. For example, parameter-based figures of merit ef-
fectively involve products of individual parameters (e.g.
area in the w0 −wa plane [4, 56] or volume of the princi-
pal component parameter error ellipsoid [57, 58]), and in
such figures of merit the total improvement with future
data can be significant. If novel dark energy physics af-
fects small pockets of these high-dimensional parameter
spaces — that is, if only specific dark energy parame-
ter combinations are sensitive to new physics — then
these multiparameter figures of merit will justly indicate
a much more significant improvement with future cosmo-
logical data.

In this work we have considered only known and quan-
tifiable sources of error in the current data. Recent anal-
yses of supernova data (e.g. [59, 60, 61]) indicate that
unknown systematic errors remain and can significantly
affect cosmological constraints. Furthermore, the sys-
tematic error estimates used here for the SN data were
optimized for models with a cosmological constant and
therefore may be underestimated for dynamical dark en-
ergy [23]. We intend to explore the implications of SN
systematics for dark energy predictions in future work.
Our predictive methodology can alternately be viewed as

a means of ferreting out unknown systematics by looking
for inconsistencies between the predictions from one set
of observations and data from another.

Over the course of this study, new data have become
available that could improve the predictions for accel-
eration observables or begin to test predictions within
the various classes. In particular, BAO measurements
from SDSS DR7 and 2dFGRS provide a 2.7% constraint
on DV (z = 0.275) and a 3.7% constraint on DV (z =
0.35)/DV (z = 0.2) [34]. We have estimated the impact
of these new measurements on our predictions by using
the updated BAO likelihood to modify the weighting of
MCMC samples for each model class. For all quintessence
model classes, the effect of updating the BAO data is neg-
ligible for most observables except for D(z <∼ 1) and (to
a lesser extent) H(z <∼ 0.5), reflecting the improved BAO
constraint on low-redshift D and H .

The impact of the newer BAO measurements on
ΛCDM models is greater than for quintessence since
the reduced freedom in dark energy evolution ties low-
redshift measurements to high-redshift predictions. The
updated BAO constraints exclude models on one side of
the predicted observable distributions in Fig. 2, reducing
their width by 10 − 30% and shifting the distributions
by an equal amount. However, these changes appear to
be mainly due to a slight tension between the new BAO
constraints and the other data sets used for ΛCDM pre-
dictions. Note that the BAO constraints of Ref. [34] are
still less precise than the flat ΛCDM predictions in Fig. 2
and comparable to the non-flat ΛCDM predictions, so
they do not yet represent a significant additional test of
the cosmological constant.

Falsifiable predictions from current data reveal many
opportunities for sharp observational tests of paradigms
for cosmic acceleration by requiring consistency within
a given theoretical framework between observables that
depend on the expansion history, geometry, and growth
of structure in the universe. These predictions can be
used to inform future surveys as to the optimal choice of
observables, redshifts, and required measurement accura-
cies for testing whole classes of dark energy models. Fal-
sification of even the simplest model, flat ΛCDM, would
have revolutionary consequences for cosmology and fun-
damental physics.
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