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Primordial black holes (PBHs) cannot be produced abundantly enough to be the dark matter
in canonical single-field inflation under slow roll. This conclusion is robust to local non-Gaussian
correlations between long and short-wavelength curvature modes, which we show have no e↵ect in
slow roll on local primordial black hole abundances. For the prototypical model which evades this
no go, ultra-slow roll (USR), local non-Gaussian correlations have at most an order unity e↵ect on
the variance of PBH-producing curvature fluctuations for models that would otherwise fail to form
su�cient PBHs. Moreover, the transition out of USR, which is necessary for a successful model,
suppresses even this small enhancement unless it causes a large increase in the inflaton kinetic energy
in a fraction of an e-fold, which we call a large and fast transition. Along the way we apply the
in-in formalism, the �N formalism, and gauge transformations to compute non-Gaussianities and
illuminate di↵erent aspects of the physical origin of these results. Local non-Gaussianity does not
weaken the Gaussian conclusion that PBHs as dark matter in canonical single-field inflation require
a complicated and fine-tuned potential shape with an epoch where slow roll is transiently violated.

I. INTRODUCTION

Primordial black holes [1–5] (PBHs) can form in the
early universe from the collapse upon horizon reentry
of perturbations generated during inflation. PBHs of
mass ⇠ 10�11M� could comprise the dark matter [6–9] if
one can evade current astrophysics-dependent constraints
from neutron-star capture in globular clusters [10, 11],
while PBHs of mass ⇠ 10 M� could be responsible for
LIGO black-hole merger events [12–16].

PBHs must be formed on physical length scales far
removed from the CMB and large-scale-structure modes,
where the perturbations are too small, and therefore con-
straining their abundance and mass provides complemen-
tary information about the inflationary epoch. In partic-
ular, Ref. [17] showed that PBHs cannot be produced
with su�cient abundance to be the dark matter through
Gaussian fluctuations in canonical inflation, i.e. by a sin-
gle scalar field with a canonical kinetic term, without
violating the slow-roll (SR) assumption. Therefore any
confirmed detection of PBHs as a significant mass frac-
tion of the dark matter would provide evidence beyond
canonical slow-roll inflation, e.g. for a violation of slow
roll after CMB modes exit the horizon (e.g., [18–20]), a
non-canonical kinetic term for the inflaton (e.g., [21]), a
multi-field inflationary scenario (e.g., [22, 23]), or some
other non-standard cosmological scenario (e.g., [24]).

PBH abundances are sensitive to the full probability
distribution of the density contrast averaged on horizon
scales at reentry [25–27]. One source of non-Gaussianity
in this distribution is the local and position-dependent
modulation of the power spectrum induced by the non-
Gaussian coupling of short-wavelength PBH modes to
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long-wavelength modes [28, 29]. In §II we show that
this e↵ect vanishes in freely-falling coordinates in slow
roll, and therefore Ref. [17]’s no-go theorem for PBH
formation in canonical inflation is robust to local non-
Gaussianity: any such model which produces large quan-
tities of PBHs must break the slow-roll approximation
well before the end of inflation.

In §III we study the prototypical model which evades
the no-go theorem by violating the slow-roll approxima-
tion – the so-called ultra-slow-roll (USR) inflation [30]
– to show analytically that even beyond slow roll, lo-
cal non-Gaussianity in canonical single-field inflation can
have only an order unity e↵ect on the local statistical
properties of fluctuations for models which fail to form
PBHs as the dark matter under Gaussian assumptions.
Along the way we show how the non-Gaussianity in USR
can be understood intuitively via the �N formalism [31–
36], and we discuss its relationship to locally observable
quantities in freely-falling coordinates, specifically the lo-
cal power spectrum that is relevant to PBHs. In App. A 1
we review how non-Gaussianities are computed numeri-
cally through the in-in formalism, and in App. A 2 we
clarify how this computation for USR is related through
boundary terms to the analytic computation via gauge
transformation, usually called a field redefinition in the
literature [37].

Observationally viable implementations of USR infla-
tion must have the USR phase be transient. In §IV, we
explore the phenomenology of such transient USR mod-
els to show that in most circumstances the order-unity
e↵ect in pure USR is suppressed. In particular, in §IV A
we study a transient USR model proposed in the liter-
ature for PBH formation, inflection-point inflation, and
show that non-Gaussianities have a much smaller than
order unity e↵ect on the local power spectrum.

To understand why the local power spectrum is not
enhanced in the inflection-point model and to study gen-
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erally the non-Gaussianity in transient USR, we first re-
view in §IV B the analytic results of Ref. [38] for infinitely
sharp potential transitions from USR to SR. We then
generalize that study in §IV C to di↵erent types of transi-
tions from USR with the help of an adjustable toy model.

We show that transient USR recovers the results of
pure USR only when the transition to SR causes a large
increase in the inflaton kinetic energy in a fraction of an e-
fold, which we call a large and fast transition. Inflection-
point inflation is, by contrast, an example of a small and
slow transition. Thus there is only a limited, but well
defined, class of transient models that can have signifi-
cant non-Gaussian changes to the local power spectrum
of inflationary fluctuations, and even these cannot en-
hance the formation of PBHs su�ciently to be the dark
matter unless the model is at least on the threshold of
being able to produce them under Gaussian assumptions
already. We conclude in §V.

II. NO GO FOR SLOW ROLL

Neglecting the non-Gaussianity of perturbations,
Ref. [17] showed that in canonical single field inflation
the comoving curvature power spectrum

�2
⇣ ⌘ k3

2⇡2
P⇣ (1)

must reach at least

�2
⇣ ⇠ 10�2 (2)

within ⇠ 42 e-folds from the epoch CMB scales exited
the horizon, at which �2

⇣ ' 10�9, for the dark matter to
be entirely composed of PBHs. In slow roll, the power
spectrum satisfies

�2
⇣ ' H2

8⇡2✏
, (3)

with ✏ ⌘ �d ln H/dN , N the negative increasing e-folds
to the end of inflation, and the reduced Planck mass
MPl ⌘ (8⇡G)�1/2 = 1 here and throughout. Therefore
such an enhancement of �2

⇣ requires a slow-roll violation
of at least ⌘ ⌘ d ln ✏/dN ⇠ 1 after horizon exit of the
CMB modes but well before the end of inflation.

In this section we update this slow-roll no-go theorem
to include local non-Gaussianity, which modulates short-
wavelength power in a long-wavelength mode. In partic-
ular since the formation of a PBH depends on the density
fluctuation averaged on the horizon scale at reentry of the
perturbations, horizon scale power that is modulated by
superhorizon wavelength fluctuations can in principle en-
hance formation. We study whether such a modulation
can make it possible to produce a substantial fraction of
the dark matter in PBHs with slow-roll inflation.

In the presence of a long-wavelength fluctuation ⇣L,
low pass filtered for comoving wavenumbers k  kL, the

power spectrum at kS � kL becomes position dependent

P⇣(kS , x) = P⇣(kS)


1 +

d ln P⇣(kS)

d⇣L
⇣L(x)

�
. (4)

By multiplying by and averaging over the long-
wavelength mode,

h⇣L(x)P⇣(kS , x)i⇣L '
Z

d3kL

(2⇡)3
B⇣(kL, kS , kS), (5)

we can relate the power spectrum response to the curva-
ture bispectrum B⇣ ,

d ln P⇣(kS)

d⇣L
' B⇣(kL, kS , kS)

P⇣(kS)P⇣(kL)
' 12

5
fNL(kL, kS , kS). (6)

Here fNL is the standard dimensionless non-Gaussianity
parameter

fNL(k1, k2, k3) ⌘ 5

6

B⇣(k1, k2, k3)

P⇣(k1)P⇣(k2) + perm.
, (7)

in which ‘+ perm.’ denotes the two additional cyclic per-
mutations of indices and the approximation (6) assumes
the squeezed limit kS � kL.

In single-field inflation, fNL(kL, kS , kS) has a con-
strained form when ⇣ is conserved above the horizon.
The curvature perturbation is equivalent to a field fluc-
tuation in spatially flat gauge ⇣ = ���/�0, with primes
denoting derivatives with respect to e-folds 0 = d/dN
here and throughout. Therefore for a constant ⇣, the
field fluctuation evolves according to

��0 =
�00

�0 ��, (8)

and the phase-space trajectory of the long-wavelength
field perturbation follows that of the background itself.
Short-wavelength modes evolving in a long-wavelength
perturbation then also follow the phase-space trajectory
of the background, with the only di↵erence being the
local e-folds which determines the relationship between
physical and comoving wavenumber (see Fig 1a).

Single-field inflation on the slow-roll attractor (8)
therefore satisfies the consistency relation [37]

lim
kL/kS!0

12

5
fNL(kL, kS , kS) = �

d ln �2
⇣(kS)

d ln kS
. (9)

This implies a modulation of the small-scale power
spectrum due to the long-wavelength mode according to
Eqs. (4) and (6) as

P⇣(kS , x) = P⇣(kS)

"
1 �

d ln �2
⇣(kS)

d ln kS
⇣L(x)

#
. (10)

This modulation is zero at the scale where the power
spectrum peaks and corresponds to a dilation of scales
rather than an amplitude enhancement.



3

0.0 0.2 0.4 0.6 0.8 1.0

� ⇥ 107

-6 -5 -4 -3 -2 -1 0

-6

-4

-2

0
�

0
⇥

10
7

a) SR

Trajectories

Constant N

0 1 2

b) USR

��

��

N
=

�1

FIG. 1. Phase space diagram for a) slow roll (SR) and b) ultra-slow roll (USR). Shown are background trajectories (blue lines),
lines of constant e-folds (red lines) to the end of inflation (left edge of panels), and field fluctuations �� (arrows). SR trajectories
converge to the attractor for di↵erent initial kinetic energies at � = 0. SR field fluctuations �� follow the attractor trajectory
and can be absorbed into a change in e-folds leaving a change in the relationship between local and global coordinates, but no
local imprint on observables once clocks are synchronized to a fixed field value at the end of inflation. USR field fluctuations
can still be absorbed into a local background but no longer the background of the unperturbed universe (thick blue line). Since
di↵erent USR trajectories experience di↵erent numbers of e-folds to the end, the power spectrum becomes position dependent,
with fNL reflecting the e-folding asymmetry between positive and negative �� or @2N/@�2.

In general the physical e↵ect of a dilation of scales is
to change the mass scale of PBHs rather than enhance
their abundance. However in the slow-roll case, there is
actually a change in neither abundance nor mass scale.
Though the dilation (10) does occur in global comoving
coordinates, in single-field inflation a freely-falling ob-
server will not see this dilation locally.

For a given perturbed metric, the standard Fermi nor-
mal coordinates (FNC) [39] can be constructed with re-
spect to a central timelike geodesic of a comoving ob-
server [40, 41], such that gFNC

µ⌫ ' ⌘µ⌫ up to tidal cor-
rections. In order to absorb the e↵ects of superhorizon
perturbations out to the horizon scale of a local observer,
as required for PBH calculations, we utilize conformal
Fermi normal coordinates (FNC) [42]. FNC are con-

structed such that gFNC
µ⌫ ' a2⌘µ⌫ , i.e. a conformally flat,

locally Friedmann-Lemâıtre-Robertson-Walker (FLRW)
form where the global scale factor a of the background
universe is evaluated at the proper time of the central
observer.

As shown in Ref. [42], for single-field slow-roll inflation
the bispectrum in FNC is related to the comoving-gauge
bispectrum by an additional term proportional to the tilt
of the power spectrum as

lim
kL/kS!0

B⇣̄(kL, kS , kS) = P⇣(kL)P⇣(kS)
d ln �2

⇣(kS)

d ln kS

+ B⇣(kL, kS , kS), (11)

where barred symbols denote quantities in the FNC
frame. This additional term neatly cancels the comoving-
gauge squeezed bispectrum from the consistency rela-
tion (9) and thus in single-field slow-roll inflation

lim
kL/kS!0

B⇣̄(kL, kS , kS) = 0. (12)

There is therefore no modulation of the power spectrum
in FNC

P⇣̄(kS , x) = P⇣̄(kS), (13)

and the small-scale power spectrum in FNC does not
depend on the value of the long-wavelength perturba-
tion. All local observers therefore see the same small-
scale power spectrum regardless of their position in the
long-wavelength mode.

Note that it is only the squeezed non-Gaussianity
which vanishes in local observations. Other operators can
produce di↵erent shapes of the bispectrum. However, in
canonical slow-roll inflation these terms are proportional
to ✏ and thus extremely suppressed if one hopes to en-
hance the power spectrum by shrinking ✏.

Physically, the cancellation in Eq. (12) occurs because
the bispectrum from the consistency relation encodes the
e↵ect on small-wavelength modes of evolving in a sepa-
rate universe with a background evolution defined by the
long-wavelength mode. Once the long-wavelength mode
is frozen, this e↵ect is just to change coordinates in the
separate universe relative to global coordinates. When
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making local observations, an observer knows nothing of
the global coordinates and instead makes measurements
in coordinates corresponding to the separate universe.
The formation of PBHs is a local process and so their
properties also do not depend on their position in the
long-wavelength mode.

This lack of local modulation can be also understood
from the phase-space diagram Fig. 1a. Relative to the
end of inflation at a fixed field value, perturbed trajecto-
ries in slow roll are indistinguishable from the background
trajectory and thus observers making measurements rel-
ative to the end of inflation cannot from any local mea-
surement decide whether they inhabit di↵erent regions of
a long-wavelength curvature perturbation.

This leads us to our first conclusion: squeezed non-
Gaussianity cannot produce PBHs as a significant frac-
tion of the dark matter in canonical single-field slow-roll
inflation. For such PBHs to form in canonical single-field
inflation, the slow-roll approximation must be violated,
at least transiently, to either produce large Gaussian or
non-Gaussian fluctuations. In this sense, the slow-roll
no-go theorem shown in Ref. [17] is robust and does not
change.

Models that evade this no-go result typically have a pe-
riod when the inflaton rolls on a very flat potential where
Hubble friction is insu�cient to keep the inflation on the
slow-roll attractor. The ultra-slow-roll model, where the
inflaton potential is perfectly flat, provides the prototyp-
ical example for such studies as we shall see next.

III. ULTRA-SLOW-ROLL INFLATION

Ultra-slow roll [30] is a model of single-field inflation
which greatly enhances the scalar power spectrum while
also breaking the single-field consistency relation (9) for
the squeezed bispectrum by violating the attractor con-
dition (8) [43, 44]. It is therefore possible to spatially
modulate the local power in small scale density fluctua-
tions relevant for PBHs with long-wavelength modes. In
this section we examine whether this non-Gaussian mod-
ulation can significantly enhance the PBH abundance in
ultra-slow roll.

USR is characterized by a potential which is su�ciently
flat before its end, which we denote with � = 0, that the
Klein-Gordon equation takes the form

�̈ ' �3H�̇, (14)

where here and throughout overdots denote derivatives
with respect to the coordinate time t. If the potential
energy dominates then H ' const. and Eq. (14) then
implies �00 ' �3�0 and hence �0 ' �3�+const., defining
a family of trajectories in the phase-space diagram, as
depicted by the blue trajectories in Fig. 1b. Therefore,
the phase-space trajectory of the background evolution
depends on the initial kinetic energy and does not exhibit
attractor behavior.

For an exactly flat potential at � > 0, an inflaton with
insu�cient initial kinetic energy will not cross the plateau
to reach � = 0, neglecting stochastic e↵ects. In Fig. 1b
we focus on classical trajectories that can reach � = 0
within finite e-folds, and hence the upper right triangle
region is inaccessible.

The solution to Eq. (14) is �̇ / a�3 and so ✏ / a�6 and
⌘ = �6. Since the analytic solution of the Mukhanov-
Sasaki equation for ⇣ in the superhorizon limit is given
by

⇣ ' c1 + c2

Z
dt

a3✏
, (15)

with integration constants c1 and c2, it is dominated by
the second mode which grows in USR since (a3✏)�1 / a3

rather than decays as it does in slow roll. With H '
const., Eq. (15) gives ⇣ / a3 and hence in the spatially
flat gauge �� = �⇣�0 = const., implying that ��0 = 0,
unlike the case of the slow-roll attractor (8).

The power spectrum in this model depends on the
value of ✏ at the end of USR [see Eq. (A17)],

�2
⇣ ' H2

8⇡2✏end
, (16)

and thus can be very large if ✏end ⌧ 1. One can em-
ploy a gauge transformation from spatially flat gauge
to comoving gauge to show that the squeezed-limit non-
Gaussianity takes the form (see Appendix A 2)

lim
kL/kS!0

12

5
fNL(kL, kS , kS) = 6. (17)

Since the USR power spectrum is scale invariant, the
large value of fNL in USR violates the consistency rela-
tion.

The physical origin of this large value for fNL can be
seen from the phase-space diagram Fig. 1b. Due to the
initial kinetic energy dependence of the background evo-
lution, a USR perturbation cannot be mapped into a
change in the background clock along the same phase-
space trajectory. Instead, long-wavelength perturbations
�� carry no corresponding ��0 and so shift the USR tra-
jectory to one with a di↵erent relationship between �
and �0. On this shifted trajectory, the short-wavelength
power spectrum attains a di↵erent value at the end of
USR. More generally, if a local measurement is sensitive
to �0 at the end of inflation, as in the case of �2

⇣(kS),
then di↵erent observers will produce di↵erent measure-
ments depending on their position in the long-wavelength
mode.

This graphical representation of fNL can be turned in
to a computational method through the so-called �N for-
malism [31–34]. When the expansion shear for a local
observer is negligible, as it is in USR above the hori-
zon, the nonlinear evolution of the curvature fluctuation
follows the evolution of local e-folds. On spatially flat
hypersurfaces, the field fluctuation can be absorbed into
a new conformally flat FLRW background on scales much
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shorter than the wavelength and so the local e-folds may
be calculated from the Friedmann equation of a sepa-
rate universe. The position dependent power spectrum
is therefore the second order change in e-folds due to a
short-wavelength ��S on top of a long-wavelength ��L.
Since in USR these perturbations leave �0 unchanged,
the non-Gaussianity parameter can be computed from
the e-folds as a function of phase-space position of the
background N(�, �0) as

12

5
fNL = 2

@2N

@�2

,✓
@N

@�

◆2

, (18)

at fixed �0.
The consequence of this formula can be visualized

through Fig. 1b as the e↵ect of perturbations on phase-
space trajectories. Around a chosen background trajec-
tory, the long-wavelength perturbation is reabsorbed into
a new background, a horizontal shift to a new trajectory.
Short-wavelength perturbations living in this new back-
ground induce a second shift in the trajectory, hence the
second derivative. Visually, the fact that for the same
amplitude of field fluctuation |��|, a positive fluctuation
intersects more surfaces of constant N than a negative
fluctuation indicates a large fNL. Refs. [38, 43, 45, 46]
follow this approach to analytically compute its value in
complete agreement with the in-in approach App. A 1 or
the gauge-transformation App. A 2. We shall again ex-
ploit the �N formalism in §IV.

Despite the violation in the consistency relation, the
coordinate transformation for the bispectrum Eq. (11)
still holds and the transformation from global comov-
ing coordinates to FNC leads to the same additional
tilt-dependent term in the bispectrum as in the canon-
ical case so long as the transformation to FNC is per-
formed when modes are frozen outside the horizon after
the end of inflation.*1 After this time, the construction
follows Ref. [42] exactly. This procedure of transforming
coordinate systems after inflation is followed for slow-
roll inflation in Ref. [47] to compute the next-to-leading
order term in the bispectrum transformation. Practi-
cally, it corresponds to the clock-synchronization condi-
tion that all local observers make their measurements at
fixed proper time after the end of inflation.

Given the scale invariance of the spectrum, the tilt-
dependent transformation from comoving gauge to FNC
leaves neither an enhancement of the local power in the
long-wavelength mode nor a modulation of the mass of
the PBHs. On the other hand, since the transformation

*1 FNC can still be established during the USR phase but are
more closely related to spatially flat gauge than comoving gauge
in temporal synchronization (see also App. A 2). In spatially flat
gauge, a superhorizon field fluctuation �� can be absorbed into
a new, nearly conformally flat FLRW background, as we exploit
with the �N formalism.

term no longer cancels with the comoving-gauge fNL it-
self, a large value of the latter can in principle enhance
PBH formation locally.

If fNL(kL, kS , kS) is described by the USR result
Eq. (17), then the local power spectrum can be enhanced
by a factor 12/5⇥ fNL ⇥ ⇣L = 6⇥ ⇣L. Therefore the non-
Gaussian response enhances the local power spectrum by
an order unity quantity unless the long-wavelength mode
is large, i.e.

⇣L & 10�1. (19)

However, the scale invariance of USR would then imply

�2
S = �2

L ⇠ h⇣2
L(x)i & 10�2, (20)

which satisfies the criterion Eq. (2) for PBH formation,
and therefore PBHs would already be produced at scale
kS even before accounting for the non-Gaussian response.
Note that the conversion from �2

⇣ to spatial variance in-
volves a summation over kL and gives a logarithmic factor
which depends on the total e-folds of USR. In a realistic
model this logarithmic factor must be finite so as to also
satisfy constraints from the CMB.

This result is the second main conclusion of this work:
in a USR model which does not produce a significant
PBH abundance under the Gaussian approximation, the
non-Gaussian response enhances the local power spec-
trum by at most

�P⇣

P⇣
. 1, (21)

and therefore the non-Gaussian response does not quali-
tatively change Gaussian conclusions. Of course as they
originate from rare fluctuations, PBHs can change in
their abundance but these changes can be reabsorbed
into model parameters that make no more than an order
unity change in the power spectrum. In particular local
non-Gaussianity cannot make a model that falls far short
of making PBHs the dark matter under the Gaussian as-
sumption into one that does.

Since inflation has to end and observational constraints
should be satisfied on CMB scales, the simple picture pre-
sented here must be modified to account for transitions
into and out of USR. In §IV we shall explore whether
even this level of enhancement still holds in such models
of transient USR inflation.

IV. TRANSIENT ULTRA-SLOW ROLL

In addition to a graceful exit problem, USR inflation is
incompatible with the measured tilt of the CMB power
spectrum [48] and is in tension with constraints on local
non-Gaussianities in the CMB [49], and therefore any
USR phase must begin after CMB modes exit the horizon
and must take care not to grow those modes after horizon
exit.
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One model proposed in the literature for PBH pro-
duction with a transient USR phase is inflection-point
inflation [17, 20]. In §IV A, we show that the transition
out of USR in inflection-point inflation induces

fNL(kL, kS , kS) ⌧ 1, (22)

and therefore non-Gaussianities do not enable PBHs to
be the dark matter in inflection-point inflation.

This numerical result can be understood from
Ref. [38]’s analytic study of infinitely sharp potential
transitions between USR and SR, which we review briefly
in §IV B. Transitions where the inflaton velocity mono-
tonically decreases to reach an attractor solution lead to
squeezed non-Gaussianity that is proportional to the po-
tential slow-roll parameters on the attractor. Conversely,
transitions where the inflaton instantly goes from hav-
ing too much kinetic energy for the potential it evolves
on to suddenly having insu�cient kinetic energy for
a now much steeper potential conserve the USR non-
Gaussianity. We call the later transitions large, which
we will define specifically below [see Eq. (35)].

In §IV C, we generalize the analysis of Ref. [38] to po-
tentials which do not have an infinitely sharp break, and
in particular we study how quickly the inflaton must tra-
verse the potential feature to reproduce the USR result.
We show that to conserve the USR result Eq. (17) the
transition must be fast in that it completes in a small
fraction of an e-fold [see Eq. (41)].

We conclude that the large fNL of USR will only be
preserved if the transition to SR is both large and fast.
For all other cases, the enhancement to the local power
spectrum

�P⇣

P⇣
⌧ 1, (23)

and so non-Gaussianity in transient USR does not gen-
erally a↵ect the conclusions on PBH formation.

A. Slow–Small Transition: Inflection-Point
Inflation

Inflection-point inflation is characterized by a poten-
tial which supports a slow-roll phase when CMB scales
exit the horizon followed by a slow-roll violation and sub-
sequent ultra-slow-roll phase which enhances the power
spectrum at small scales. This USR phase is generally
unstable and lasts just a few e-folds before the inflaton
loses enough kinetic energy to lock onto the attractor
solution of the potential and slow-roll inflation resumes
[50]. We call this transition slow because the inflaton
kinetic energy decreases monotonically to the slow-roll
value, and small because the potential slow-roll parame-
ters on the attractor are comparable to the kinetic energy
at the end of the USR phase.

We consider an inflection potential of the form explored

in Ref. [17] following Ref. [20],

V (�) =
�v4

12

x2(6 � 4ax + 3x2)

(1 + bx2)2
, (24)

where x = �/v. We study this model with the parame-
ters {a, b � 1, �, v} =

�
3/2, 4 ⇥ 10�5, 7 ⇥ 10�8, 0.658

 
.

In terms of the auxiliary variables of Refs. [17, 20], this
model has {�, �NSR} =

�
4 ⇥ 10�5, 125

 
.

These parameters are finely tuned to significantly sup-
press ✏ after the CMB scale k0 = 0.05 Mpc�1 exits the
horizon 55 e-folds before the end of inflation while also
preventing the inflection point from trapping the inflaton
for too many e-folds. Nonetheless our qualitative results
for the non-Gaussianity are not sensitive to the specific
functional form of the potential nor the parameter set
above.

Note that even with fine tuning, this model does not
fit observational constraints from the CMB (e.g. [48])
because the power spectrum is too red (scalar slope
ns = 0.91) due to the proximity of the inflection point
to CMB scales. This additional red tilt implies a larger
value of ✏ at CMB scales and hence a larger relative sup-
pression of ✏ and growth of the power spectrum during
the USR phase. Without this enhancement, the inflec-
tion model falls far short of forming PBHs as the dark
matter [17] and so we choose these parameters to study
whether models on the threshold of forming su�cient
PBHs for Gaussian fluctuations can be made to do so
through non-Gaussianity in the model.

Along the inflaton trajectory, the potential (24) has
a single inflection point, where d2V/d�2 = 0 is satisfied,
between two close points where dV/d� = 0. In this region
the slope of the potential is tiny, and hence the USR con-
dition |dV/d�| ⌧ |�0|H2 is satisfied briefly, after which
slow roll quickly resumes. The evolution of the slow-roll
parameters ✏ and ⌘ in this model are shown in Fig. 2.
The model exhibits a transient period where ✏ / a�6

and thus the USR result ⌘ ' �6 is temporarily achieved.
The upper panel of Fig. 3 shows the power spec-

trum �2
⇣ produced by inflection-point inflation with the

potential (24), computed by numerically solving the
Mukhanov-Sasaki equation (A3). Modes which exit the
horizon well before the USR phase do not grow outside
the horizon and their power spectrum satisfies the slow-
roll result (3). Modes which exit the horizon shortly be-
fore the USR phase do, however, grow outside the horizon
leading to the rise before peak power in the USR phase.

This behavior can be understood in more detail from
the exact, but formal, solution of the Mukhanov-Sasaki
equation (A3) [51]

⇣ 0 = � 1

a3✏H

Z
da

a
a3

✓
k

aH

◆2

(✏H)⇣ + const.

�
. (25)

In the SR phase, ✏ is roughly constant and the growing
integrand provides the leading contribution

⇣ 0 ' �
✓

k

aH

◆2

⇣, (SR), (26)
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FIG. 2. Inflection-point model background parameters ✏ ⌘

�d lnH/dN and ⌘ ⌘ d ln ✏/dN . ⌘ experiences two zero-
crossings as ✏ reaches critical points entering and exiting the
USR period, which we use to delineate the USR phase from
the SR phases. Here the transient period lasts for ⇠ 5 e-folds,
but only achieves ⌘ ' �6 for a shorter period.

and hence the curvature perturbation ⇣ / e
1
2 ( k

aH )2

freezes out to a constant for k/(aH) ⌧ 1 as in Eq. (15).
On the other hand, in USR phase, since ⇣ / a3 outside
the horizon from (15), it immediately holds that

⇣ 0 / a3, (USR), (27)

outside the horizon. One can also see that (27) is con-
sistent with (25) as follows. With ⇣ / a3, the integral in
(25) acts as '

R
d ln a a�2, which is dominated by early

times and hence converges to a constant, whereas the
prefactor grows as / a3, resulting in (27). Thus for a
mode which spends NSR e-folds outside the horizon in
slow roll, it takes NUSR = 2/3 ⇥ NSR e-folds of USR in-
flation to raise ⇣ 0 back to order unity. Therefore at a
fixed duration NUSR of USR inflation, modes which exit
the horizon more than 3/2⇥NUSR e-folds before USR re-
main constant while modes which exit within 3/2⇥NUSR

grow outside the horizon. After the USR phase, modes
freeze in and the smooth change in the slope of the poten-
tial assures a slow increase in ✏ and a smooth transition
of the power spectrum to the final SR phase.

The power spectrum shown in the upper panel of Fig. 3
exhibits a near-zero minimum �2

⇣ ⇠ 8 ⇥ 10�16. Similar
behavior occurs in other models in which the growing

10�11
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�
2 ⇣

SR SRUSR
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kL

�
Mpc�1

�
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12
/
5

⇥
f N

L
(k

L
,k

S
,k

S
)

kS
kS

FIG. 3. Inflection-point model power spectrum �2
⇣ and non-

Gaussianity parameter fNL(kL, kS , kS). The vertical dashed
lines delineate modes which cross the horizon during the SR
and USR periods (see Fig. 2). For fNL, ⇥’s denote values for
kS > kL with blue a mode that exits the horizon during USR
and red after USR. The horizontal dashed lines denote the
consistency relation expectation for the two modes and the
spike in fNL reflects the near zero in �2

⇣ rather than a large
bispectrum (see §IVA for further discussion).

mode overtakes the constant mode (see, e.g., Ref. [52] and
§IV C). This phenomenon can be also understood in de-
tail from the formal solution Eq. (25), in which it can be
seen that in slow roll the superhorizon mode approaches
its slow-roll freezeout value with decreasing amplitude,
i.e. with

Arg


⇣ 0

⇣

�
= ⇡ + O

✓
k

aH

◆
, (SR), (28)

where the order of the correction follows from using the
approximate SR form (A4) in (25).

While ⇣ / a3 in the USR superhorizon limit, at the
onset of USR, the curvature perturbation must reach this
limit from the SR side. Let a = a⇤ at the onset of the
USR phase, then the curvature evolves as

⇣ 0 = ⇣ 0
���
a⇤

⇥
✓

a

a⇤

◆3

, (USR), (29)

with the boundary condition ⇣ 0|a⇤ given approximately
by the SR solution for a smooth transition. Given the
relative sign in the leading order SR expression (26), this
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represents an increase in the decay rate of |⇣| and thus
before modes can grow as ⇣ / a3 in USR they must
reverse sign.

There is a mode which experiences just enough evo-
lution outside the horizon by the end of the USR phase
to go from its freezeout value to near-zero. The corre-
sponding value of the power spectrum at the minimum
is determined by the small out-of-phase component, i.e.
how close Eq. (28) is to ⇡ and therefore how far outside
the horizon this mode is when USR begins. Thus the
longer the USR phase is, the deeper the minimum is.

Modes which exit after this minimum are dominated
by their superhorizon growth, and as modes exit the hori-
zon closer to the USR phase they grow for a longer pe-
riod and thus the power spectrum grows with increasing
k. While a prolonged USR phase leads to a constant
�2

⇣ for modes which exit the horizon during USR [cf.
Eq. (16)], the inflection model touches the ⌘ ' �6 phase
only briefly and the power spectrum therefore exhibits a
peak �2

⇣(kPeak) = 2.8 ⇥ 10�3. This peak falls a factor of

a few short of the value �2
⇣ ⇠ 10�2 required for PBHs to

form all the dark matter (see §II and note that a model
with the right tilt at CMB scales must fall much further
short of this requirement [17]). After the USR phase, the
model returns to the slow-roll attractor and �2

⇣ is once
more described by Eq. (3).

It is now interesting to ask whether the power spectrum
of the upper panel of Fig. 3 can be locally enhanced by a
factor of a few to exceed the threshold (2) for PBH dark
matter. According to Eqs. (4) and (6), for the power
spectrum at a short-wavelength scale kS to be signifi-
cantly enhanced, we require a large long-wavelength per-
turbation ⇣L and a large correlation fNL.

In the lower panel of Fig. 3, we plot fNL(kL, kS , kS) as a
function of the long-wavelength mode kL for two di↵erent
values of the short-wavelength mode kS . The red upper
curve shows fNL for a short-wavelength mode which exits
the horizon after the end of USR, while the blue lower
curve shows fNL for a short-wavelength mode which exits
the horizon during USR. The upper and lower horizontal
dashed lines show the consistency relation expectation
fNL in the limit kL/kS ! 0.

The numerically computed bispectrum for a short-
wavelength mode which exits the horizon after USR, the
red upper curve, agrees with the consistency relation. In
other words, the short-wavelength perturbation ⇣S re-
tains no memory that, while it was inside the horizon,
the long-wavelength perturbation ⇣L outside the horizon
grew in USR. This is because fNL(kL, kS , kS) is set when
kS exits the horizon and the modes ⇣L are already frozen
at this time. Because the transformation of the bispec-
trum to FNC involves a subtraction of the consistency
relation component, Eq. (11), we conclude that short-
wavelength modes which exit after the USR phase show
no response to long-wavelength modes in local coordi-
nates and therefore no enhancement of local PBH abun-
dance.

For a short-wavelength mode which exits the hori-

zon during USR, the blue curve, the above logic
does not hold. The numerically computed bispectrum
fNL(kL, kS , kS) does not agree with the consistency re-
lation when ⇣L grows outside the horizon. For such tri-
angles, 12/5 ⇥ fNL ' 0.13 while the consistency relation
predicts 12/5 ⇥ fNL ' 0.065.

Conversely, for the frozen ⇣L modes that correspond
to modes that exited the horizon well before USR, the
consistency relation for fNL does hold. This is a suc-
cessful test of our numerical computation, since in this
limit the long-wavelength mode remains constant outside
the horizon and just shifts the local coordinates for the
small-wavelength mode along the background trajectory.

Fig. 3 also shows that when kS exits the horizon
during USR, the near-zero of �2

⇣ induces a feature on
fNL(kL, kS , kS). This is due to the division by the power
spectrum in the definition of fNL, Eq. (7). In particular,
when kS exits the horizon ⇣L has not yet reached its final
(tiny) value set at the end of USR and thus a non-zero
bispectrum B⇣(kL, kS , kS) can be obtained. After the
end of USR, ⇣L is very small and thus fNL is amplified.
The physical e↵ect of this feature is negligible since, to
obtain the power spectrum response, fNL should be mul-
tiplied by ⇣L, which has a minimum at this feature.

More generally, the USR phase does enhance fNL rel-
ative to the consistency relation value. Hence the non-
Gaussianity in FNC , f̄NL, is non-zero. There is therefore
an enhancement of the PBH abundances due to local non-
Gaussianity, which is not the case in single-field inflation
on the attractor. However, for the kS shown in Fig. 3 in
blue, both fNL and d ln �2

⇣/d ln k are so small that, once
multiplied by ⇣L ⌧ 1, the position-dependent e↵ect on
⇣S is insignificant.

Quantitatively, we can summarize the PBH abundance
enhancement in this model by choosing kS and kL in the
USR phase, where fNL is nearly constant. In particu-
lar, to eliminate the tilt-dependent coordinate e↵ects on
the abundance and to maximize the Gaussian part of
the power spectrum, we can choose kS = kL = kPeak.
This triangle is not squeezed but since in USR fNL is the
same for all triangle shapes, this triangle does serve as a
summary statistic for local non-Gaussianity in inflection-
point inflation.

Doing so, we compute numerically that 12/5 ⇥
fNL(kPeak, kPeak, kPeak) = 0.13. To obtain the re-
sponse, we set ⇣L to the peak value ⇣RMS(kPeak) =q

�2
⇣(kPeak) ' 0.05. Local non-Gaussianity can there-

fore enhance the local power spectrum by a factor of at
most ⇠ 0.006. We therefore conclude that in inflection-
point inflation, the power spectrum enhancement due to
non-Gaussianity is negligible,

�P⇣

P⇣
⌧ 1. (30)

In this model, we do not recover the USR squeezed
limit result 12/5⇥ fNL ' 6 and therefore do not enhance
the small-scale power spectrum by an order-unity quan-
tity. This is a reflection of the analytic result of Ref. [38]
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that transitions from a USR phase to a SR phase which
are monotonically decreasing in the field velocity sup-
press the USR non-Gaussianity.

In the following sections, we will show that this sup-
pression of non-Gaussianity is generic to transition mod-
els, except for the special case where the transition is
both fast and large.

B. Infinitely Fast Transitions

Infinitely fast transitions from USR to SR were con-
sidered in Refs. [38] and [50], and Ref. [38] established
analytically that the final level of non-Gaussianity is sen-
sitive to the way USR is exited.

Specifically Ref. [38] considered the case where a pure
ultra-slow-roll potential is joined to a slow-roll potential
VSR at a field position which we label �2 for ease of gen-
eralization later:

V (�) =

(
VSR(�2), � > �2 (USR)

VSR(�), �  �2 (SR)
(31)

and hence the potential has an infinitely sharp disconti-
nuity in slope at �2. We call this an infinitely fast transi-
tion from USR to SR because the inflaton rolls over this
discontinuity instantaneously. VSR(�) can be character-
ized in general by the potential slow roll parameters for
�  �2

✏V ⌘ 1

2

✓
1

V

dV

d�

◆2

, ⌘V ⌘ 1

V

d2V

d�2
. (32)

The transition can be characterized by the strictly posi-
tive amplitude parameter*2

h ⌘
s

✏V (��
2 )

✏(�+
2 )

, (33)

where

�±
2 ⌘ lim

!!0
�2 ± !, (34)

which is a ratio between the potential slow-roll parameter
at the beginning of the SR phase and the Hubble slow-roll
parameter ✏ at the end of the USR phase.

If h = 1, the kinetic energy at the end of USR is just
enough to keep the field on the attractor of the SR phase.
The h ⌧ 1 limit therefore corresponds to the small tran-
sition, a monotonic transition from USR to the SR at-
tractor where the inflaton continues to slow down before
hitting the attractor and hence the power spectrum con-
tinues to evolve. Conversely for h � 1, Ref. [38] showed
that the perturbations freeze out at N(�2). We call this

*2 The h defined in (33) is equivalent to Ref. [38]’s �h/6.

a large transition because the inflaton instantly goes
from having too much kinetic energy for the potential it
evolves on to suddenly having insu�cient kinetic energy
for a now much steeper potential

h � 1 =) ✏V � ✏ =
1

2
�02 , (35)

Since perturbations do not freezeout immediately for a
finite value of h the final level of non-Gaussianity is not
given by Eq. (17) but rather can be shown analytically
to be [38]

lim
kL/kS!0

12

5
fNL(kL, kS , kS) = 2

h(3h + ⌘V )

(h + 1)2
, (36)

for scales kL, kS which cross the horizon during USR.
Eq. (36) yields the USR result Eq. (17) only in the limit
h � 1, and thus for infinitely fast transitions the USR
non-Gaussianity is conserved only when the transition is
large.

The enhancement of the local power spectrum is sup-
pressed for small transitions, but we shall next see that
it is also suppressed if the transition is not su�ciently
fast. Therefore, the transition needs to be large and fast
to recover the USR non-Gaussianity. In contrast, the in-
flection model of the previous section is an example where
the transition is both small and slow.

C. Fast/Slow–Large/Small Transitions

In order to study in more detail the phenomenology of
transient USR inflationary phases beyond the slow-small
transition of §IV A and the infinitely fast limit of §IV B,
we construct a toy inflationary model which begins in
SR, enters a USR phase, and then transitions back to
SR. We implement this with a potential where the slope
of an otherwise linear potential makes two transitions
across adjustable widths in field space

dV

d�
(�) =

�

2


1 + tanh

✓
� � �1

�1

◆�

+
�

2


1 + tanh

✓
�2 � �

�2

◆�
, (37)

and hence

V (�) = V0 +
�

2


� + log

⇢
cosh

✓
� � �1

�1

◆��

+
�

2


� � log

⇢
cosh

✓
�2 � �

�2

◆��
. (38)

This potential describes three phases with finite transi-
tions, which is a natural generalization of the model (31)
with two phases with instant transition considered in
§IV B. The model parameters {�1, �2} and {�1, �2} de-
termine the widths and positions of two transitions, re-
spectively. The limit �1, �2 ! 0 amounts to instant tran-
sitions, where the potential is composed of a flat plateau
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of amplitude V0 for �2 < � < �1 in between two linear
pieces of slope {�, �}, which we set positive. By modify-
ing these parameters, we can set the duration of the USR
phase as well as the circumstances of its beginning and
end. By constructing the transition in dV/d�(�) rather
than in V (�) directly, we trivially obtain a monotonic
potential where the field always rolls downhill.

Since this is a toy model that we introduce to illustrate
the fast/slow and large/small distinction, we do not at-
tempt to accurately fit measurements at CMB scales or
to appropriately end inflation. Once all modes which we
are interested in have frozen out in the latter slow-roll
phase, we end inflation by hand. By adjusting the poten-
tial before and after the plateau, one could turn this toy
model into a model which can fit CMB observations and
produce PBHs while ending inflation gracefully without
changing the conclusions we draw below.

For � > �1 the potential has a positive slope ' �
and the inflaton follows the slow-roll attractor. In order
for the inflaton to leave the slow-roll attractor and enter
a USR phase, the transition must be su�ciently sharp
that the inflaton enters the flat region of the potential
with excess kinetic energy. Thus we fix the entry pa-
rameters {�, �1, �1} = {10�14, 0, 10�2} to guarantee
such a transition. By having inflation start on the slow-
roll attractor, we are freed from having to specify initial
conditions during USR.

The region �2 < � < �1 marks the USR phase where
the potential is approximately flat. We fix the amplitude
of the potential in the flat plateau V0 = 2⇥10�14, chosen
to ensure that USR modes in our fiducial model are still
perturbative, i.e. �2

⇣ . 1 for the durations of USR we
consider here.

Finally, for � < �2 the potential has a positive tilt
' � and the inflaton returns to the slow-roll attractor.
Among the remaining parameters {�2, �2, �}, �2 deter-
mines the duration of the USR period, and {�2, �} set
the circumstances of the exit from USR. �2 in particu-
lar must be very finely tuned to allow several e-folds of
USR inflation while still reaching the transition point in
a reasonable amount of time. The instant transition of
§IV B corresponds to taking �2 ! 0 and to focusing on
the inflaton behavior around � = �2.

We generalize Ref. [38]’s analysis to transitions of finite
width between the flat and slow-roll potentials by allow-
ing �2 6= 0. We start by generalizing the definition for
the start and end of the transition, Eq. (34). We choose
the end of the transition ��

2 from the potential through

��
2 ⌘ �2 � 2�2. (39)

The beginning of the transition, �+
2 , is not simply �2+2�2

since the USR phase persists while ✏V ⌧ ✏. Instead, we
choose to define the beginning of the transition through
the deviation from the USR analytic solution,

1 � �0
USR

�0

����
�+

2

= 0.05 ⇥
 

1 � �0
USR

�0

����
��

2

!
, (40)
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FIG. 4. Transition model background parameters ✏ ⌘

�d lnH/dN and ⌘ ⌘ d ln ✏/dN for a fast vs. slow transition,
denoted by the e-fold width dN , with a fixed large transition
(h = 2.5). The vertical lines mark N(�1) and N(�+

2 ). The
specific parameter choices used for these models are described
in §IVC.

where �0
USR is the analytic solution for the field veloc-

ity in USR, and �0 is the actual field velocity, which is
evaluated numerically. By computing the field velocity
deviation relative to the change at the end of the tran-
sition ��

2 we guarantee that �+
2 can be defined even for

small and fast transitions.
In other words, ��

2 is roughly where the potential com-
pletes its transition, and �+

2 is roughly where the field
velocity begins to leave the USR solution. While the
specific criteria chosen here are arbitrary, they are useful
for classifying transition regimes and in the �2 ! 0 limit
the choices here return the limit Eq. (34) up to percent
level factors.

From these definitions for �+
2 and ��

2 we compute h
by evaluation of Eq. (33) and we quantify the duration
of the transition from USR inflation to the beginning of
the relaxation process

dN ⌘ N(��
2 ) � N(�+

2 ). (41)

The situation of §IV B corresponds to the limit dN ! 0
and we now generalize this result by exploring the im-
pact of the duration dN on the resultant non-Gaussianity.
In Fig. 4, we show the background parameters ✏ and ⌘
for two models with a large transition h = 2.5, one fast
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(dN = 5 ⇥ 10�3) and the other slow (dN = 1). For these
models � is fixed at 6⇥10�21, while the fast transition has
{�2, �2} =

�
�0.1580281699, 2.12 ⇥ 10�10

 
and the slow

transition has {�2, �2} =
�
�0.1580282187, 3.6 ⇥ 10�8

 
.

Notice the amount of fine tuning in �2 required to achieve
sub-percent level control of the transition amplitude and
duration.

Defining n ⌘ N � N(��
2 ) as the positive increasing

number of e-folds elapsed since the potential transition,
in the fast transition limit dN ! 0 the solution for ⌘ after
the transition point behaves according to the analytic
result [38]

⌘(n > 0) =
6(h � 1)

1 + h(e3n � 1)
. (42)

This is reflected in the behavior of the blue solid curve
in Fig. 4, which behaves as Eq. (42) up to a ⇠ 0.3%
di↵erence in the h parameter as defined here compared
to the h parameter in the exact �2 ! 0 limit.

On the other hand, in the case where dN is large, the
red dashed curve of Fig. 4, the numerical solution for ⌘
deviates significantly from this analytic form. This can
be understood by Taylor expanding Eq. (42) around the
transition point n = 0,

⌘(n > 0) = 6(h � 1) (1 � 3hn) + O
�
n2
�
, (43)

from which we can see that after ��
2 , ⌘ evolves on a

timescale n ⇠ h�1. Thus if the transition timescale dN

is larger than this timescale, the evolution of ⌘ will di↵er
from the analytic solution (42).

The behavior of ⌘ is important because it comes di-
rectly into the source of squeezed non-Gaussianity in the
in-in formalism, Eq. (A9), and controls the freezeout of
perturbations through the evolution of ✏ in Eq. (25).
Therefore, the timescale dN plays an important role in
changing the non-Gaussianity produced in USR.

The upper panel of Fig. 5 shows the power spectra
for the same large-fast and large-slow models as Fig. 4.
Once more, the red upper curve shows the slow transi-
tion, while the blue lower curve shows the fast transition.
The vertical dashed line shows a mode which exits the
horizon at the onset of the transition N(�+

2 ).
The power spectra in these models show many of the

same features as the inflection-point power spectrum,
Fig. 3, and therefore we focus on the USR and transi-
tion regions of the plot, where unlike the inflection model
these models have power spectrum plateaus for modes
which exit during USR. This plateau is modulated by
small oscillations sourced by the first feature in the po-
tential. The USR to SR transition feature in the poten-
tial also induces power spectrum oscillations, with the
fast transition model having more oscillations due to the
sharper source. The slow transition model has a larger
power spectrum than the fast transition as ✏ reaches a
lower level in this model (see Fig. 4) and thus the modes
grow more.
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FIG. 5. Transition model power spectrum �2
⇣ and non-

Gaussianity parameter fNL(kL, kS , kS) for the large-fast
(blue) and large-slow (red) transition models of Fig. 4. The
left edge corresponds roughly to a mode which exits the hori-
zon at the beginning of USR. Conventions for displaying fNL

are the same as in Fig. 3 except both kS values for each model
cross the horizon before the end of USR (vertical line, k�+

2
)

(see §IVC for further discussion).

The lower panel of Fig. 5 shows the non-Gaussianity
for these models for two di↵erent values of the short-
wavelength mode, one marked with a cross and the other
a star and both exiting during the USR phase, as a
function of the long-wavelength mode, curves with cor-
respondingly solid and dashed lines. All triangles yield
the same value of fNL when the legs exit during the USR
phase up to corrections of order kS/k�+

2
, consistent with

the result in the inflection model §IV A and the exact
USR result of §III. However, for neither model does the
level of the non-Gaussianity agree with the analytic re-
sult for USR Eq. (17), 5fNL/12 = 6. This is the result
of Ref. [38], that the residual level of fNL depends on
the value of the transition parameter h, and in partic-
ular the fast transition model yields the result expected
from Eq. (36) for a transition with h = 2.5, fNL ' 3.1.
However, the slow model has the same h = 2.5 as the
fast model, yet a smaller value of fNL. This is due to the
slow nature of the transition in the dN = 1 model. Fast
transitions yield Eq. (36), while slow transitions suppress
the non-Gaussianity.

We model this e↵ect with the ansatz that a given tran-
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FIG. 6. Transition model non-Gaussianity parameter fNL as a
function of amplitude h for various e-fold width dN with both
kL and kS exiting the horizon during USR. Colored lines show
the numerical in-in computation and dashed black lines show
the calibrated analytic prediction from Eqs. (45) and (45).
To reach the USR result 12fNL/5 = 6, the transition must be
large h � 1 and fast dN ⌧ 1 (see §IVC for further discus-
sion).

sition length dN sets an upper bound to the transition
amplitude, independent of h. We can define an e↵ective
transition amplitude

he↵ ⌘
"✓

1.5

dN

◆�3

+ h�3

#�1/3

(44)

where the exponent serves merely to interpolate between
the two limits and the factor of 1.5 comes from calibrating
the results to the form of (36)

12

5
fNL(he↵) = 2

he↵(3he↵ + ⌘V )

(he↵ + 1)2
, (45)

where in this toy model with a linear SR potential we set
⌘V = 0.

In Fig. 6, we compare the ansatz (44) coupled with
the analytic formula (45) (black dashed curves) to the
full numerical in-in computation of the bispectrum (col-
ored solid curves) for modes that exit the horizon during
USR as a function of the transition amplitude h for three
di↵erent transition speeds dN . Every point along these
lines corresponds to a di↵erent set of parameters for our
toy model.

The analytic formula (44) agrees well with the in-in
computation for all values of h and dN . For small-slow
transitions (small h and large dN ), where fNL is small
and becomes proportional to the potential slow-roll pa-
rameters on the attractor, there is a slight di↵erence be-
tween the numerical and analytic fNL. This we attribute
to small di↵erences in the value of h as defined for the
infinitely fast transitions and as defined for slow transi-
tions since the errors decrease for smaller values of dN .

For large transitions h � 1, where fNL is largest, the an-
alytic ansatz produces a slight overestimate of fNL as the
transitions become faster. This is due to non-linearities
between the true he↵ and 1/dN in the large h limit which
our ansatz does not model. Since these di↵erences are
minor, we conclude from the analytic formula that to
produce a large level of non-Gaussianity after the tran-
sition from USR to SR requires he↵ � 1 and thus the
transition must be large, h � 1, and fast, dN ⌧ 1.

Just as in the SR (§II) and exact USR case (§III), the
e↵ect on fNL of the transition from USR to SR can be un-
derstood visually from the way phase-space trajectories
intersect constant N surfaces. Fig. 7a shows the phase-
space trajectories (blue lines) and constant N surfaces
(red lines) for a narrow �2 = 2.12 ⇥ 10�10 and therefore
faster transitions, such that the fast model of Fig. 4 and
Fig. 5 corresponds to a trajectory in this space. Fig. 7b
shows the phase space for a wider �2 = 3.6 ⇥ 10�8 and
therefore slower transitions, and the slow model of Fig. 4
and Fig. 5 evolves through this space.

Trajectories near the top of each panel have the infla-
ton speed up after the transition and hence have a large
h, with the large-small dividing line of h = 1 denoted by
thick blue lines. Notice also that the union of the panels
of Fig. 1 gives the limit of infinitely fast transitions, with
the exception that here constant N surfaces are plotted
relative to the transition feature N(�2) rather than the
end of inflation N = 0. Trajectories are evenly spaced
in � at the point where they cross the bottom edge at
�0 = �6 in a range that reflects a reasonable amount of
USR e-folds as we describe next.

Due to the smooth nature of the potential (38), for any
finite � > �2 the potential slope dV/d� has a finite posi-
tive value. Thus, unlike in the exact USR case (Fig. 1b)
or the infinitely fast case, all trajectories with any finite
�0 for � > �2 will eventually cross �2.

Black dashed curves in Fig. 7 depict the envelope of
such trajectories, neglecting stochastic e↵ects, and corre-
spond to initial conditions on the attractor on the very
nearly flat potential. Consequently, the constant e-fold
surfaces become increasingly tightly packed and eventu-
ally space-filling, in contrast to the empty upper right
triangle in Fig. 1b. We choose not to continue showing
trajectories which take such large numbers of e-folds to
traverse the nearly flat plateau of the potential.

By the same �N arguments of §III we can immediately
see from these phase spaces why a large (h � 1) transi-
tion is necessary to conserve the USR non-Gaussianity.
Here �N refers to the change in the total number of e-
folds elapsed to a fixed field position on the SR side for
a shift in the initial field position ��i on the USR side
which then shifts the whole trajectory. Note that �N
combines the change from the USR and SR sides.

Let us first consider the fast case in the top panel.
Around a central trajectory with large h (upper trajec-
tories), the crossing rate @N/@�i is strongly asymmetric
to the sign of ��, i.e. there is a large second derivative
@2N/@�2

i and hence a large fNL according to Eq. (18).
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FIG. 7. Phase-space diagram for the USR to SR transition models with model trajectories (blue lines) and constant e-fold
surfaces (red lines) relative to the transition at �2. The top panel a) has �2 = 2.12 ⇥ 10�10, such that most trajectories
correspond to fast transitions, while the bottom panel b) has �2 = 3.6 ⇥ 10�8, such that most trajectories correspond to slow
transitions. In each panel, higher trajectories represent larger transitions, with h = 1 as the large-small dividing line (thick
blue). Constant N surfaces become space-filling in the top right corners. A large fNL requires a fast-large transition as can be
visualized by �N , the change in e-folds given a shift in the initial field ��i that takes the local background to a new trajectory
(see §IVC for further discussion).

This is due to the much larger contribution to the rate of
surfaces crossed in the USR side where the asymmetry is
larger than the SR side where the asymmetry is small.

On the other hand, the asymmetry around a small h
trajectory (lower trajectories) is small and therefore the
non-Gaussianity is small. This is due to the smaller con-
tribution to @N/@�i on the USR side relative to the SR
side. In other words the power spectrum continues to
grow on the SR side at small h which suppresses the
non-Gaussianity from the USR side.

By comparing the fast and slow cases, we can visually
see that the transition duration sets an e↵ective maxi-
mum transition amplitude he↵ . Above a certain value of
h, the trajectory joins the slow-roll attractor before the

transition and therefore will have a highly suppressed
non-Gaussianity comparable to the small-slow transition
of §IV A.

In Fig. 8 we formalize these heuristic arguments by
computing the �N formula (18) for di↵erent trajectories
in these phase spaces. We organize the trajectories by
their velocity at �2, and thus the horizontal axis of Fig. 8
corresponds to the vertical axis of the Fig. 7 at the tran-
sition point. We then also compare the �N result to our
analytic expectation for fNL, Eqs. (44) and (45).

The �N computation cross-validates our analytic for-
mula which was calibrated to the in-in calculations, show-
ing excellent agreement for all methods of computation
across the fast-slow and large-small transition space. The
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FIG. 8. Non-Gaussianity for trajectories in the corresponding
phase spaces of Fig. 7 computed via the �N formula (18)
compared to our calibrated analytic result Eqs. (44) and (45).
The horizontal axis here corresponds to the vertical axis of
Fig. 7. Only for fast and large transitions does the transition
model reproduce the USR result, and for fixed �2 there is a
maximum value of fNL attainable.

�N computation thus also confirms that a large fNL re-
quires a large-fast transition.

For large �0(�2), after the peak non-Gaussianity, there
is a sharp cli↵ in Fig. 8 beyond which fNL becomes sup-
pressed. This cli↵ corresponds to trajectories which reach
the attractor before the transition, thus inhabiting the
space-filling regions of Fig. 7, and the edge of the cli↵
is given by the black dashed envelope of Fig. 7. These
trajectories are slow transitions even though they have
the same narrow field space width �2 and appear in the
‘fast’ panel. These cases behave in the same way as those
in the ‘slow’ panel once the duration of the transition in
e-folds dN is accounted for.

Of course even for a large and fast transition, for which
5/12 fNL ! 6, the response of the small scale power spec-
trum to the long-wavelength mode is still dependent on
the value of the long-wavelength mode, and in particular
the argument of §III still holds, that

�P⇣

P⇣
. 1, (46)

unless the model already produces PBHs with a Gaussian

distribution.

V. CONCLUSION

Canonical slow-roll inflation cannot produce primor-
dial black holes in a large enough quantity to be the
dark matter. While perturbations do exhibit a small level
of local non-Gaussianity which couples short-wavelength
PBH fluctuations to the long-wavelength modes they
live in and can in principle enhance local abundances
at peaks of long-wavelength modes, transforming to a
freely-falling coordinate system shows that locally mea-
sured PBH abundances are completely insensitive to this
non-Gaussianity because it is generated by the reverse
coordinate transformation to begin with.

Therefore any confirmation that the dark matter is in
the form of PBHs would rule out canonical slow-roll in-
flation. The only way to rescue canonical inflation would
be to violate slow roll, and a phase of ultra-slow-roll infla-
tion after CMB scales exit the horizon is the natural way
to do this. We showed by gauge transformation and by
the �N formalism, which can be illustrated graphically
and contrasted to the SR case, that non-Gaussianities
are large in USR phase when perturbations freeze out
instantly at some fixed field position.

The same coordinate transformation machinery as in
slow roll confirms that USR non-Gaussianities can lo-
cally enhance PBH abundances. However the e↵ect is
very mild, giving at most an order unity enhancement of
the local power spectrum. Such enhancements can only
make models that are already on the border line of suc-
ceeding to produce PBHs as the dark matter under Gaus-
sian assumptions actually succeed. For such cases, gener-
ally a small change in parameters that prolong the USR
phase would equally well produce PBHs under Gaussian
assumptions.

Even more importantly, USR phase has to end in some
way. Ref. [38] established that the non-Gaussianity is
very sensitive to how this period ends using cases where
the transition is infinitely fast. By exact computation in
the in-in formalism and validation with the �N formal-
ism, we mapped the entire range of possible endings to
USR to show that only a small class of transitions con-
serve the large USR non-Gaussianity through the tran-
sition to slow roll. These are the transitions which are
fast, in that the potential exhibits a sharp feature that
is traversed by the inflaton in much less than an e-fold,
and large, in that the inflaton needs to gain significant
velocity after transiting the feature. All other types of
transitions suppress the non-Gaussianity significantly.

Producing primordial black holes as dark matter in
canonical single-field inflation requires a complicated and
fine-tuned potential shape with a transient violation of
slow-roll, a conclusion which is not weakened by the in-
clusion of local non-Gaussian e↵ects.

Note added: While this work was being completed,
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Ref. [53] appeared which explores the equilateral non-
Gaussianity in transitions which are slow and small in
our terminology, similar to the inflection model of §IV A.
Unlike that work, we focus on whether squeezed non-
Gaussianity can make a model that fails to form su�cient
PBHs for the dark matter under the Gaussian assump-
tion into one that does rather than how non-Gaussianity
changes the abundance of a rare tracer population of
PBHs.
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Appendix A: Bispectrum Computation

1. Numerical Methods

We describe in this Appendix the numerical computa-
tion of the background evolution, the modefunctions, and
the cubic interactions during inflation in order to study
the precise predictions of inflationary scenarios which
transition between SR and USR phases.

After numerically solving for the background evolu-
tion using the canonical Klein-Gordon and Friedmann
equations, we use the quadratic action for the comoving
curvature perturbation ⇣

S2 =

Z
d4x L2, (A1)

with the quadratic Lagrangian density

L2 ⌘ a3✏


⇣̇2 � 1

a2
(@⇣)2

�
, (A2)

to determine the evolution of the modefunctions through
the Mukhanov-Sasaki equation of motion

1

a2✏

d

ds

✓
a2✏

d⇣k

ds

◆
+ k2⇣k = 0, (A3)

where s ⌘
R tend

t dt/a, with Bunch-Davies initial condi-
tions at ks � 1 of the form

⇣0
k =

1

2a
p

k✏

✓
1 +

i

ks

◆
eiks. (A4)

From these modefunctions we can construct the
Fourier space interaction-picture field operators

⇣̂I
k = ⇣kâ(k) + ⇣⇤

k â†(�k), (A5)

where the creation and annihilation operators satisfy the
usual commutation relation

[â(k), â†(k0)] = (2⇡)3�(k � k

0). (A6)

The power spectrum can be evaluated from the mode-
functions at a time t⇤ taken to be after all the relevant
modes have frozen out (e.g., after the end of USR phase)
as

h⇣̂I
k(t⇤)⇣̂

I
k0(t⇤)i = (2⇡)3�3(k + k

0)|⇣k(t⇤)|2

⌘ (2⇡)3�3(k + k

0)P⇣(k). (A7)

The tree-level three-point correlation function is then
computed in the in-in formalism as [37, 54–56]

h⇣̂k1 ⇣̂k2 ⇣̂k3i (A8)

' 2 Re

"
�i

Z t⇤

�1(1+i✏)
dth⇣̂I

k1
(t⇤)⇣̂

I
k2

(t⇤)⇣̂
I
k3

(t⇤)HI(t)i
#

,

where ⇣̂ is the full field operator and in which the inter-
action Hamiltonian HI can be calculated at cubic order
from the cubic Lagrangian L3 by HI ' �

R
d3xL3 [57].

L3 itself is given by [54, 58]

L3 ⌘ a3✏
d

dt

⇣
✏ +

⌘

2

⌘
⇣2⇣̇ � d

dt

h
a3✏
⇣
✏ +

⌘

2

⌘
⇣2⇣̇
i

+ ✏⇣(H2 + 2L2)

� d

dt


a3✏

H
⇣⇣̇2 + a3 ✏2

2H
⇣̇@a⇣@a(@�2⇣̇)

�
, (A9)

where H2 is the quadratic Hamiltonian density

H2 = a3✏


⇣̇2 +

1

a2
(@⇣)2

�
. (A10)

We have neglected here operators which do not con-
tribute to the squeezed limit and for a canonical scalar
(cf. [58]). We have also neglected here boundary oper-
ators whose contribution at t⇤ is suppressed by relative
factors of k/aH. Similarly, terms in the third line of
(A9) are suppressed by the extra ⇣̇ factor so long as t⇤
is taken to be after all modes have frozen out, i.e. after
the transition, in the context of transient USR. We take
this approach in the main paper. In App. A 2, we con-
sider this extra boundary contribution if the correlator is
evaluated during USR.

From translational and rotational invariance the three-
point correlator is related to the bispectrum B⇣ through

h⇣̂k1 ⇣̂k2 ⇣̂k3i = (2⇡)3�3(k1 + k2 + k3)B⇣(k1, k2, k3),
(A11)
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from which is constructed the conventional non-
Gaussianity parameter, Eq. (7).

In this work we solve these formulae numerically to
compute the non-Gaussian response of perturbations in
generic inflationary scenarios. We use these numerical
results to calibrate an analytic formula for models with
smooth USR to SR transitions in §IV C. In addition, we
exploit the �N formalism, which requires only numerical
solutions for various background evolutions, to validate
and visualize our results. In the circumstance of pure
USR inflation an analytic approach can be followed which
we consider next.

2. USR Gauge vs. Field Redefinition

Under some conditions the bispectrum can be calcu-
lated much more simply than the numerical approach
presented in App. A 1. In this Appendix, we compute
the bispectrum in USR (§III) analytically. This can be
done by transforming between spatially flat and comov-
ing gauges since the flat potential implies negligible field
interactions in the former. We explicitly show this to be
the case below and clarify subtleties due to the shift in
evaluation time induced by the gauge transformation on
cubic interactions from the boundary terms. This gauge
transformation is sometimes phrased as a field redefini-
tion in the literature [37], since the dependence on the
evaluation time drops out in ordinary slow roll where the
curvature is frozen outside the horizon. Even in USR
the three point correlations can still can be deduced di-
rectly from the two point correlations from this perspec-
tive (see., e.g., Refs. [43–45, 59]) but our approach clar-
ifies the role of the cubic interaction terms involved in
their direct computation.

We start the computation in spatially flat-gauge, where
the bispectrum computation is trivial, and then trans-
form to comoving gauge, which is the relevant gauge for
observations. The relationship between the time coordi-
nate in these gauges is

tSF = tC +
⇣

H
(A12)

where tSF denotes the time coordinate in spatially flat
gauge, tU the time coordinate in comoving gauge, and
⇣ is the comoving-gauge curvature perturbation.*3 Let-
ting ⇣N be the rescaled field perturbation in spatially-flat
gauge, ⇣N ⌘ �H��/�̇, the relationship between the per-
turbations is

⇣ = ⇣N + f(⇣N ) (A13)

*3 In USR, ⇣ grows and so does the di↵erence between the time
coordinate of spatially flat gauge and comoving gauge. Hence
even though a growing curvature violates the separate universe
criteria for comoving slicing [51], spatially flat slicing observers
are nearly freely-falling and see superhorizon field perturbations
as a local FLRW background.

where

f(⇣N ) =
⌘

4
⇣2
N +

1

H
⇣N ⇣̇N (A14)

to the lowest order in ⇣N and up to terms suppressed
outside the horizon by factors of k/(aH). Eq. (A13) can
be viewed equivalently as simply a field redefinition.

In spatially flat gauge, all interactions should be sup-
pressed by ✏, which is extremely small in USR. We there-
fore assume for now that the spatially-flat gauge fields
are free fields,

h⇣N⇣N⇣N i = 0. (A15)

We can use Eq. (A13) to find that in USR

h⇣k1⇣k2⇣k3i = (2⇡)3�3(k1 + k2 + k3)

⇥ 3H4(k3
1 + k3

2 + k3
3)

16✏2endk3
1k

3
2k

3
3

, (A16)

where we have evaluated correlators of the form h⇣⇣i and
h⇣⇣̇i using (A4) with the USR scalings ✏ = ✏⇤(a⇤/a)6 and
s ' (aH)�1 which yield (e.g. [43])

⇣k = � iH

2
p

✏⇤k3

✓
a

a⇤

◆3

(1 � iks) eiks, (A17)

and the subscript ⇤ here indicates the values of the
parameters at an arbitrary reference time during USR
phase. Note that choosing a⇤ = aend, the end of the
USR phase, leads to Eq. (16) for the power spectrum as
well.

This result for the bispectrum leads to the well-known
result that the squeezed bispectrum in USR inflation vi-
olates the consistency relation prediction of zero. This
result is often computed from a field redefinition of the
form of Eq. (A13). However, this can be confusing as the
basis of this derivation, h⇣N⇣N⇣N i = 0, is a statement
about perturbations of a free field in spatially flat gauge
rather than a statement about interactions of the rede-
fined field in comoving gauge. To see this, we can take
opposite approach and start with the action in comoving
gauge, transform it to spatially flat gauge, and show how
and why h⇣N⇣N⇣N i = 0.

Neglecting all terms suppressed by factors of ✏, factors
of k/(aH), or irrelevant in the squeezed limit, the ac-
tion for the comoving curvature perturbation ⇣ in USR
is given by

S[⇣] =

Z

MC

d4x a3✏


⇣̇2 � 1

a2
(@⇣)2

�

+

Z

@MC

d3x a3✏

✓
�⌘

2
⇣2⇣̇ � 1

H
⇣⇣̇2

◆
(A18)

where the first line is the quadratic action and the sec-
ond line is the cubic action, MC denotes the bulk of the
spacetime ~x 2 (� ~1, + ~1) and t 2 (0, tCend), and @MC de-
notes the temporal boundary of MC at tCend. The cubic
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action here can be obtained from Eq. (A9) by eliminating
⌘̇ and ✏-suppressed terms, which are both driven to zero
in USR.

Note that plugging the cubic portion of this action into
the in-in formula Eq. (A8) with the modefunctions above
yields the same result as Eq. (A16).

Let us transform the action (A18) in two ways. Trans-
forming the action (A18) using Eq. (A12) as a field re-
definition alone gives

S[⇣N ] =

Z

MC

d4x L2[⇣N ] +

Z

@MC

d3x (2a3✏⇣̇Nf)

+

Z

@MC

d3x a3✏

✓
�⌘

2
⇣2
N ⇣̇N � 1

H
⇣N ⇣̇2

N

◆
,

(A19)

where we have integrated by parts and used the equation
of motion from the quadratic action L2[⇣N ] defined in
(A2).

After substituting Eq. (A14) for the f term associated
with the nonlinear field redefinition, we obtain

S[⇣N ] =

Z

MC

d4x L2[⇣N ] +

Z

@MC

d3x
a3✏

H
⇣N ⇣̇2

N , (A20)

where we see that a cubic boundary interaction remains
in the action. Unlike in the ordinary SR case, it con-
tributes significantly in the USR case since ⇣N / a3 out-
side the horizon.

Therefore, if we had used Eq. (A20) for the cubic in-
teractions in the in-in formula, we would have computed

h⇣N⇣N⇣N i 6= 0, (A21)

which is inconsistent with what we expected.
In contrast, if we interpret Eq. (A12) as a gauge trans-

formation, then we also have to apply the transformation
of the temporal boundary @MC = @MSF + O(⇣N ) to
the action (A20). For the intrinsically cubic terms, this
transformation yields a higher order correction, but for
the quadratic term it produces a cubic boundary inter-
action

Z

MC

d4x L2[⇣N ] =

Z

MSF

d4x L2[⇣N ] (A22)

�
Z

@MSF

d3x
⇣N

H
L2[⇣N ] ,

which precisely cancels the remaining cubic order term
after ignoring higher order terms of ✏ and k/(aH). We
thus end up with the action of free field form

S[⇣N ] =

Z

MSF

d4x a3✏


⇣̇2
N � 1

a2
(@⇣N )2

�
, (A23)

up to the cubic order of ⇣. Since there is no cubic inter-
action for ⇣N , we have

h⇣N⇣N⇣N i = 0. (A24)
This is consistent with the intuition that a flat potential
for the scalar field produces no interaction terms.

Therefore, the transformation (A12) is better viewed
as a gauge transformation than a field redefinition. In
practice, realistic inflationary models have an end of the
USR stage. We therefore can always choose to evaluate
the bispectrum after all relevant modes have frozen out
and in this case the ⇣⇣̇2 boundary term and the subtleties
about evaluation times become irrelevant. This is the
approach which is described in App. A 1.
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