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The simple m?¢? potential as an inflationary model is coming under increasing tension with limits
on the tensor-to-scalar ratio r and measurements of the scalar spectral index ns. Cubic Galileon
interactions in the context of the Horndeski action can potentially reconcile the observables. How-
ever, we show that this cannot be achieved with only a constant Galileon mass scale because the
interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing
for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approx-
imation leading to a relatively large and negative running of the tilt as that can be of order ns — 1.
We show that the observables on CMB and large scale structure scales can be predicted accurately
using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits
on |as| place a lower bound of r 2 0.005 and conversely a given r places a lower bound on |as|, both
of which are potentially observable with next generation CMB and large scale structure surveys.

I. INTRODUCTION

Inflation is a leading paradigm able to solve the main
problems of the standard model of cosmology and, at
the same time, able to generate the quantum seeds that
could have given rise to the structures we see today in the
sky. The canonical picture consists of introducing a new
scalar field minimally coupled to Einstein gravity, the
inflaton, which drives the expansion of the Universe from
quantum to cosmological scales at an exponential rate
while it slowly rolls towards the minimum of its potential.
This potential is required to be sufficiently flat in order to
have enough time to form a Universe consistent with the
isotropy and homogeneity observed today. Although the
paradigm itself is consistent with the latest observational
constraints on the scalar and tensor power spectra (see
e.g. [1]), simple quadratic and monomial potentials are
coming into increasing conflict with these constraints.

Inflationary models with noncanonical terms can arise
naturally from particle physics and allow more freedom
to satisfy observational constraints [2-8]. Models with
nonminimal couplings, for instance, are able to reconcile
with current measurements some of the earliest and sim-
plest realizations of inflation, such as those with power-
law potentials [9-15].

General scalar-tensor theories of gravity provide a uni-
fied framework upon which one can construct new mod-
els of inflation or embed known ones in a broader con-
text. The most general four-dimensional scalar-tensor
theory in curved space-time which leads to second-order
equations of motion — thus free from ghosts and re-
lated instabilities — is the Horndeski [16], or generalized
Galileon [17-19], theory '. Recently there have been ef-
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forts to construct models of so-called G-inflation using
the Horndeski Lagrangian by explicitly choosing the form
of the independent functions of the scalar field and its
derivatives. Such models must be carefully constructed
to avoid instabilities, given that the Galilean symme-
try should be broken in order to have a successful in-
flation [19, 29-32].

When constructing phenomenologically viable models
in the more general parameter space, the usual slow-
roll approximation may not always suffice to describe
observables. While numerically solving the scalar and
tensor equations of motion is always possible, general-
ized slow-roll (GSR) techniques have been developed to
overcome the deficiencies of the traditional slow-roll ap-
proach [33-39]. In particular the optimized slow-roll
(OSR) expansion of GSR provides an improved way of
evaluating scalar and tensor spectra for inflationary mod-
els with slow-roll violation on a time scale of a few e-folds
or larger [38]. Recently these approaches have been ex-
tended to cover the full space of Horndeski models, allow-
ing one to compute the inflationary observables without
imposing the slow-roll conditions [40]. Their efficacy have
been tested for large slow-roll violations such as those re-
quired by primordial black hole (PBH) formation mod-
els [41].

In this paper we show that it is possible to reconcile
the observational tension between scalar and tensor ob-
servables in m2¢? inflation by introducing a transient G-
inflation regime, for which the GSR and OSR formulas
provide a good description of inflationary observables. In
811 we review the Horndeski Lagrangian and show why
simple models with a constant Galileon interaction mass

to include higher derivatives in the equations of motion (see [20—
28]), we will restrict our analysis to models within the Horndeski
framework.
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scale introduced in previous studies [32] can no longer
satisfy the latest observational constraints. In §III we
show how to overcome these difficulties by introducing
a transition during inflation that transiently violates the
slow-roll approximation. In §IV we show how the GSR
and OSR techniques accurately relate the parameters of
these models to the scalar and tensor observables. Fi-
nally, we conclude in §V.

II. POTENTIAL-DRIVEN G-INFLATION

Horndeski gravity is the most general scalar-tensor the-
ory in four dimensions which leads to second-order equa-
tions of motion. The full Lagrangian is given by

Ly = G+ GsOo + G4R
- 2G4,X[(D¢)2 - (b;wd);w] + GSGW(i);W (1)

+ X (O 3080 ™ +26,u6"° 6",
where G,, = G, (¢, X) are arbitrary functions of ¢ and
X = guuau¢au¢7 Gn,X = aG(n/a)(a ¢;w/ = VMVV¢
and R and G, are the Ricci and Einstein tensors re-
spectively. For G = —X/2 — V(¢), G4 = 1/2, and
G3 = G5 = 0, we recover the Lagrangian for canonical
inflation.

From Eq. (1) one can now choose the G,, functions to
construct more general phenomenological models of infla-
tion given that the simplest realizations are being ruled

J

V—(3—;¢’2)H2+(3f3¢’3—fz¢q§’4>H4:0,

out by the latest cosmological measurements. For in-
stance, the chaotic inflation model provides a large value
for the tensor-to-scalar ratio » which is disfavored by cur-
rent observations. Ref. [32] showed that with the intro-
duction of a G, term the relationship between the ten-
sor and scalar observables can be modified. However, we
shall now see that under the slow-roll approximation, this
additional freedom is not sufficient to reconcile observa-
tions with the predictions of chaotic inflation.

Concretely, Ref. [32] considered a model of potential-
driven G-inflation of the form

X

Gal,X) = =5 ~V(9)
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Gil6,X) = 5

G5(¢7X):Oa (2)

with a chaotic inflation potential V(¢) = m?¢?/2 and
f3 = —M™3, where m and M are the inflaton and
Galileon mass scales respectively .

Taking Egs. (2), assuming the general case in which
f3 = f3(¢), and working on the flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric,

ds® = —dt® + a(t)?0;;dz'da’, (3)

the Einstein and Klein-Gordon equations can be written
as

V —oH'H — (3+;¢/2) H2+f3H3H’¢’3+(f3¢’2¢”+f’32’¢¢5’4) 1_14207 (4)
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where H is the Hubble parameter and derivatives are
defined as ' = d/dN, being AN = Hdt = (H/¢)d¢ the
number of e-foldings of inflation, and 4 = d/d¢.

In the slow-roll (SR) approach, Egs. (4) may be ap-
proximated as [32]

3H?> =V,
BH?¢'(1+A)+ V=0, (5)

*2 Here and throughout we take units where Mp; = 1/V87G = 1.

*3 G-inflation was originally introduced in [19, 29] as a model for
inflation driven kinetically by the Galileon field whereas the mod-
els discussed here are potential-driven versions.
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Here
A=3fH?¢ (7)

measures the deviation from canonical inflation: for
|A| < 1 the Galileon term produces negligible effects.
In §ITTA, we use this slow-roll approximation for eg,
Eq. (6), as a test of the slow-roll approximation itself.
For the chaotic inflation potential, ¢’ < 0 and thus if



f3 < 0 the combination of Egs. (5) and (7) gives

A%~/1—4f3V’¢—1' (8)
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The original G-inflation model, hereafter called the
“G-model,” took a constant f3 = —M 3 so that far up
the potential or at early times the Galileon term dom-
inates, whereas the canonical terms come to dominate
as the field rolls down. The transition between the two
regimes is marked by A = 1 where Vi, = —2/f; = 2M3
[32]. Tt is therefore interesting to consider the relation-
ship between the tensor and scalar observables as a func-
tion of A. The scalar and tensor power spectra, under
the slow-roll approximation, can be written as [32]
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where the tensor power spectrum is defined for each po-
larization state separately and is not modified from its
form in canonical inflation. Therefore for the same posi-
tion on the potential in field space, the G-model enhances
scalar power over tensor power linearly in A for A > 1.

However, given the strong experimental constraints on
the tilt, the tensor-to-scalar ratio of the G-model should
be compared to chaotic inflation at the same tilt rather
than the same field value. The scalar tilt and tensor-to-
scalar ratio are defined as usual as

dlnA%
ns = 1= g (10)
A2
r=4-—,. (11)
2
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For comparison to the CMB observables, these should be
evaluated at k = k, = 0.05 Mpc~'. These evaluations
require converting a given field value ¢ to a wavenum-
ber k. Under slow-roll, scalar fluctuations freeze out™
when cgk = aH, and therefore this relationship requires
a mapping between field values and the number of e-folds
to the end of inflation AN = Ny — N. From Egs. (4) and

(7),
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Putting these relations together Ref. [32] found for A >
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*4 Note that the scalar sound speed is ¢ = \/2/3 for A > 1 and
cs = 1 for A < 1 whereas the tensor sound speed is ¢; = 1. Even
in slow-roll, the freeze-out condition should in principle differ
between the two as we discuss below, but given slow variation of
the expressions in (8) and (9), Ref. [32] ignored these distinctions.

where, by eliminating the e-folds to the end of inflation,
we obtain the parametric relation

128 /2
=——/=(ns—1). 13
=[5 - 1) (13
For the A < 1 limit, one recovers the canonical chaotic
predictions

1 4 16
ng — = T A A A a1 "= 7
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which combined give
r=—4(ns —1). (14)

Ref. [32] noted that for a fixed e-fold, AN ~ 50— 60, the
A > 1 case has a lower r and larger n,. However we see
from Eqgs. (13) and (14) that for the same ng, the A > 1
limit lowers 7 only by a negligible factor of ~ 0.97. With
recent improvements in the constraints on both param-
eters, the G-model cannot cure the r-ng problem of the
canonical ¢ model given any choice of M or AN. Fur-
thermore no smooth transition or interpolation between
these two very close forms can solve this problem either.
Monomial potentials with steeper indices than ¢? face a
similar issue.

While this might seem like a no-go for simple ¢™ poten-
tials, we will show in the following sections that a more
rapid transition between these two limits provides a solu-
tion where the scalar tilt is substantially but transiently
lowered while A remains sufficiently large to suppress
r. Furthermore by allowing a more rapid transition, we
automatically cure the gradient instability problem for
these models. This problem arises if the transition to
A < 1 occurs after the end of inflation such that the
scalar sound speed squared c? oscillates and becomes
negative during reheating. In the original G-inflation
model, this restriction places a lower limit on M [32] and
an upper limit on the enhancements to the scalar power
spectrum through A. However, by making the transition
more rapid, we can make it complete before the end of
inflation for any M.

III. POTENTIAL-DRIVEN G-INFLATION
WITH STEP

As discussed in the previous section, the phenomeno-
logical problems of the original version of G-inflation arise
because the transition to canonical inflation takes place
too slowly. To resolve these problems, we promote f3 in
Eq. (2) to be a step-like function of ¢, hereafter called
the “Step model”,

—M3 [1+tanh<¢_d¢rﬂ . (15)

fs(¢) =

where ¢, and d are new parameters of the model related
to the position in field space and the width of the step
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FIG. 1. G-inflation transition parameter A from Eq. (7)
as a function of e-folds N, for the model given in Eq. (15)
and for the values M = 1.303 x 107%, m = 2.58 x 1074,
¢» = 13.87 and four different values of the step width d:
d = {0.5,0.3,0.15,0.02}. Vertical lines denote N(¢,), the
epoch at which the inflaton crosses the center of the step.

respectively. This allows us to control the epoch and the
rapidity of the transition from G-inflation to canonical
inflation. By making this transition sufficiently rapid we
can evade the observational problems in the r-ng plane
as well as eliminate the gradient instabilities at the end
of inflation.

A. Background transition

With f5(¢) given in Eq. (15), we can numerically solve
the background equations (4) following the procedure ex-
plained in [32]. As discussed in §II, the transition from
G-inflation to canonical inflation is controlled by A in
Eq. (7): namely, A evolves from A > 1 to A < 1,
with the transition occuring at A ~ 1. For the model
in Eq. (15), the rapidity of the transition is controlled
by the step width d. Figure 1 shows the evolution of A
for different values of d with m, M and ¢, fixed to val-
ues which we will motivate below. One can see that the
transition takes fewer e-folds N for a sharp step, i.e. for
a small d. In these Step model examples N is defined in
such a way that at the end of inflation Ny = 55. We then
take N = 0 as the epoch when CMB scales or specifically
k. = 0.05 Mpc_1 left the scalar sound horizon

55 c
dN — =20Mpc . 16
/0 i pe (16)
Note that the wider the step is, the more the e-fold for
which A = 1 lags N(¢,) (shown with vertical lines), when
the inflaton passes the center of the step.

With a rapid transition, we generically expect that the
SR approximation will break down. In Fig. 2 we show
the evolution of ey for the same cases as Fig. 1 calculated
numerically and through the slow-roll approximation of
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FIG. 2. Exact solution for the slow-roll prediction of ez (RHS
of Eq. (6)) (upper panel) and fractional difference between
the solution employing the approximation in Eq. (12) and
the exact background value (lower panel), both as a function
of N and for the same models of Fig. 1. The vertical lines
represent N(A = 1) for each curve where the difference is
nearly maximal.

Eq. (6). In the slow-roll comparisons here and below we
use the numerical computation of ¢(N) to avoid conflat-
ing errors in the mapping of Eq. (12) and local devia-
tions from slow-roll at a given N. Before and after the
transition (but before the end of inflation), the slow-roll
approximation is quite good. Near the transition, how-
ever, fractional differences increase as d decreases (Fig. 2,
lower panel). The deviations peak near the epoch when
A =1 (vertical lines). The rapid evolution of ey and
corresponding breakdown of the slow-roll approximation
requires going beyond the slow-roll approximation for the
accurate calculation of scalar and tensor observables as
we shall see in the next section.

To finish the discussion on the background solutions,
Fig. 3 shows the evolution of the sound speed squared of
scalar perturbations, ¢2, as a function of N (see Eq. (18)
for details). The value M = 1.303 x 10~* of the Galileon
mass scale used here is below the lower limit obtained
in [32] corresponding to the avoidance of gradient insta-
bilities in the G-model case. However, as expected for
the Step model, we see that as long as the width is not
very large that the transition fails to complete by the
end of inflation, the gradient instabilities disappear — 2
is always positive — and this holds independently of the
value of the Galileon mass scale M. Since inflation ends
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FIG. 3. Scalar sound speed squared near the end of inflation
Ny = 55 for the choice of values M = 1.303 x 107*, m =
2.58 x 107*, ¢, = 13.87 and four different values of the step
parameter d: d = {0.081,10,20,45}. Except for the widest
case of d = 45, the step ensures that the transition completes
before the end of inflation, A(¢s) < 1, and eliminates the
gradient instability, i.e. ¢ > 0.

at ¢ ~ 1, this condition corresponds to setting the tran-
sition ¢, sufficiently large given the width d.

B. Inflationary observables

In order to compute inflationary observables, we ex-
pand to quadratic order in scalar and tensor perturba-
tions the action for £, given in Eq. (1):

2
Sé2):/d4 GZEH(CQ ck€>,

a? ) c2k?
s - Y [eefg (5-Tg) . an

A=+,X
parametrized by the sound speeds c;; and normaliza-
tion factors b, ; for scalar and tensor perturbations which
contain all the information coming from the Horndeski
framework [40]. For the choice glven in Egs. (2) these
parameters can be computed as’*

2ugH — 2u5H — i3

bs: )
€n
3 (2ueH — 2ubH — 13
ng (Mz /1’22 /’LQ) , (18)
dps + 95
btzl, Ct2:1,

*5 For the general case in which none of the G, functions are taken
to be equal to zero see [19, 32].

where
pe =2H — fsH3¢™ (19)

3
ps = —9H? — 3f3 ,H*¢'* + 51+ 12H%f3¢') H?¢"* .
Notice that, for the choice of Egs. (2), the tensor action
is not modified from that of canonical inflation.
Varying the quadratic actions given in Egs. (17) we
arrive at the Mukhanov-Sasaki equation

d2u7; 2792 1 d2zi
=+ <cik ~ e )u=0. (20)

Here and below 7 is the (positive, decreasing) confor-
mal time until the end of inflation, and i = s,t for the
scalar and tensor perturbations respectively. We define
the Mukhanov-Sasaki variable as us = 2, and u; = 247y

with
v/ 2bg /b
aieH ’ 2 = a o ’ (21)
Cs c V2

for the quadratic actions in Eq. (17).

As shown in Fig. 2, for the Step model with a small step
width we cannot apply the slow-roll approximation to
solve Eq. (20) due to the fact that the slow-roll conditions
are violated near the transition where A ~ 1. We instead
solve this equation numerically from Bunch-Davies initial
conditions to compute the power spectra as

Zs —

2
8300 = i 5l
kS

A?y(k) = lim

2
k aoﬁ|7+’x|

: (22)
which define the inflationary parameters n(k) and r(k)
through Eq. (11).

We now construct a working example of transient G-
inflation in order to examine its observable phenomenol-
ogy further. With the convention that the CMB mode
exits the scalar sound horizon 55 e-folds before the end
of inflation, the Step model has four remaining free pa-
rameters: the mass scales M and m, and the step pa-
rameters ¢, and d. The inflaton mass scale m mainly
controls the Hubble rate and hence the amplitude of
the power spectra. We choose it to satisfy the Planck
2015 TT+lowP measurement of the scalar amplitude
A = Ag(k*) = (2.198 £ 0.08) x 107? [1]. For a fixed
m, the Galileon mass scale M determines A when the
CMB mode leaves the horizon, which sets the tensor am-
plitude relative to the scalar amplitude. We therefore
fix it according to the desired suppression of r, for ex-
ample A(0) ~ 8. Finally, the step parameters ¢, and d
are determined by the Planck 2015 TT+lowP scalar tilt
ns = 0.9655 + 0.0062 and bounds on the running of the
tilt oy = —0.0084 £ 0.0082. With four constraints for
four parameters, we use slow-roll expressions to find ini-
tial parameter guesses which satisfy these conditions and



then iterate using numerical results for the background
and power spectrum (see §IV) to enforce the Planck con-
straints beyond slow-roll.

Our resulting fiducial model has the parameter values
M = 1.303 x 107%, m = 2.58 x 107°, ¢, = 13.87, which
are the choices in Figs. 1-3, and d = 0.086, which satisfies
the observational constraints on ngs and as. Comparing
to Figs. 1 and 2, we see that this model has a relatively
fast transition and a moderate violation of slow-roll at
the transition. For this set of parameters, we show the
resultant scalar power spectrum in Fig. 4 as computed by
solving numerically the Mukhanov-Sasaki equation (20)
and compare that to the SR formula in Egs. (9) using
the numerical relationship for ¢(N) with kes/aH = 1
(upper panel). The discrepancy, which is quantified as
the fractional difference between the solutions and shown
in the lower panel, is similar to the error in €y, as shown
in Fig. 2, in that they both peak near the transition where
A = 1. On the other hand, the slow-roll approximation
captures the qualitative behavior of the power spectra
and errs mainly in causing a shift in the scale k at which
the transition occurs. We shall see in the next section
that the optimized evaluation of slow-roll parameters can
restore accuracy in the CMB regime by correctly fixing
this shift.

We can now see how introducing a more rapid transi-
tion from G-inflation can solve the observational problem
of having too large r for the observed n,. Namely, the
transition mediates a suppression of the power spectrum
or a larger red tilt 1 — ng than predicted by the slow-roll
formula in §IT.

In Fig. 5 we show the parametric relationship between
r and the ng for same model. The step model starts at
the lower right on the G-model curve but deviates sharply
to a lower tilt at the transition before returning to the
chaotic inflation curve. In this way, the step solves the
observational problem of having a low r and a relatively
large red tilt ns < 1. Note that in Fig. 5 the wavenumber
k varies along the curve and so only represents the CMB
pivot scale at a single point represented by the star. This
model satisfies observational bounds on r and ng, unlike
the G-model and chaotic inflation.

Figure 6 depicts the same (ng,r) plane but now for the
fixed pivot scale k.. For the G-model and chaotic infla-
tion we show the mapping at AN = 50, 60 to provide a
reasonable range of possibilities as in Ref. [32], whereas
for the Step model we keep AN = 55. The Galileon
mass scale M varies across the curves, where the black
star marks the fiducial model M = 1.303 x 10~4, and su-
perimposed are the constraints from the 2015 release of
the Planck collaboration [1]: we separately consider the
full temperature auto-correlation spectrum at all mul-
tipoles with the polarization spectra at low multipoles
only (Planck TT+lowP) plus the joint results of the Bi-
cep2/Keck and Planck collaborations (BKP); as well as
the Planck TT+lowP + BKP combination with Baryon
Acoustic Oscillation (BAO) measurements.

As previously discussed, one can see that while the
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FIG. 4. Scalar power spectrum for the Step model com-
puted by solving numerically Eq. (20) (stars) and by com-
puting Egs. (9) with the exact background solutions (dashed
orange) (upper panel). Fractional difference between the two
solutions (lower panel). The set of parameters used here is
M =1.303x10""*, m = 2.58x107°, ¢, = 13.87 and d = 0.086.
The vertical thin line marks the CMB scale k. = 0.05 Mpc™'.
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FIG. 5. (ns,r) plane for the three models studied here:
chaotic inflation (14), G-model (13) and the Step model with
the values M = 1.303 x 107*, m = 2.58 x 107°, ¢, = 13.87
and d = 0.086. The wavenumber k varies along the curve in
which case the star marks the CMB scale k. = 0.05 Mpc™*.

canonical chaotic and G- models are in tension with the
latest measurements, the Step model allows for a param-
eter space of values for M which are in good agreement
with the data. Following the methodology explained
above, for a given value of M, the inflaton mass m is fixed
to obtain the correct scalar amplitude, while the step pa-



rameters ¢, and d are chosen to keep ns; and «; fixed.
Here we have chosen oy ~ —0.01. Making M smaller
allows the Step model to lower the value of r while the
transition keeps the CMB scales sufficiently red-tilted.

Furthermore, by varying M away from the fiducial
value we encounter two endpoints. As M, and hence r,
decreases, the increasing value of A(0) combined with the
requirement that A < 1 at the end of inflation, places a
lower limit on |a| for a given n,. This lower limit exceeds
|as| = 0.01 at r &~ 0.005 explaining the lower endpoint in
Fig. 6. On the other hand, for large M, CMB scales are
no longer in a fully G-inflationary phase so that ¢, and
d can also no longer be adjusted to match ns; and, more
importantly, o, ~ —0.01.

As one might expect, taking a smaller value of |ay],
which still satisfies the Planck constraint, enables a less
restrictive upper endpoint that eventually joins with the
chaotic or G-model curves. A smaller |a;| also implies a
wider step and increases the lower limit on r from requir-
ing the transition complete before the end of inflation. A
larger |a;| would have the opposite effects but would be-
gin to be in tension with Planck constraints. We thus
conclude that for the Step model » = 0.005, and at the
lowest r-value |a;| > 0.01, so that tensors and potentially
scalar running should be observable with next generation
surveys. We comment further on the latter in §IV B.

For these observationally viable cases, perturbations
on CMB scales were frozen in at the very beginning of the
transition. As we shall see next, this implies that CMB
observables can be accurately predicted by the OSR ap-
proximation which takes into account the variation of the
slow-roll parameters.

IV. GENERALIZED SLOW-ROLL

In the previous section we have seen that, by introduc-
ing a rapid transition from G-inflation to canonical infla-
tion that completes shortly after the CMB scales leave
the horizon, we can avoid the observational problems as-
sociated with the original G-model. At the transition,
the breakdown of the slow-roll approximation requires
numerical solutions for full accuracy, especially for large
and sharp steps. On the other hand, CMB scales in ob-
servationally viable cases are associated with the very
beginning of the transition where there is a much milder
breakdown of slow-roll. For CMB observables it is there-
fore possible to develop a better version of slow-roll that
is analytic or semi-analytic. This also helps clarify the
phenomenology of the Step model and assists in param-
eter estimation from the observational data.

Techniques to handle such cases have already been de-
veloped for the effective field theory (EFT) of inflation
[38, 40], including the Horndeski theory to which our
Step model belongs: first the GSR formalism [33-39] al-
lows for formally solving the Mukhanov-Sasaki equation
(20), in which only the size, but not the evolution, of
the slow-roll parameters is required to be small. When
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(7 — model
K Step model (AN = 55)

().bf) U,l_)(i 0.97
Primordial tilt (ng)

FIG. 6. 68% and 95% CL allowed contours from Planck TT
+ lowP+ BKP and from Planck TT + lowP + BKP + BAO
in the (ns,r) plane along with the predictions for the canon-
ical chaotic inflation model, the G-model (both for AN = 50
and AN = 60) and the Step model (AN = 55). In both non-
canonical cases, M is let to vary from 10™% to 5 x 1073, where
a smaller M value is associated with a smaller value in r. The
black star marks the fiducial-model value M = 1.303 x 1074,
whereas M = 6.8x10™* (M = 5x107°) for the upper (lower)
orange stars endpoints determined by requiring the scalar run-
ning as ~ —0.01. Other Step model parameters are fixed by
measurements of A; and ns as described in the text.

the evolution is also slower than the e-folding scale, GSR
itself can be systematically expanded in the OSR approx-
imation which fixes the evaluation point of the slow-roll
parameters to obtain fully analytic solutions. Since this
is the case for the Step model at the beginning of the
transition, the OSR approximation is accurate for this
model at CMB scales.

A. GSR

We can rewrite the Mukhanov-Sasaki equation (20), as

2
dy+<12>yf,XX_3f,Xy (23)

daz? x2 f z2’

by defining the new variables y = +/2c;ku;, x = ks;,
x = Inz, for i = s,t with separate source functions

bsepcs aHsg
fs = 2mzg\/Cs55 = 1| 82 HH2 Pt
tht CLHSt
=2 = /2m2— —— 24
I T2i\/Ci8¢ = \[ 27 el (24)

and sound horizons

_ Ny Cs,t
sst(N) = —dN , (25)
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FIG. 7. Approximations for the scalar power spectrum of the
Step model compared with the exact numerical solution as in
Fig. 4: GSR (28), OSR (31) and SR (9). The thin red vertical
line marks the CMB pivot scale k. = 0.05 Mpc™' where GSR
and OSR provide a highly accurate description.

for scalars and tensors, respectively.

Notice that the left-hand side of Eq. (23) corresponds
to the evolution of the modefunctions in a de Sitter back-
ground and thus the right-hand side encodes deviations
from the de Sitter solution into the function f. So far we
have not made any assumption for the evolution of ey
or the other slow-roll parameters. In these variables the
power spectra, Egs. (22), are given by

(7).
f s,t

)

A7, = lim (26)

x—0

If deviations from de Sitter remain small in amplitude,
Eq. (23) can be solved iteratively using Green function
methods. Starting with the de Sitter solution of the left-
hand side of Eq. (23), i.e. the Bunch-Davies vacuum,

yo(z) = <1 + ;) e, (27)

we can take y — yo on the right-hand side of Eq. (23) to

obtain the first-order iterative solution (see, e.g., [35] for
details),

> dx
In A2 (GSR) o _/ —Wi(@)G () (28)
0

where W (z) is a window function given by

W(x) = 381;;(321) B 300;52@ B 3sin3(023n) , (29)
and G(x) is a source function that now encodes all the

deviations from the de Sitter solution and it is written as

G=-2 lnf—ﬁ-%(lnf)% . (30)

The GSR formula, Eq. (28), still requires numerical
integration, though it remains more computationally ef-
ficient than solving Eq. (20). Moreover, the source func-
tion G provides a model-independent means to connect
observational constraints with any inflationary model in
the EFT class [42, 43]. The scalar tilt ny and higher or-
der running coefficients can also be efficiently computed
numerically by taking derivatives of Eq. (28) with respect
to the scale k.

In Fig. 7, we compare the GSR approximation to the
numerical solution for the same model as in Fig. 4. GSR
provides accurate predictions for the scalar power spec-
trum along all values of k and only deviates slightly at
the transition due to its large amplitude, which can be
improved if desired by iterating to higher order. At CMB
sales of k, = 0.05 Mpc™!, the approximation is accurate
at the ~ 0.01% level whereas SR deviations are at 7%
level.

B. OSR

At CMB scales, the source function in Eq. (30) evolves
only over timescales greater than an e-fold (AN > 1) as
shown for ey in Fig. 2. In this case we can Taylor expand
the GSR formula, Eq. (28), around a given evaluation
epoch to write down approximate analytical formulas for
the power spectra, their tilts and runnings. For the tradi-
tional slow-roll expansion, the evaluation epoch is chosen
as the horizon exit epoch. However, we can optimize it
to minimize an error associated with truncation of the
Taylor expansion (see [38, 40] for details). We can then
construct the hierarchy of running of power spectrum pa-
rameters out of slow-roll parameters associated with the
functions H, b, ; and ¢, ;. The OSR formulas which take
into account a general background given by Eq. (1) can
then be written to leading order as [38, 40]
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2 7 1
OéS(OSR) ~ —252 — O0g2 — fsg — 553 — 50'33 — gfsg — 8€2H — 106H51 + 25% s (31)
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H? 8 7 1
o A2(OSR) - s 1
12y U\ o2, ) T3 T 300 T gt
7 1
ﬂt(OSR) ~ —2eg — oy — & — 3012~ §§t2 I
7 1
Oét(OSR) ~ —0pp — & — 3013 ~ §£t3 — 43, — depdy ) (32)
=T

for tensor perturbations. Here Inx = Inz; &~ 1.06 is the
optimized evaluation point, «; = dn;/dInk is the run-
ning of the tilt, and the slow-roll parameters are defined
as:

ldlney do
N=g5—gy ~H- 5p+15d7\1;+6p(51_p6f1)’
_dlng _ doip
Oil = TgN Tip+l = TGN
_dinb; _din&,
51’1 = aN §z¢p+1 = aN (33)

where i = s,t and p > 1. Finally, the tensor-to-scalar
ratio can be computed in the standard way through
Eq. (11). Note however that the ratio is taken at fixed
k which in general gives the © = x; evaluation point at
two different N for scalars and tensors, in which case
the sound speeds c¢; and ¢; differ. Figure 7 shows that
although the OSR solution for the scalar power spec-
trum is slightly less accurate than GSR, it is still a very
good approximation with only ~ 0.6% level deviations at
k. = 0.05 Mpc~! (marked by the thin red line).
Furthermore the hierarchy of OSR coefficients Ay =

AE(OSR)(k*), ns(ky) and a4(ky) define a local character-
ization of the scalar power spectrum in the usual way:

ns—1+3a,In(k/ky)
A, (’“) .

2(SRH
AL () = A, (

(34)

In Fig. 8, we show that for the decade below or above
the pivot scale k, this three parameter approximation
works extremely well with errors less than 1%. This
means that observational data in this regime can be an-
alyzed with the usual hierarchy parameterization so long
as the implications for inflationary model are extracted
from the OSR relations. For example, in the fiducial
Step model, agOSR)(k*) = —0.011 can be compared with
the Planck temperature power spectrum constraint of

(

as = —0.0084 £+ 0.0082 [1]. Unlike the traditional ex-
pansion of the SR approximation to second order in pa-
rameters, OSR can accurately relate inflationary models
to the SRH observables in such cases when || is of order
|ns — 1] [38].

Finally as discussed in §II1 B, the step model allows for
a possible range of values of the running o, for a given
value of r. For |ag| to be small, the transition must be
wide, and enforcing that the transition completes before
the end of inflation places a lower bound on |a4|. For
instance, for 7 = 0.02, this corresponds to the constraint
|as| 2 0.002. Furthermore, this lower bound on ||
increases as r decreases as the model must transition from
an increasingly enhanced scalar power spectrum within
the ~ 55 e-folds to the end of inflation; at r = 0.005,
las| 2 0.01.

V. CONCLUSIONS

G-inflation provides the possibility that inflation is
driven by simple potentials, like the mass term of chaotic
inflation, but with more complex kinetic interactions,
while still satisfying observational constraints on the
scalar and tensor power spectra. We show that this is not
possible with just a cubic Galileon interaction with a con-
stant mass scale since the transition from G-inflation to
canonical inflation is too slow, leading to a scalar power
spectrum that is either too small relative to the tensors
or too close to scale invariant. In addition, failure to
complete the transition by the end of inflation leads to
gradient instabilities during reheating. By introducing a
sufficiently rapid step-like transition, we simultaneously
solve both the phenomenological and instability problems
of potential driven G-inflation.

While a fast transition inevitably leads to a breakdown
of the traditional slow-roll approximation at the peak of
the transition, we show that for phenomenologically vi-
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FIG. 8. Slow-roll hierarchy (SRH) parameterization of the
scalar power spectrum with amplitude Ag, tilt ns and run-
ning of the tilt a, evaluated at k. (thin red line) using OSR
compared with the exact solution as in Fig. 4. The three hi-
erarchy parameters provide a good description for more than
two decades around k.

able models, fluctuations on CMB scales freeze out near
the beginning of the transition. By comparing exact nu-
merical solutions with the generalized slow-roll approxi-
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mation and its optimized expansion, we show how to ac-
curately relate the properties of the G-step model, such
as the position and width of the step and two mass scales,
to the power spectrum observables through the slow-roll
parameters. In particular, across the scales that are cur-
rently precisely measured by the CMB and large-scale
structure, the scalar power spectra can still be described
by an amplitude Ag, tilt ng — 1 and running of the tilt
Q.

However the negative running of the tilt can be of order
of ng — 1 itself unlike in the traditional slow-roll approx-
imation and necessitates the OSR approximation for its
evaluation. In fact for a given tensor-to-scalar ratio r,
there is a lower bound on |ag| since the transition must
complete within the ~ 55 e-folds to the end of inflation to
avoid gradient instabilities. While the required relatively
large running of the tilt can satisfy current constraints
if » 2 0.005, it is potentially detectable with future high
precision measurements and also suppresses smaller scale
structure in observable ways.
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