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ABSTRACT
We study the prospects for extracting detailed statistical properties of the Sunyaev-Zeldovich (SZ)

e†ect associated with large-scale structure using upcoming multifrequency cosmic microwave background
(CMB) experiments. The greatest obstacle to detecting the large-angle signal is the confusion noise pro-
vided by the primary anisotropies themselves, and to a lesser degree Galactic and extragalactic fore-
grounds. We employ multifrequency subtraction techniques and the latest foregrounds models to
determine the detection threshold for the Boomerang, Microwave Anisotropy Probe (MAP ; several kK),
and Planck CMB (sub-kK) experiments. Calibrating a simpliÐed biased-tracer model of the gas pressure
from recent hydrodynamic simulations, we estimate the SZ power spectrum, skewness, and bispectrum
through analytic scalings and N-body simulations of the dark matter. We show that the Planck satellite
should be able to measure the SZ e†ect with sufficient precision to determine its power spectrum and
higher order correlations, e.g., the skewness and bispectrum. Planck should also be able to detect the
cross-correlation between the SZ and gravitational lensing e†ect in the CMB. Detection of these e†ects
will help determine the properties of the as yet undetected gas, including the manner in which the gas
pressure traces the dark matter.
Subject headings : cosmic microwave background È cosmology : theory È

large-scale structure of universe

1. INTRODUCTION

It is by now well established that the precision measure-
ments of the cosmic microwave background expected from
upcoming experiments, especially the Microwave Anisot-
ropy Probe (MAP) and Planck satellite missions, will
provide a gold mine of information about the early universe
and the fundamental cosmological parameters (e.g.,
Jungman et al. 1996). These experiments can in fact do
much more. With all-sky maps across the wide range of
uncharted frequencies from 20 to 900 GHz, the secondary
science from these missions will arguably be as interesting
as the primary science.

In this paper, we examine the prospects for extracting the
large-scale properties of the hot intergalactic gas from
multifrequency observations of the cosmic microwave back-
ground (CMB). Inverse-Compton scattering of CMB
photons by hot gas, known as the Sunyaev-Zeldovich (SZ;
Sunyaev & Zeldovich 1980) e†ect, leaves a characteristic
distortion in the spectrum of the CMB, which Ñuctuates in
the sky with the gas density and temperature. In the
Rayleigh-Jeans (RJ) regime, it produces a constant decre-
ment, and with only low-frequency measurements, the
much larger primary anisotropies in the CMB itself obscure
the Ñuctuations on scales greater than a few arcminutes
(e.g., Goldberg & Spergel 1999). The upscattering in fre-
quency implies an increment at high frequencies and a null
around 217 GHz. This behavior provides a potential tool
for the separation of the SZ e†ect from other temperature
anisotropy contributors.

Since both the SZ spectrum and the CMB spectrum are
accurately known, one can expect that foreground-removal
techniques developed to isolate the primary anisotropies
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can be reversed to recover the SZ signal in the presence of
noise from the primary anisotropies. Galactic and extra-
galactic foregrounds will be more challenging to remove.
Here we use the latest foreground models from Tegmark et
al. (2000), which take into account the fact that imperfect
correlations in the foregrounds between frequency channels
inhibits our ability to remove them. Using foreground infor-
mation together with the expected noise properties of indi-
vidual experiments, one can determine the minimal
detectable signal in each experiment and the upper limit
achievable in the absence of detection. Experiments with
sufficient signal-to-noise ratio (S/N) can extract precision
measurements for the power spectrum and higher order
statistics such as the skewness. Ultimately, they can provide
detailed maps of the large-angle SZ e†ect.

To assess the prospects for an actual detection, we must
model the SZ signal itself. The SZ e†ect is now routinely
imaged in massive galaxy clusters (e.g., Carlstrom, Joy, &
Grego 1996 ; Jones et al. 1993), where the temperature of the
scattering medium can reach as high as 10 keV, producing
temperature changes in the CMB of the order of 1 mK at RJ
wavelengths. The possibility for the detection of massive
clusters in CMB satellite data has already been discussed in
several studies (e.g., Aghanim et al. 1996 ; Haehnelt &
Tegmark 1996 ; Pointecouteau, Girard, & Barret 1998).
Here, however, we are interested in the SZ e†ect produced
by large-scale structure in the general intergalactic medium
(IGM), where the gas is expected to be at keV in mild[1
overdensities, leading to CMB contributions in the kK
range.

It is now widely believed that at least D50% of the
present-day baryons, when compared to the total baryon
budget from big bang nucleosynthesis, are present in gas
associated with hot large-scale structure that has remained
undetected, given its temperature and clustering properties
(e.g., Fukugita, Hogan, & Peebles 1998 ; Cen & Ostriker
1999 ; Pen 1999). Recently, Scharf et al. (2000) has provided
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FIG. 1.ÈTop : Foreground contributions to temperature anisotropies, from the various foregrounds (dust, free-free, synchrotron,(*T /T )2\ l(l] 1)C
l
/2n,

radio and infrared point sources, and rotating dust) at three Ðducial frequencies, as labeled. The SZ signal (heavy solid line, unlabeled) is estimated with the
simpliÐed model of ° 3. Bottom : Residual foregrounds after multifrequency subtraction for Boomerang, MAP, and Planck. The total includes detector noise
and residual CMB.

a tentative detection of X-ray emission from a large-scale
Ðlament in one of the deep ROSAT PSPC Ðelds ; previous
attempts yielding upper limits are described in Kull &

(1999) and Briel & Henry (1995). These resultsBo� hringer
are consistent with current predictions for the X-ray surface
brightness based on numerical simulations (e.g., Cen et al.
1995). Pen (1999) argued that nongravitational heating of
the gas to D1 keV is required to evade bounds from the soft
X-ray background. These results suggest that the X-ray
emission from this gas may be detectable in the near future
with wide-Ðeld observations with the Chandra X-Ray
Observatory and X-Ray Multiple Mirror Mission (XMM).4

On the theoretical front, hydrodynamic simulations of
the SZ e†ect continue to improve (da Silva et al. 1999 ;
Refregier et al. 1999 ; Seljak, Burwell, & Pen 2000). Since a
consensus is still lacking from these simulations of basic
properties, such as the opacity-weighted gas temperature
and average Compton distortion, we base our assessment of
the detectability of the large-scale SZ e†ect on a simple
parameterization of the e†ect, based on a gas-pressure bias
model (Refregier et al. 1999), crudely calibrated with the
recent hydrodynamic simulations. We employ perturbation
theory, nonlinear scaling relations, and N-body simulations
for the dark matter to assess the statistical properties of the
signal. Properly calibrated, these techniques can com-
plement hydrodynamic simulations by extending their
dynamic range and sampling volume. Currently, they

4 Chandra home page available at http ://asc.harvard.edu ; X-Ray
Multiple Mirror Mission (XMM) available at http ://astro.estec.esa.
nl/XMM.

should simply be taken as order-of-magnitude estimates of
the potential signal.

Throughout this paper, we will take an adiabatic cold
dark matter (CDM) model as our Ðducial cosmology. We
assume cosmological parameters for the cold)

c
\ 0.30

dark matter density, for the baryon density,)
b
\ 0.05

for the cosmological constant, h \ 0.65 for the)" \ 0.65
dimensionless Hubble constant, and a COBE-normalized
scale-invariant spectrum of primordial Ñuctuations (Bunn
& White 1997).

The layout of the paper is as follows. In ° 2, we describe
the foreground and primary anisotropy removal method
and assess their efficacy for upcoming CMB experiments. In
° 3, we detail the bias model for the SZ e†ect and calculate,
through perturbation theory, analytic approximations, and
numerical simulations, the low-order statistics of the SZ
e†ect : its power spectrum, skewness, and bispectrum. In ° 4,
having estimated the noise and the signal, we assess the
prospects for measuring these low-order statistics in
upcoming experiments. We conclude in ° 5 with a dis-
cussion of our results.

2. MODELING THE CMB AND FOREGROUND NOISE

The main obstacle for the detection of the SZ e†ect from
large-scale structure for angular scales above a few arcmin-
utes is the CMB itself. Here the primary anisotropies domi-
nate the SZ e†ect for frequencies near and below the peak in
the CMB spectrum (see Fig. 1). Fortunately, the known
frequency dependence and statistical properties of primary
anisotropies allows for extremely e†ective subtraction of
their contribution (e.g., Hobson et al. 1998 ; Bouchet &
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Gispert 1999 ; Knox 1999). In particular, primary aniso-
tropies obey Gaussian statistics and follow the blackbody
spectrum precisely.

Perhaps more worrying are the Galactic and extra-
galactic foregrounds, some of which are expected to be at
least comparable to the SZ signal in each frequency band.
These foregrounds typically have spatial and/or temporal
variations in their frequency dependence, leading to imper-
fect correlations between their contributions in di†erent fre-
quency bands. We attempt here to provide as realistic an
estimate as possible of the prospects for CMB and fore-
ground removal, given our incomplete understanding of the
foregrounds.

2.1. Foreground Model and Removal
We use the ““MID ÏÏ foreground model of Tegmark et al.

(2000) and adapt the subtraction techniques found there for
the purpose of extracting the SZ signal. The assumed level
of the foreground signal in the power spectrum for three
Ðducial frequencies is shown in Figure 1.

The foreground model is deÐned in terms of the covari-
ance between the multipole moments at di†erent frequency
bands,5

Sa
l{m{f* (l@)a

lm
f (l)T \ C

l
f(l@, l)d

ll{
d
mm{ , (1)

in thermodynamic temperature units as set by the CMB
blackbody. In this section, we speak of the primary aniso-
tropies and detector noise simply as other foregrounds with
very special properties :

C
l
CMB(l@, l)\ C

l
,

C
l
noise(l@, l)\ 8 ln 2h(l)2eh2(l)l(l`1)

A*T
T
B2 K

noise
dl,l{ . (2)

The FWHM\ (8 ln 2h)1@2 and noise speciÐcations of the
Boomerang, MAP, and Planck frequency channels are
given in Table 1. True foregrounds generally fall in between
these extremes of perfect and no frequency correlation.

The di†erence between extracting the SZ signal and the
primary signal is simply that one performs the subtraction
with reference to the SZ frequency dependence

s(l)\ 2 [x
2

coth
x
2

, (3)

where GHz. Note that in the RJ limitx \ hl/kTCMBB l/56.8
s(l)] 1, so that

C
l
SZ(l, l@)\ s(l)s(l@)C

l
SZ , (4)

where is the SZ power spectrum in the RJ limit.C
l
SZ

Consider an arbitrary linear combination of the channels,
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li

1
s(l

i
)
w(l

i
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) , (5)

where we normalize the sum of the weights to unity,
to obtain an unbiased estimator of the RJ; w(l

i
)\ 1,

multipoles. Since the subtraction is done multipole by multi-

5 A potential caveat for this type of modeling is that it assumes the
foregrounds are statistically isotropic whereas we know that the presence
of the Galaxy violates this assumption at least for the low order multipoles.
We assume that of the sky is lost to this assumption even1 [ fskyD 0.35
with an all-sky experiment.

TABLE 1

CMB EXPERIMENTAL SPECIFICATIONS

Experiment l FWHM 106*T /T

Boomerang . . . . . . 90 20 7.4
150 12 5.7
240 12 10
400 12 80

MAP . . . . . . . . . . . . . 22 56 4.1
30 41 5.7
40 28 8.2
60 21 11.0
90 13 18.3

Planck . . . . . . . . . . . 30 33 1.6
44 23 2.4
70 14 3.6

100 10 4.3
100 10.7 1.7
143 8.0 2.0
217 5.5 4.3
353 5.0 14.4
545 5.0 147
857 5.0 6670

NOTE.ÈSpeciÐcations used for Boomerang, MAP,
and Planck. FWHM of the beams are in arcminutes
and should be converted to radians for the noise
formula. Boomerang covers a fraction D2.6% of the
sky, while we assume a usable fraction of 65% for
MAP and Planck. In ° 4, in order to calculate the
maximum S/N, we deÐne a perfect experiment as one
with no instrumental noise and full sky coverage.

pole, we have temporarily suppressed the multipole index.
The covariance of this quantity is

Sb2T \ CSZ
C
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where the scaled foreground covariance matrix is
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Minimizing the variance contributed by the foregrounds
subject to the constraint that the SZ estimation be
unbiased, we obtain

;
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w(l
j
)C3 (l

i
, l

j
) \ const , (8)

whose solution is where The constantw P C3 ~1e, e(l
i
) \ 1.

of proportionality is Ðxed by the condition i.e.,; w(l
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)\ 1,
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2.2. Detection T hreshold
The residual noise variance from each foreground com-

ponent is then

N
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with the total

N
l
\ ;

f
N

l
f , (11)

where we have restored the multipole index.
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Note that the residual noise in the map is independent of
assumptions about the SZ signal, including whether or not
it is Gaussian. However, if the foregrounds themselves are
non-Gaussian, then this technique only minimizes the
variance and may not be optimal for recovery of non-
Gaussian features in the SZ map itself. Bouchet et al. (1995)
have shown that similar techniques are quite e†ective, even
when confronted with non-Gaussian foregrounds. This is a
potential caveat, especially for cases in which the residual
noise is not dominated by the primary anisotropies or
detector noise. We discuss methods to alleviate this concern
in the next section.

The residual noise sets the detection threshold for the SZ
e†ect for a given experiment. In Figure 1, we show the rms
of the residual noise after foreground subtraction for the
Boomerang, MAP, and Planck experiments assuming the
““MID ÏÏ foreground model from Tegmark et al. (2000). With
the Boomerang and Planck channels, elimination of the
primary anisotropies is excellent up to the beam scale at
which detector noise dominates. As expected, the MAP
channels, which are all on the RJ side of the spectrum, do
not allow good elimination of the primary anisotropies.

It is important not to assume that the foregrounds are
perfectly correlated in frequency, which is the usual assump-
tion in the literature (Hobson et al. 1998 ; Bouchet &
Gispert 1999). There are two types of errors incurred by
doing so. The Ðrst is that one underpredicts the amount of
residual noise in the SZ map (see Fig. 2). The second is that
if one calculates the optimal weights in equation (9) based
on this assumption, the actual residual noise increases. For
Planck, it can actually increase the noise beyond the level in
which it appears in the 100 GHz maps with no foreground
subtraction at all. This is because the cleaning algorithm
then erroneously uses the contaminated high- and low-
frequency channels to subtract out the small foreground
contamination in the central channels. In Planck, the di†er-
ence between the predicted and actual rms noise from

FIG. 2.ÈDependence of the residual noise rms on foreground assump-
tions expressed as a ratio to the Ðducial model of Fig. 1. (a) Falsely
assuming that the foregrounds have perfect frequency coherence not only
underpredicts the residual noise by a substantial factor but also leads to
substantially more actual residual noise. (b) Multiplying the foreground
amplitudes by 2 (power by 4) produces an increase of less than a factor of 2
in the residual noise.

falsely assuming perfect frequency coherence can be more
than 2 orders of magnitude.

For Boomerang and Planck, the largest residual noise
component, aside from detector noise, is dust emission,
which is sufficiently large that one might worry that current
uncertainties in our knowledge of the foreground model
may a†ect the implications for the detection of the SZ e†ect.
It is therefore important to explore variations on our Ðdu-
cial foreground model.

Multiplying the foreground rms amplitudes uniformly by
a factor of 2 (and hence the power by a factor of 4) produces
less than a factor of 2 increase in the residual noise rms, as
shown in Figure 2. Likewise, as discussed in Tegmark et al.
(2000), minor variations in the frequency coherence do not
a†ect the residual noise much in spite of the fact that it is
crucial not to assume perfect correlation. We conclude that
uncertainties in the properties of currently known fore-
grounds are unlikely to change our conclusions qualit-
atively. There is, however, always the possibility that some
foreground that does not appear in the currently measured
frequency bands will a†ect our results.

The fact that the residual dust contributions are compa-
rable to those of the detector noise for Boomerang and
Planck is problematic for another reason. Since the algo-
rithm minimizes to total residual variance, it attempts to
keep these two main contributors roughly comparable.
However, the dust will clearly be non-Gaussian to some
extent, and one may prefer instead to trade more residual
detector noise for dust contamination. One can modify the
subtraction algorithm to account for this by artiÐcially
increasing the rms amplitude of the dust when calculating
the weights in equation (9), while using the real amplitude in
calculating the residual noise in equation (10). For example,
we have explored increasing the amplitude by a factor of 4
(power by 16) for the weights. The result is an almost negli-
gible increase in total residual noise rms, but an improve-
ment in dust rejection by a factor of 3È4 in rms. For Planck,
this brings the ratio of dust to total rms to D10%; recall
that the noise adds in quadrature, so that the total dust
contribution is really D1% of the total. This more conser-
vative approach is thus advisable, but since it leaves the
total residual noise rms essentially unchanged, we adopt the
minimum variance noise to estimate the detection thresh-
old.

Figure 1 directly tells us the detection threshold per (l, m)
multipole moment. Since the SZ signal is likely to have a
smooth power spectrum in l, one can average over bands in
l to beat down the residual noise. Assuming Gaussian sta-
tistics, the residual noise variance, for the power spec-2N

l
2,

trum estimate is then given by

N
l
~2
K
band

\ fsky ;
lband

(2l ] 1)N
l
~2 , (12)

where accounts for the reduction in the number of inde-fskypendent modes due to the fraction of sky covered. The
result for the three experiments is shown in Figure 3. In the
absence of a detection, they can be interpreted as the
optimal 1 p upper limits on SZ band powers achievable by
the experiment. Boomerang and MAP can place upper
limits on the SZ signal in the interesting kK regime, whereas
Planck can detect signals well below a kK.

This noise-averaging procedure in principle implicitly
assumes that the statistical properties of the residual noise,
and by implication the full covariance matrix of the other
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FIG. 3.ÈDetection thresholds for the SZ e†ect. Error boxes represent
the 1 p rms residual noise in multipole bands and can be interpreted as the
detection threshold. Also shown (dotted line) is the level of the primary
anisotropies that have been subtracted with the technique and the signal
(dashed line) expected in the simpliÐed model of ° 3.

foregrounds, is precisely known. In reality, they must also
be estimated from the multifrequency data itself either
through the subtraction techniques discussed here or by
direct modeling of the foregrounds in the maps. Tegmark et
al. (2000) found that direct modeling of the foregrounds
with hundreds of Ðtted parameters did not appreciably
degrade our ability to extract the properties of the primary
anisotropies. The main source of variance there was the
cosmic variance of the primary anisotropies themselves,
whose properties are precisely known. Similarly, here the
main source of residual variance is either the primary aniso-
tropies (for MAP) or detector noise (for Boomerang and
Planck), and their statistical properties may safely be con-
sidered known.

3. MODELING THE SZ SIGNAL

In order to estimate how well the statistical properties of
the SZ e†ect might be recovered with multifrequency CMB
maps, we need to model the large-angle SZ e†ect itself. The
current state of the art in hydrodynamic simulations (da
Silva et al. 1999 ; Refregier et al. 1999 ; Seljak et al. 2000) has
reached a qualitative but not quantitative consensus on the
statistical properties of the SZ e†ect. In addition, questions
regarding the heating of the gas from nongravitational
sources may even change the results qualitatively (Pen
1999). Hydrodynamic simulations are also severely limited
in the dynamic range and volume sampled.

Given the current state of a†airs, we believe that it is
useful to explore a parameterized model of the e†ect whose
consequences are simple to calculate and that can be cali-
brated against hydrodynamic simulations as they continue
to improve.

3.1. Bias Prescription
In general, the SZ temperature Ñuctuation, # \ *T /T , is

given by the opacity-weighted integrated pressure Ñuctua-
tion along the line of sight :

#SZ(nü , l)\ [2s(l)
P
0

r0
dr q5 n(r, nü r) , (13)

where r is the comoving distance, q is the Thomson optical
depth overdots denote derivatives with(dq\ n6

e
pT adr),

respect to r, and the dimensionless electron pressure Ñuc-
tuation is

n \ dp
e

o
e
c2 . (14)

One needs to model the statistical properties of n, in partic-
ular its power spectrum and bispectrum,

Sn(k)*n(k@)T \ (2n)3dD(k [ k@)Pn(k) , (15)

Sn(k)n(k@)n(k@@)T \ (2n)3dD(k ] k@] k@@)Bn(k, k@, k@@) ,

as a function of look-back time or distance r. In principle,
we also need the unequal time correlators, but in practice
these do not play a role, as we shall see.

By analogy to the familiar case of galaxy clustering, it is
reasonable to suppose that the pressure Ñuctuations depend
locally on the dark matter density and hence are biased
tracers of the dark matter density in the linear regime
(Goldberg & Spergel 1999). Hence, the statistical properties
follow from those of the dark matter distribution,

Pn(k ; r) B bn(r)2Pd(k ; r) ,

Bn(k, k@, k@@ ; r) B bn(r)3Bd(k, k@, k@@ ; r) . (16)

We have restored the time dependence, since the bias will be
time dependent even in the linear regime and must be
extracted from simulations. In general, the bias parameter
for the power spectrum and bispectrum need not be the
same even in the linear regime, since the bispectrum auto-
matically involves higher order corrections (Fry & Gazta-
naga 1993). For estimation purposes, here we take them to
be equal.

Following Goldberg & Spergel (1999), we chose the form

bn(r) \
bn(0)
1 ] z

, (17)

as motivated by Ðndings that the opacity-weighted tem-
perature drops o† roughly by this factor. We normalize the
value of the bias parameter today by comparison with
recent hydrodynamic simulations. It is conceptually useful
to separate the bias into two factors,

bn(0)\ kB T
e
(0)

m
e
c2 bd , (18)

i.e., an opacity-weighted average temperature and a bias
parameter for the gas density at that temperature. In Refre-
gier et al. (1999), for our Ðducial "CDM cosmology, the
bias was found to be D6È9, while in Seljak et al. (2000) itbdwas found to be in the range of D3È4. In both these papers,

keV; these values are lower than the D1T
e
(0)D 0.3È0.4

keV found by Cen & Ostriker (1999) using hydrodynamical
simulations with feedback e†ects. As a compromise between
these results, we take keV and whichT

e
(0)\ 0.5 bd\ 4,

corresponds to

bn(0)\ 0.0039 . (19)

Note that this is a factor of 2 lower than used in Goldberg
& Spergel (1999) and Cooray & Hu (2000). This value and
scaling for depends strongly on cosmology and is appro-bnpriate for our COBE-normalized "CDM only.
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Needless to say, the resulting predictions should be taken
as order-of-magnitude estimates only. As simulations im-
prove, one can expect better values for the bias today and a
more detailed modeling of its redshift and perhaps even
scale dependence.

3.2. Multipole Moments
The multipole moments of the SZ e†ect under these sim-

plifying assumptions can then be expressed as a weighted
projection of the density Ðeld (Cooray & Hu 2000) :

a
lm
SZ(0)4

P
dnü Y

l
m*(nü )#SZ(nü , 0)

B il
P d3k

2n2 d(k, r
l
)I

l
SZ(k)Y

l
m*(kü ) , (20)

where

I
l
SZ(k) B W SZ(r

l
)
Sn

2l
1
k

F
l
(k) ,

W SZ(r) \ [2bn(r)q5 , (21)

in the Limber (1954) approximation, and (Hu 2000a)

r
l
\ )

K
~1@2cH0~1 sinh~1

A)
K
1@2c~1H0 l

k
B

,

F
l
\
A
1 ] )

K
c~2H02 l2

k2
B~1@4

. (22)

The quantities take on a simple forms for a Ñat universe :
and The Limber approximation breaksr

l
] l/k F

l
(k)] 1.

down for but is sufficient for our purposes.l[ 50,

3.3. Power Spectrum
The power spectrum of the SZ e†ect in this simpliÐed

model follows from equation (20),

C
l
SZ \ 2

n
P dk

k
k3Pd(k ; r

l
)[I

l
SZ(k)]2 ,

B
P
0

r0
dr

[W SZ(r)]2
d
A
2 Pd

A l
d
A

; r
B

. (23)

In the second line we have transformed the integration vari-
able under the Limber correspondence, andk \ l/d

A
,

P dk
k

F
l
2 . . . \

P dr
d
A

. . . . (24)

We see that to go from Ñat to curved cosmologies in the
Limber approximation one simply replaces the radial dis-
tance with the angular diameter distance in the integrand.

In evaluating the SZ power spectrum, we have extended
the SZ model to the nonlinear regime by using the scaling
formulae for the nonlinear dark matter power spectrum of
Peacock & Dodds (1996). However, modeling the SZ e†ect
with a scale-independent bias factor will clearly break down
deep in the nonlinear regime. Refregier et al. (1999) have
shown that it is a reasonable approximation in the weakly
nonlinear regime (overdensities for but can be[10) z[ 1,
in serious error outside of this range. Since the weakly non-
linear regime is the one of interest for anisotropies at l [

FIG. 4.ÈTop : SZ power spectrum from simulations compared to ana-
lytical predictions based on linear perturbation theory (PT) and the non-
linear scaling relations of Peacock & Dodds (1996 ; PD96). Bottom : Errors
on the binned power spectrum estimators for a single 6¡ ] 6¡ Ðeld ; for a
given experiment, the errors should be scaled by The sam-D0.03f sky~1@2.
pling errors in the simulations are nearly equal to those of a Gaussian
random Ðeld with the same power spectrum. The total noise including
residual foregrounds and detector noise is also given for Planck.

1000, we use this approximation to test the e†ects of nonlin-
earities. The predicted power spectrum in our Ðducial
model is shown in Figure 4.

3.4. Bispectrum
The bispectrum of the SZ e†ect also follows from equa-

tion (20) :

B
l1l2l3
m1m2m3 4 Sa

l1m1
a
l2m2

a
l3m3

T

\
C

<
j/1

3
ilj
P d3k

j
2n2 I

lj
SZ(k

j
)Y

l
m*(kü

j
)
D

] (2n)3dD(k1] k2] k3)Bd(k1, k2, k3) .

Here the density bispectrum should be understood as
arising from the full unequal time correlator,

Sd(k1 ; r1)d(k2 ; r2)d(k3 ; r3)T , (25)

where the temporal coordinate, which we temporarily
suppress, is evaluated in the Limber approximation in equa-
tion (22).

To further simplify this expression, we expand the delta
function,

dD(k1] k2] k3) \
1

(2n)3
P

ei(k1`k2`k3) Õ n9 r d3x , (26)

and employ the Rayleigh expansion,

eik Õ n9 r \ 4n ;
lm

ilj
l
(kr)Y

l
m*(kü )Y

l
m(nü ) . (27)

Here we have assumed a Ñat universe to simplify the deriva-
tion ; as shown in the last section, we can promote the Ðnal
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result to a curved universe by replacing radial distances
with angular diameter distances.

With these relations, the angular integral over the direc-
tions of collapse to givek

j

B
l1l2l3
m1m2m3 \

P
r2dr
C

<
j/1

3 2
n
P

k
j
2 dk

j
I
lj
SZ(k

j
)j
lj
(k

j
r)
D

] B(k1, k2, k3)Gl1l2l3
m1m2m3 , (28)

where the Gaunt integral is

G
l1l2l3
m1m2m3 4

P
dnü Y

l1
m1Y

l2
m2Y

l3
m3

\
S(2l1] 1)(2l2] 1)(2l3] 1)

4n

](
t
:

l1 l2 l3
0 0 0

)
t
;

(
t
:

l1 l2 l3
m1 m2 m3

)
t
;

. (29)

Here, the quantities in parentheses are the Wigner 3j
symbols whose properties are described in Appendix A of
Cooray & Hu (2000). The integrals over the Bessel functions
can again be done in the Limber approximation, leaving

B
l1l2l3
m1m2m3 \ G

l1l2l3
m1m2m3

P
dr

[W SZ(r)]3
r4 Bd

Al1
r

,
l2
r

,
l3
r

; r
B

,

Note that only equal time contributions contribute in the
Limber approximation.

We can promote this result to a curved universe by repla-
cing radial distances with angular diameter distances :

B
l1l2l3
m1m2m3 \ G

l1l2l3
m1m2m3

P
dr

[W SZ(r)]3
d
A
4 Bd

A l1
d
A

,
l2
d
A

,
l3
d
A

; r
B

.

Finally, we can introduce the angular averaged bispectrum
as

B
l1l2l3

\ ;
m1m2m3

(

t

:

l1 l2 l3
m1 m2 m3

)
t
;
B
l1l2l3
m1m2m3 , (30)

to obtain the Ðnal result

B
l1 l2 l3

\
S(2l1] 1)(2l2] 1)(2l3] 1)

4n
(
t
:

l1 l2 l3
0 0 0

)
t
;

]
P

dr
[W SZ(r)]3

d
A
4 Bd

A l1
d
A

,
l2
d
A

,
l3
d
A

; r
B

. (31)

One can alternately derive this relation by taking a Ñat-sky
approach and using the general relation between the Ñat-
sky and all-sky bispectra (see Appendix C of Hu 2000b).

Equation (31) gives the SZ angular bispectrum in terms of
the underlying density bispectrum. In second-order pertur-
bation theory, the density bispectrum is in turn given by

Bd(k1, k2, k3 ; r)\ F2(k1, k2)Pd(k1 ; r)Pd(k2 ; r)

] 5 permutations , (32)

where

F2(k1, k2)\
5
7

] k1 Æ k2
k22

] 2
7

(k1 Æ k2)2
k12 k22

. (33)

Unfortunately, there exists no accurate Ðtting formula for
the bispectrum of the density Ðeld in the mildly nonlinear
regime ; we employ simulations in ° 3.6 to address this

regime. In the deeply nonlinear regime, the density Ðeld
obeys the hierarchical Ansatz

Bd(k1, k2, k3 ; r) \ Q3
2

[P(k1 ; r)P(k2 ; r) ] 5 permutations] ,

(34)

where the power spectra are given by the nonlinear scaling
of Peacock & Dodds (1996). Scoccimarro & Frieman (1999)
Ðnd that for a power-law power spectrum,

Q3(n) \ 4 [ 2n

1 ] 2n`1 . (35)

Hui (1999) suggests that for a general power spectrum, one
should replace n with the local linear power spectral index
at (k1] k2] k3)/3.

3.5. Skewness
The simplest aspect of the bispectrum that can be mea-

sured is the third moment of the map smoothed on some
scale with a window W (p),

S#3(nü ; p)T \ 1
4n

;
l1l2l3

S(2l1] 1)(2l2] 1)(2l3] 1)
4n

](
t
:

l1 l2 l3
0 0 0

)
t
;
B

l1l2l3
W

l1
(p)W

l2
(p)W

l3
(p) , (36)

where are the multipole moments (or Fourier transformsW
lin a Ñat-sky approximation) of the window. For simplicity,

we choose windows that are top hats in either real or multi-
pole space.

It is useful to deÐne the skewness parameter,

S3(p) \ S#3(nü ; p)T
S#2(nü ; p)T2 , (37)

where the second moment is that of the SZ signal,

S#2(nü ; p)T \ 1
4n

;
l
(2l ] 1)C

l
SZW

l
2(p) . (38)

The skewness in our Ðducial model is shown for both the
perturbation theory and HEPT predictions in Figure 5.

Since the density bispectrum in both the perturbative and
nonlinear regimes scales as the amplitude of the[Pd(k)]2,
underlying density Ñuctuations roughly scale out of S3.
However, the pressure bias, does not : thusbn, S3P bn~1. S3provides an observable handle on the bias. This general
point applies even if the bias is nonlinear, although its inter-
pretation will be not be as straightforward (see Fry & Gaz-
tanaga 1993 and Mo, Jing, & White 1997 for its application
in galaxy biasing).

3.6. Numerical Simulations
Since we are interested in the properties of the SZ e†ect in

the weakly nonlinear regime, cosmological simulations are
required to recover the complete statistical properties of the
signal and calibrate semianalytic approaches for its low-
order statistics. The simpliÐed SZ model employed in this
paper has the virtue that it is easy to simulate, since it
requires only dark matter and not the gas to model. Its
main drawback, of course, is that results must be taken with
a grain of salt due to missing physics.
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FIG. 5.ÈTop : Skewness in the simulations compared with second-order
perturbation theory (PT) and hyperextended perturbation theory (HEPT).
The smoothing is performed with an angular top hat of radius p. Bottom :
Errors on the skewness measurement for a single 6¡ ] 6¡ Ðeld due to
sampling errors and residual noise from Planck.

The realism of the basic approach can be improved by
better calibrating the bias model against hydrodynamic
simulations. One can envision going beyond the simple
redshift-dependent bias approach taken here to include
scale dependence and stochasticity. Even accounting for
these additional complications, simple dark matter simula-
tions can continue to complement full hydrodynamic simu-
lations. Hydrodynamic simulations will always be more
limited in dynamic range and sampling volume. Indeed, the
current state of the art is limited a handful of realizations
across 1 order of magnitude in physical scale (Refregier et
al. 1999 ; Seljak et al. 2000). A single simulation is then
““ stacked ÏÏ on the line of sight. Given the range of redshifts
at which the SZ e†ect contributes, the simulation volume is
traced many times for each line of sight. Moreover, the
angular resolution decreases monotonically as one
approaches the origin at z\ 0.

The reduction in dynamic range due to the angular pro-
jection is a serious but not unfamiliar problem in cosmol-
ogy. It occurs whenever the kernel for the projection spans
cosmological distances. White & Hu (2000) introduced a
technique of tiling multiple particle-mesh simulations that
telescope along the line of sight to maintain a Ðxed angular
resolution for the analogous problem in weak lensing. This
also avoids the problem of overrepresenting the Ðlamentary
structure of the map noted by Refregier et al. (1999).

We refer the reader to White & Hu (2000) for details of
the approach and tests of the method. The simulation all
have a 2563 mesh with 2562 lines of sight for the ray tracing
on a 6¡ ] 6¡ Ðeld. Other relevant parameters are given in
Table 2 : the box size, the number of particles,L box ; Npart ;the number of simulations run, the number of tiles ofNsim ;
the given box size used, the maximum redshift toNtile ;which a given box is used ; and the angular resolution of the
mesh for the maximum and minimum redshift used, hmesh.

TABLE 2

DETAILS OF NUMERICAL SIMULATIONS

hmesh
L box Npart Nsim Ntile zmax (arcmin)

445 . . . . . . 2563 5 2 3.00 1.4È1.8
355 . . . . . . 2563 5 2 1.87 1.4È1.8
280 . . . . . . 2563 5 2 1.27 1.4È1.8
220 . . . . . . 2563 5 2 0.90 1.4È1.8
175 . . . . . . 1283 6 2 0.66 1.4È1.8
140 . . . . . . 1283 6 2 0.50 1.4È1.8
110 . . . . . . 1283 6 2 0.38 1.4È1.8
85 . . . . . . . 1283 6 2 0.29 1.4È1.8
70 . . . . . . . 1283 10 9 0.22 1.4ÈO

NOTE.ÈNumerical simulations in our "CDM cosmo-
logical model ; see text for a description of these quantities.

Note that we cannot shrink the box size along the line of
sight indeÐnitely, since the fundamental mode of the box
must be in the linear regime to provide accurate evolution.
This implies that we lose angular resolution near the origin,
where a Ðxed physical scale subtends a large angle on the
sky. Furthermore, at higher redshift the number of particles
must be increased to eliminate shot noise from the initial
conditions. Nonetheless, the tiling technique does a good
job of maintaining angular resolution at all but the lowest
redshifts.

We construct 500 SZ maps from random combinations of
the tiles in Table 1 for our statistical analysis ; one realiza-
tion is shown in Figure 6. The average power spectrum is
shown in Figure 4 (top) and compared with the linear per-
turbation theory prediction and the nonlinear scaling rela-
tion of Peacock & Dodds (1996). We have tested that the
deÐcit of power at the low multipoles is an artifact of the
Ðnite Ðeld of view through Monte Carlo realizations of the
predicted power spectrum. The rollo† at high multipoles is
due to the spatial resolution in the simulations. This also
explains the D10% deÐcit at intermediate scales, which
comes from highly nonlinear structure close to the origin.

FIG. 6.ÈOne of 500 simulations of the SZ e†ect in the "CDM model
for a 6¡ ] 6¡ Ðeld of view. The range of the map is [100 to 25 kK, with an
rms of 9 kK, and has an approximate angular resolution of 2@. Note the
lack of obvious Ðlamentary structures.
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Agreement is restored if one eliminates contributions from
overdensities of greater than 10 in the predictions. Since our
SZ model is at best valid in the weakly nonlinear regime,
these contributions should not be included in any case.

Figure 5 (top) shows the results for the skewness in the
simulations compared with the second-order perturbation
theory and HEPT predictions. The agreement here is worse,
but is still sufficient for our purposes, given the crudeness of
the underlying model for the SZ e†ect itself.

We can address sample variance questions from the
scatter of the results in the individual realizations. Sampling
errors for the power spectrum and skewness are shown in
the bottom panels of Figures 4 and 5, respectively. Since
these are for individual 6¡ ] 6¡ planes, they should be
scaled by for a given experiment. SamplingD0.03f sky~1@2
errors are one source of noise that we will include in the S/N
calculations in the next section.

4. ESTIMATING THE SIGNAL-TO-NOISE RATIO

With the SZ signal estimated from the simple bias model
of ° 3 and residual noise calculated from the foreground
model and subtraction techniques of ° 2, we can now esti-
mate the S/N for the detection of the SZ e†ect. In Figure 7,
we illustrate the foreground-subtraction technique on simu-
lated Planck maps. The S/N in the maps is of the order of 1
for features spanning tens of arcminutes. We show here that
this level of S/N is more than sufficient for the purpose of
extracting measurements of the low-order statistics of the
SZ signal.

4.1. Power Spectrum
The S/N in the power spectrum per multipole (l, m) mode

is simply

(S/N)
lm
2 \ 1

2
AC

l
SZ

C
l
tot
B2

. (39)

Here, is the power spectrum of all contributions in theC
l
tot

SZ map,

C
l
tot\ C

l
SZ ] N

l
, (40)

where recall that the residual noise, was deÐned in equa-N
l
,

tion (11) and includes contributions from detector noise.
Assuming Gaussian statistics for the signal and noise,

each mode is independent, so that the total S/N is the quad-
rature sum

(S/N)2\ fsky
2

;
l

(2l] 1)
AC

l
SZ

C
l
tot
B2

. (41)

This quantity gives the variance of the total power measure-
ment in the SZ e†ect, including sample variance. S/N? 1
means that one has a precise measurement of the power
spectrum, not simply a highly signiÐcant detection. Figure 8
shows the cumulative S/N in the measurement of the SZ
power spectrum for the Boomerang, MAP, and Planck
experiments as a function of the maximum l mode included
in the sum. We also show the ultimate limit of perfect fore-
ground and noise removal, where andC

l
tot\ C

l
SZ fsky\ 1.

We refer to this case here and below as a ““ perfect
experiment ÏÏ.

With our Ðducial choice of the gas bias, Planck should
have a highly signiÐcant detection of the total signal. One
should bear in mind that the bias parameter, is stillbn,highly uncertain and that the S/N scales as Nevertheless,bn2.

FIG. 7.ÈRecovery of the SZ signal with Planck. Top to bottom : Model
SZ signal, signal ] noise from primary anisotropies and foregrounds, and
Ðnal recovered map from Planck. The signal map is that of Fig. 6 smoothed
with a top hat of radius 20@.
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FIG. 8.ÈCumulative S/N in the measurement of the SZ power spec-
trum with Boomerang, MAP, and Planck as a function of maximum l. The
solid line shows the maximum S/N achievable in a perfect experiment (see
text).

even a relatively large reduction in the average gas tem-
perature or density bias will not make the signal unde-
tectable in principle. In practice, however, remember that
one is then relying on a precise subtraction of the noise bias
in the measurement of which in turn requires that theC

l
tot,

power spectrum of the dust and other residual foregrounds
lurking at least at the 10% level in rms (1% in power) be
determined comparably precisely.

If the Ðducial SZ bias is close to correct, the high total
S/N in Planck can be used to break the measurement into
bands in l and recover the band power with errors

A*C
l
SZ

C
l
SZ
B~2 \ fsky

2
;

lband
(2l] 1)

AC
l
SZ

C
l
tot
B2

. (42)

We give an example from Monte Carlo realizations of the
Gaussian noise and sample variance from the simulations in
Figure 4. Note that these are errors for a 6¡ ] 6¡ section of
the sky and should be scaled by forD0.03f sky~1@2 B 0.04
Planck.

These S/N estimates assume that both the signal and
noise are Gaussian. Of course, in reality the SZ signal is
non-Gaussian. In general, gravitational collapse correlates
the amount of power in density Ñuctuations across all scales
in the nonlinear regime. However, since the SZ e†ect probes
many independent density Ñuctuations along the line of
sight, the central limit theorem ensures that the SZ signal is
far more Gaussian than the density Ðeld. We can test how
much this a†ects the S/N with our simulations. Shown in
Figure 4 are the sampling errors on the band powers from
the simulations themselves as compared to those from
Gaussian realizations of the same power spectrum. The
excess variance over the Gaussian limit is small on the rele-
vant scales, given detector noise limitations from Planck.

4.2. Skewness
The overall S/N for the measurement of the third

moment of the SZ e†ect is

(S/N)2\ fsky
S#3(nü ; p)T2

Var
, (43)

FIG. 9.ÈCumulative S/N in the measurement of the third moment, #3,
with top-hat smoothing in multipole space (i.e., truncation above Thelmax).HEPT approximation to the bispectrum is assumed here. MAP and Boo-
merang (not shown) have S/N values less than 0.1 everywhere.

where the variance is given by

Var \
1

(4n)2
;

l1l2l3

(2l1] 1)(2l2] 1)(2l3] 1)

4n
(
t
:

l1 l2 l3
0 0 0

)
t
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2

] W
l1
2 (p)W

l2
2 (p)W

l3
2 (p)6C

l1
totC

l2
totC

l3
tot . (44)

In Figure 9, we show the S/N for a measurement of the third
moment as calculated under the HEPT. We compare the
S/N in Planck with the ideal case of perfect removal of
foregrounds and detector noise, and full sky coverage. Here
we use a top-hat window in multipole space out to tolmaxconform with other S/N considerations. Cosmic variance
and Planck detector noise reduces the S/N values at the low
and high end for values, respectively. For Planck, the llmaxvalues in the range of a few hundred to D1000 provide the
maximal S/N for a measurement of the skewness. This cor-
responds to smoothing scales of p D 10@È30@ for top-hat
windows in angular space (cf. Fig. 5). For MAP and Boo-
merang, the S/N values are suggesting that a detec-[0.1,
tion of SZ skewness is not likely to be possible in these two
experiments.

Again, equation (44) assumes Gaussian statistics for the
variance and ignores the sample variance of the third
moment itself. We test this approximation in Figure 5 and
Ðnd that it is reasonable, given the level of residual noise for
Planck. In constructing an estimator for it is importantS3,to remove the noise bias, since noise variance will always
reduce the skewness in the map. We do this by multiplying
the estimator by (S#tot2 T/S#SZ2 T)2.

Finally, note that in the noise-dominated regime, the S/N
in scales strongly with the gas bias, so that theS3 S/N P bn3,detectability of this e†ect depends strongly on currently
uncertain assumptions.

4.3. Bispectrum
The full bispectrum of the SZ e†ect contains all the infor-

mation about its three-point correlations induced by the
growth of structure beyond the linear approximation. The
skewness is simply one easily measured aspect of the bispec-
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FIG. 10.ÈCumulative S/N for the detection of the SZ bispectrum as a
function of the multipole. Solid line shows the maximum S/N achievablel3in a perfect experiment.

trum. The full S/N of the bispectrum is

(S/N)2\ fsky ;
l1,l2,l3

B
l1l2l3
2

6C
l1
totC

l2
totC

l3
tot , (45)

where follows equation (40). We plot the bispectrumC
l
tot

cumulative S/N as a function of signal summed overl3, l1and We refer the reader to Cooray & Hu (2000) for al2.
detailed discussion on the bispectrum, its variance, and the
calculation of S/N.

In Figure 10, we show the expected cumulative S/N for
the SZ bispectrum in Boomerang, MAP, and Planck data
and a perfect experiment. The S/N is calculated under the
HEPT approximation for the underlying density Ðeld. As
shown, MAP and Boomerang allow reasonable limits to be
placed on any non-Gaussian signal in the SZ e†ect, while
Planck allows a strong possibility for a detection.

Again, the same caveats regarding the sensitivity of the
S/N estimate to the underlying assumptions that applied for
the skewness also apply here. Moreover, measuring all the
conÐgurations of the bispectrum will be a formidable com-
putational challenge, as will control over systematic e†ects
in the experiments.

4.4. L ensing Correlation
The SZ e†ect and weak gravitational lensing of the CMB

both trace large-scale structure in the underlying density
Ðeld. By measuring the correlation, one can directly test the
manner in which gas-pressure Ñuctuations trace the dark
matter density Ñuctuations. The correlation vanishes in the
two-point functions, since the lensing does not a†ect an
isotropic CMB due to conservation of surface brightness.

The same correlation manifests itself as a nonvanishing
bispectrum in the CMB at RJ frequencies (Goldberg &
Spergel 1999 ; Cooray & Hu 2000 ; see also Zaldarriaga &
Seljak 1999). Again, the cosmic variance from the primary
anisotropies presents an obstacle for detection of the e†ect
above the several arcminute scale (lD 2000). With the
multifrequency cleaning of the SZ map presented here, one
can enhance the detectability of the e†ect.

Consider the bispectrum composed of one from thea
lmcleaned SZ map and the other two from the CMB maps.

Call this the SZ-CMB-CMB bispectrum. The noise
variance of this term will be reduced by a factor of C

l
tot/C

l
CMB

compared to the CMB-CMB-CMB bispectrum. As one can
see from Figure 1, this can be up to a factor of 103 in the
variance. Details for the calculation of the CMB-CMB-
CMB bispectrum are given in Cooray & Hu (2000). Here we
have updated the normalization for the SZ e†ect, taken

for PlanckÏs useful sky coverage, and comparedfsky\ 0.65
the S/N of the two bispectra. As shown, the measurement
using foreground-cleaned Planck SZ and CMB maps has a
substantially higher S/N than that using the Planck CMB
map alone for multipoles l D 102È103.

Our simple model assumes that the pressure bias is deter-
ministic, i.e., density and pressure are perfectly correlated.
Stochasticity in the biasing will decrease the lensing-SZ
cross-correlation. To the extent that the lensing and SZ
signals can be determined separately from other measure-
ments, the cross-correlation can be used to constrain the
stochastic nature of the bias.

Beyond the improvement in S/N, however, there is an
important advantage in constructing the SZ-lensing bispec-
trum using SZ and CMB maps. A mere measurement of the
bispectrum in CMB data can lead to simultaneous detec-
tion of non-Gaussianities through processes other than just
SZ-lensing cross-correlation. As discussed in Goldberg &
Spergel (1999) and extended in Cooray & Hu (2000), gravi-
tational lensing also correlates with other late-time second-
ary anisotropy contributors, such as the integrated
Sachs-Wolfe (ISW; Sachs & Wolfe 1967) e†ect and the
reionized Doppler e†ect. In addition to lensing correlations,
non-Gaussianities can also be generated through reioniza-
tion and nonlinear growth of perturbations (Spergel &
Goldberg 1999 ; Goldberg & Spergel 1999 ; Cooray & Hu
2000). Bispectrum measurements at a single frequency can
result in a confusion as to the relative contribution from
each of these scenarios. In Cooray & Hu (2000), we sug-
gested the possibility of using di†erences in individual
bispectra as a function of multipoles ; however, such a
separation can be problematic, given that these di†erences
are subtle (e.g., Fig. 6 of Cooray & Hu 2000).

The construction of the SZ-lensing bispectrum using SZ
and CMB maps has the advantage that one eliminates all
possibilities, other than SZ, that result in a bispectrum. For
e†ects related to SZ, the cross-correlation of lensing and SZ
should produce the dominant signal ; as shown in Cooray &
Hu (2000), bispectra signal through SZ and reionization
e†ects, such as Ostriker-Vishniac (OV; Ostriker & Vishniac
1986), are considerably smaller.

Conversely, multifrequency cleaning also eliminates the
SZ contribution from the CMB maps and hence a main
contaminant of the CMB-CMB-CMB bispectrum. This
assists in the detection of smaller signals, such as the ISW-
lensing correlation, Doppler-lensing correlation, or the
non-Gaussianity of the initial conditions. Such an approach
is highly desirable, and Planck will allow such detailed
studies to be carried out.

A potential caveat is that, as noted above, the full bispec-
trum in an all-sky satellite experiment will be difficult to
measure. Zaldarriaga & Seljak (1999) have developed a
reduced set of three-point statistics optimized for lensing
studies, based on a two point reconstruction of the lensing-
convergence maps from the products of temperature gra-
dients. They show that most of the information is retained
in these statistics. Multifrequency cleaning improves the
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S/N for these statistics by exactly the same factor as for the
full bispectrum.

5. DISCUSSION

We have studied the prospects for extracting the sta-
tistical properties of the Sunyaev-Zeldovich (SZ) e†ect
associated with hot gas in large-scale structure using
upcoming multifrequency CMB experiments. This gas cur-
rently remains undetected, but may comprise a substantial
fraction of the present-day baryons. The SZ e†ect has a
distinct spectral dependence with a null at a frequency of
D217 GHz compared with true temperature anisotropies.
This frequency dependence is what allows for e†ective
separation of the SZ contribution with multifrequency
CMB measurements.

As examples, we have employed the frequency and noise
speciÐcations of the Boomerang, MAP, Planck experiments.
The MAP satellite only covers frequencies at the RJ part of
the frequency spectrum. Consequently, only Boomerang
and Planck can take full advantage of multifrequency
separation of the SZ and primary anisotropies. We have
evaluated the detection threshold for SZ power-spectrum
measurements (see Fig. 3). Boomerang and MAP should
provide limits on the degree-scale Ñuctuations at the several
kK level in rms ; Planck should be able to detect sub-kK
signals.

The expected level of the SZ signal in the Ðducial "CDM
model is still somewhat uncertain. We have employed a
simple bias model for the pressure Ñuctuations, roughly
normalized to recent hydrodynamic simulations (Refregier
et al. 1999 ; Seljak et al. 2000), and calculated the resulting
signal using analytic scaling relations and particle-mesh
dark matter simulations. As hydrodynamic simulations
improve, these techniques can be extended with more
sophisticated modeling of the bias. They complement
hydrodynamic simulations by extending the dynamic range
and simulated volume, the latter being important for ques-
tions of sample variance.

Assuming this simpliÐed model of the SZ signal, Planck
should have a S/N per multipole of order unity for l\ 1000.
Although the recovered maps are then somewhat noisy,
they are sufficient for precise determinations of low-order
statistics such as the SZ power spectrum, bispectrum, and
skewness (see Figs. 4È11). The skewness in principle can be
used to separate the pressure bias from the underlying
amplitude of the density Ñuctuations. The full bispectrum
contains signiÐcantly more information, but will be difficult
to extract in its entirety. Current methods for measuring the
bispectrum, tested with the COBE data, have concentrated
on measuring speciÐc modes such as l1\ l2\ l3\ l
(Ferreira, Magueijo, & Gorski 1998). More work will
clearly be required, especially in understanding the system-
atic errors at a sufficient level, but the wealth of information
potentially present in the bispectrum should motivate
e†orts.

We caution the reader that our oversimpliÐcation of the
SZ signal can cause problems for a naive interpretation of
future detections. Most notably, we have not included rare
hot clusters in our modeling, and Seljak et al. (2000) Ðnd
that these provide the dominant signal on all scales acces-
sible to their simulations. Fortunately, since these contribu-
tions are highly non-Gaussian and rare, they can readily be
identiÐed and removed. At the very least, X-rayÈbright clus-
ters can be externally identiÐed and removed ; this has been

FIG. 11.ÈCumulative S/N in the measurement of the SZÈweak gravita-
tional lensing cross-correlation through the bispectrum measurement in
CMB data. Compared are the expected S/N with (SZ-CMB-CMB) and
without (CMB-CMB-CMB) multifrequency isolation of the SZ e†ect for
Planck and a perfect/cosmic varianceÈlimited experiment. Multifrequency
isolation provides additional S/N and the opportunity to uniquely identify
the bispectrum contribution with the SZ e†ect.

shown to substantially reduce the shot noise contribution
(Komatsu & Kitayama 1999). The e†ect we are modeling
should be understood as the signal in Ðelds without such
clusters.

This residual SZ e†ect from large-scale structure that we
are modeling is not very non-Gaussian, due to the fact that
it is constructed from many independent pressure Ñuctua-
tions along the line of sight. As a consequence, we expect
that S/Ns can be estimated by Gaussian approximations,
but that techniques that try to improve the SZ-primary
separation based on non-Gaussianity (Hobson et al. 1998 ;
Aghanim & Forni 1999) may not be particularly e†ective
for this signal at the same scales.

Another means of separating the SZ signal of large-scale
structure from that of massive clusters is to cross correlate it
with other tracers of large-scale structure that are less sensi-
tive to highly overdense regions. An added beneÐt is that
such a cross-correlation will also empirically measure the
extent to which pressure Ñuctuations follow mass Ñuctua-
tions. The CMB anisotropies themselves carry one such
tracer, in the form of the convergence from weak lensing. It
manifests itself as a three-point correlation or bispectrum
(Goldberg & Spergel 1999), but without frequency informa-
tion it is severely sample variance limited due to confusion
noise from primary anisotropies. Measuring the SZ-lensing
correlation using the cleaned SZ maps improves the S/N for
the detection by over an order of magnitude at degree
scales. Furthermore, the techniques introduced by Zaldar-
riaga & Seljak (1999) provide a concrete algorithm for
extracting most of the three-point signal without recourse
to measuring all the conÐgurations of the bispectrum. Con-
versely, SZ removal from the CMB maps themselves can
assist in the detection of other smaller bispectrum signals by
eliminating one source of confusion noise.

The cross-correlation coefficient between the SZ e†ect
and CMB weak lensing is relatively modest (D0.5 ; see
Seljak et al. 2000). This is due to the fact that the SZ e†ect is
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a tracer of the nearby universe, while CMB lensing is maxi-
mally sensitive to structure at zD 3. A higher correlation is
expected if SZ is cross-correlated with an external probe of
low-redshift structure. Peiris & Spergel (2000) suggested the
cross-correlation of MAP CMB data and Sloan galaxy
data.6 An improved approach would be to use the Planck-
derived SZ map rather than a CMB map. Using a SZ map
reduces noise from the primary anisotropies and guarantees
that any detection is due to correlations with the SZ e†ect.
Extending the calculations in Peiris & Spergel (2000) with
the Planck-generated SZ map, we Ðnd S/N ratios that are
on average greater by a factor of D10 when compared to
S/N values using the MAP CMB map. In fact, with redshifts
for galaxies, the Planck SZ map can be cross-correlated in
redshifts bins to study the redshift evolution of the gas.
Other promising possibilities include cross-correlation with
soft X-ray background measurements, as well as ultraviolet
and soft X-ray absorption line studies.

6 Sloan galaxy data available at http ://www.sdss.org.

All these considerations imply a bright future for SZ
studies of the hot gas associated with large-scale structure
with wide-Ðeld multifrequency CMB observations. Its
detailed properties should be revealed in its non-
Gaussianity and correlation with other tracers of large-scale
structure.
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