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Near-horizon solution for Dvali-Gabadadze-Porrati perturbations
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We develop a scaling ansatz for the master equation in Dvali, Gabadadze, Porrati cosmologies, which
allows us to solve the equations of motion for perturbations off the brane during periods when the on-
brane evolution is scale free. This allows us to understand the behavior of the gravitational potentials
outside the horizon at high redshifts and close to the horizon today. We confirm that the results of Koyama
and Maartens are valid at scales relevant for observations such as galaxy-ISW correlations. At larger
scales, there is an additional suppression of the potential which reduces the growth rate even further and

would strengthen the integrated Sachs-Wolf effect.
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I. INTRODUCTION

That cosmic acceleration is a fact appears indubitable.
Instead of an exotic new form of dark energy driving the
acceleration, it may be caused by a modification of gravity.
Precise measurements for gravity are only available in the
range of scales from a millimeter to that of the solar
system—we do not have any direct probe of Einstein
gravity beyond these boundaries. Cosmic acceleration
may originate in a breakdown of Einstein gravity at dis-
tances beyond the range above.

Dvali, Gabadadze, and Porrati (DGP) [1] have proposed
a braneworld theory in which our universe is a (3 + 1)-
dimensional brane embedded in an infinite Minkowski
bulk. Gravity propagates everywhere, but, on the brane,
an additional (3 + 1)-dimensional gravitational interaction
is induced. This allows for gravitational potentials on the
brane of a (3 + 1)-dimensional form at small distances to
evolve into (4 + 1)-dimensional form beyond a cross-over
scale determined by the unknown energy scale for the bulk
gravity. The cosmological solution of this theory was
shown to exhibit accelerated cosmic expansion without
the aid of an exotic energy component like dark energy
[2,3].

It has been shown already that the linearized field theory
as defined by the DGP model contains ghost degrees of
freedom [4-8], or even may violate causality in certain
limits [9]. It is known, for instance, that the de Sitter
background is unstable to classical linear perturbations;
however, it is claimed in [10] that strong coupling effects
at small radii around matter sources ensure that the theory
remains stable.

The point of view of our work is to assume that linear
perturbation theory remains valid on the largest scales.
This is motivated by the fact that the late universe is
dominated by the gravitational interaction of dark-matter

*Electronic address: sawickii @theory.uchicago.edu

1550-7998/2007 /75(6)/064002(12)

064002-1

PACS numbers: 04.50.+h, 98.80.Cq

halos. The internal structure of the halos is controlled by
the strongly coupled nonlinear theory. On the other hand,
the radius below which strong coupling is important for
halos is approximately equivalent to their size and there-
fore their interactions should be driven by the linear theory
analyzed in this work.

We do find that deep into the accelerated era the space-
time becomes unstable on the timescale of the expansion.
However, this is an effect that only becomes important far
into the future and is negligible as far as the observational
impact today is concerned. We therefore assume that dur-
ing the early universe, when the theory does not exhibit
instabilities, the analysis for DGP proceeds in exactly the
same way as that for general relativity. Then, deep during
the acceleration era, instabilities develop and the theory
may or may not be saved by nonlinear effects—an issue on
which we remain agnostic. This evolutionary history ap-
pears to be the only one which is capable of reproducing
the Universe as we see it. If strong coupling effects are
important straight away and at all scales, the approxima-
tion of a homogeneous background cosmology is com-
pletely inapplicable and the DGP model would not be
able to reproduce observations such as supernova luminos-
ities. We therefore effectively assume a best-case scenario
for DGP: should this analysis fail to predict the observa-
tions, the model is excluded. If it passes the observational
tests, a more careful study of the effects of the strong
coupling regime during the acceleration era would be
required to understand fully the future evolution of the
Universe in the DGP model.

Under the above assumptions, the equations of motion
for the theory of gravity on the brane, pertinent to the study
of cosmology, do not close owing to the interaction with
the bulk at first order in perturbation theory. Koyama and
Maartens [11] have used a quasistatic approximation, valid
well within the horizon, to investigate structure formation
at smaller scales. This solution shows the essential role that
the bulk plays in correcting the gravitational potentials,
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reducing the growth rate. Also, Lue et al. [12] have reached
a similar conclusion using a different approach, including
nonlinearities in their calculations.

In the following, we present a new scaling ansatz for the
master equation, allowing us to solve the equation and
calculate the resulting cosmological evolution at all scales
for high redshifts, and close to the horizon today. In Sec. II,
we review the linearized equations of motion for DGP. We
present our scaling solution in Sec. III and discuss its
cosmological implications in Sec. IV. We study the robust-
ness of the scaling solution in the appendix and discuss
these results in Sec. V.

II. DGP EQUATIONS OF MOTION

A. Background

In the DGP model, gravity alone propagates in the bulk,
and the 5D gravitational theory is complemented by an
induced 4D Ricci scalar restricted to the brane. We assume
that both the bulk and the brane have zero tensions, i.e. the
cosmological constants are zero. We thus start off with the
basic DGP action:

GR <(4) R

S = dex\/—_g[W +o(W(5= + £sm>} @)

2u
a 3-brane embedded in an empty bulk, with all the standard
model fields localized on the brane at y = 0. The constants
w? and k* define the energy scales of the theories of
gravity: one is Newton’s constant, u?> = 877G, the other
represents the energy scale of the bulk gravity.

As shown by Dvali et al. [1], the ratio of the two scales
defines a cross-over radius beyond which the four-
dimensional gravitational theory transitions into a five-
dimensional regime

2
e 2
This scale is chosen to be of the order of the current Hubble
length so that the acceleration of the expansion today
results from the 4D to 5D transition. For illustrative pur-
poses, we will take in our calculations r.Hy = 1.32, in a
matter and radiation universe with ), = 0.24 and h =
0.66. When comparing with ACDM, the concordance set
of parameters will be used: (), = 0.25, h = 0.72. The two
sets of parameters represent cosmologies which are best
fits to supernova luminosity data (SNLS [13]) and the
distance to the last-scattering surface (WMAP [14]), but
assuming that the Universe is flat. We discuss the fits to
these data in a companion paper, Song et al. [15].

For the purpose of cosmological calculations, we would
like to reduce the five-dimensional braneworld to an effec-
tive theory on the brane, which could be studied using the
usual range of four-dimensional tools. Using a 4 + 1 de-
composition of the theory [16—18], we can derive the
effective on-brane equations of motion—a set of modified

re =
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Einstein equations
G,ul/ = 4rgf;u» - E,uw 3)

where the Greek indices range across all the dimensions,
mv=01,...,4 f,, is a tensor quadratic in the four-
dimensional Einstein and energy-momentum tensors,

1 1 1 A2
f,ul/ = EAA,MV - ZAM AVO( + gg,um(Aa,BA - ?))
4)
A,LLV = G,uv - lu‘zT,u,w (5)

while £, is the bulk Weyl tensor projected onto the brane
using the vector normal to the brane, n*,

E,=C n%nP. (6)

aufv
It can be shown that for branes with maximally symmetric
spatial hypersurfaces, the projected Weyl tensor must take
the form Ca™*, with C a constant (see [19]: it is effectively
a constant of integration for the background). Since the
Weyl tensor is traceless, it will dilute as rapidly as radiation
and will become irrelevant at late times, if it does not
completely dominate the dynamics initially. We will there-
fore set C = 0, allowing us to find the modified Friedman
equation for the background evolution of the cosmology on
the brane. In the case of the flat brane, which is the only one
to be considered here,

H 2
—=£2 (7)
re 3

H> ¥
leading to the result that, for the upper-sign selection, the
cosmology tends to a de Sitter phase as the matter density
gets diluted away, potentially providing a model for the
observed acceleration [20]. This is the choice we will make
henceforth.

In addition to r., there is another scale present in the
theory, which thus far we have ignored: the strong coupling
scale given by

r. = (r2ry'/3, (®)

where r, is the Schwarzschild radius of the point source
under consideration. Beneath this radius, the linear ap-
proximation developed above is not valid and the theory
returns to 4D general relativity with small corrections. It is
not yet understood how two sources superimpose when the
linear regime is not valid. However, the linear density fields
are actually constructed out of a spatial average of dark-
matter halos, each of which has 7, comparable to its radius.
Thus we should be able to use the linear theory to discuss
the gravitational dynamics of the spatial averages of the
halos, but most likely not their internal structure.
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B. Linear perturbations

An observer restricted to the brane will perceive the
universe as purely four dimensional. Therefore, the most
general linear scalar perturbations to the induced flat four-
dimensional metric can be parameterized by

ds? = —(1 + 2W)ds* + a?(1 + 2®)dx?, )

while the linearized energy-momentum tensor can be writ-
ten down as

% = —p(1 +9), (10)
7% = (1 + w)po,q, (11)

i 2 5\ si i L
Tj—p(w+cst3)5j+wp<8 Gj—§5j>77. (12)

Here p is the density of the cosmological background, w =
p/p is the background equation of state parameter, and
c2=08p/6p is the sound speed for the pressure
perturbations.

The full 5D perturbations of the bulk are richer: Deffayet
in [21] has shown that their effect on the brane can be
reduced to the presence of perturbations to the Weyl tensor
as an additional source of stress energy. The precise rela-
tionship between the various components of the Weyl
tensor is determined by their relationship to a master
variable (see Sec. IIC), which in turn encodes all the
gauge-invariant perturbations to the full 5D metric
throughout the bulk. We define the linear scalar perturba-
tions to the Weyl tensor by

E0 = —u2pdp, (13)

E’ = u?pdiqp, (14)

) . . 1.

The Weyl tensor is traceless, and hence the pressure per-
turbation will behave like radiation, i.e. wy = 1/3. The
linearized Poisson and anisotropy equations then are

2 2 2H 2
o _ e 2Hr, u2p A, (6)
a? 2 2Hr,—1 2 2Hr.—1
(I)+\I’=—|:1+ ! , },u,zpazww
2 H(1 + 50 — 1
1 2
PP g, (17)

C2rH(I )~ 1 3

with A the comoving density contrast and the equivalent
definition for Ag:
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The equations of motion for the energy-momentum
tensor are given by the conservation law V4T, = 0 sup-
plemented by equations of state that define the stress

fluctuations
dr o6 k> :
5[m} T2l (19)
1) 2w
. 2 + 2 _= 2, —
g — 3ciqH S 31+wk7T P, (20)

We have here assumed adiabatic pressure fluctuations in
the multicomponent matter system c2 = p/p.

On the other hand, the Weyl tensor is not separately
conserved and its equations of motion come from the
Bianchi identity, V#G,, = 0, as applied to Eq. (3),

V"EW = 4r§V“fM,,. 2D
We can rewrite this as
. k2
a
q.E_3WHqE+%6E_%k27TE=S, (23)
where the source term
G— 2rCH[ A+ Ag KR (wmr + 7TE/3') i| (24)
3H [1=2Hr. 1 -2Hr(1 +4)

Thus a nonzero Weyl tensor is unavoidably generated by
matter perturbations in linear theory [11].

In order to close the above equations, we need the
analogue of an equation of state to relate the Weyl aniso-
tropic stress 7, to the other components of the Weyl tensor
6 and gg. Unlike the relationship between the Weyl
pressure and energy density, this relation requires a con-
sideration of perturbations in the bulk.

C. Master equation

In [22], Mukohyama showed that for maximally sym-
metric five-dimensional space-times, the full five-
dimensional linear scalar perturbations in the bulk can be
described using a master variable ). Since the bulk being
considered is just Minkowski, and the brane is assumed
flat, we can parameterize the unperturbed background 5D

metric by [23]
ds?> = —n(y, 1)2dr*> + b(y, t)>dx? + dy?, (25)

where the brane sits at y = 0 and
H
b=a(l+HY), n=1+ (ﬁ + H>|y|. (26)
This parameterization is also valid for branes with nonzero

curvature provided that |[Q;| << 1. The master variable
then obeys a hyperbolic equation of motion:
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: 2
Ay Ammy ety e
at\nb3)  ay\b> ay b’
We can then express all the gauge-invariant perturbations
to the 5D bulk as functions of derivatives of the master
variable. In particular, Deffayet [21] has shown that the
components of the Weyl tensor evaluated on the brane can
be expressed as

k*Q
2pbp = ——— , 28
M pOE 38 | (28)
K.

wrpqp = — F(Q — HQ) , (29)

a y=0

1 N .k 3H 9Q

2 =-—(30-3HO +—=5Q —— — .
HopTE 2(13( a’ H ay> y=0
(30)

We will hereafter implicitly assume evaluation at y = 0 for
the master variable in the on-brane equations where no
confusion might arise. We can now rewrite the Bianchi
identity in terms of the master variable, obtaining, after
assuming that the cosmological fluid has no anisotropy
stress,

} : k2 H 2Hr.— 1

O —3HFH)Q + (F(H) = + +22 " RO
a’> K(H)r, re

2a
=_=" A, 31

where R expresses the derivative across the brane

1 9Q
R=— — . (32)
HQ dy |,—o

We have defined two new functions of the Hubble parame-
ter
2H7 (1 +5) — 1

F(H) =
(H) 2Hr, — 1 ’

(33)

K(H) = 2Hr. — 1

= . 34
2Hr (1 +5) — 1 .

Were it not for the 9{)/dy derivative across the brane in R,
this equation would be a simple dynamic equation for (),
which, given an evolution equation for the source A, could
be solved as a coupled equation. The role of the master
equation is to define R, the relationship between 9€)/dy
and ().

Koyama and Maartens [11] adopted a quasistatic ap-
proach to solve these equations. The master equation then
implies that the gradient

R=—-——. (35)
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In the Bianchi identity the time-derivative and brane-
derivative terms are neglected compared to those of order
(k/aH)*Q). This quasistatic approach leads to their solu-
tion to which we will refer henceforth as “QS”

2a°

__ == 2
Qos = wrmrm * PN (36)

This solution is equivalent to a closure relationship for 7
in terms of & through Eqgs. (28) and (30). Using this, we
can define the QS limit of DGP gravity where the Poisson
and anisotropy equations become

’;_z(cp—qf)z“ziA 37)
k2 Kp
Lorwm=-£0s (38)
with
B=1- 2rCH(1 4 ;) (39)

These equations are equivalent to the linear limit of the
results obtained by Lue et al. [12].

In the next two sections, we will show how the quasi-
static solution is dynamically achieved for the perturba-
tions shortly after horizon crossing and discuss large-scale
deviations from this solution.

III. SCALING SOLUTION TO MASTER EQUATION

A. Causal horizon

The master equation is a wave equation sourced by the
comoving density perturbations on the brane through the
Bianchi identity (31).

Since, in appropriate coordinates, the bulk is just
Minkowski, the evolution of () in the bulk can be seen as
a normal propagating wave given a boundary condition
from the behavior on the brane. Beyond the causal horizon,
the bulk should remain unperturbed. This causal horizon
must be invariant in all coordinizations of the bulk; there-
fore, we can locate it by finding the null geodesic of
Eq. (25), giving us the y position of the horizon as

a da
£ = vl = atl? [ s (40)
Before the acceleration epoch, this reduces to & = 1/(2 +
3w) for a cosmology with a constant equation of state
parameter, i.e. £ = 1/3 for a radiation-only cosmology
and & = 1/2 for a matter-only cosmology. We are making
the assumption that the universe has not gone through a
period of inflation, which would have moved the horizon
much further out. If inflation did take place, it is not
unreasonable to expect that any perturbations that existed
prior to the inflationary phase will have been pushed far

away and the bulk will start in an unperturbed state in the
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vicinity of the brane at the beginning of radiation domina-
tion, resulting in a causal horizon equivalent to that of the
cosmology with no inflation.

The constancy of the horizon during the domination of a
particular fluid suggests that we can define a new variable,
in which the horizon will remain fixed at all times, lying at
x=1
yH

g
We can then recast the master equation in x and solve it as a

boundary-value problem with the value of () at the hori-
zon, x = 1, set to zero.

(41)

X

B. Scaling ansatz

The second boundary condition needed to solve the

master equation is the behavior of the master variable on
|

1+2p
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the brane. During epochs when the source remains scale
free and the Bianchi dynamics also do not change, one
would expect that the master variable also obey a scaling
ansatz on the brane ()],_o = Aa”, where A and p are
constants. Likewise, during such epochs we expect the
master variable in the bulk to reach a stable solution in
the variable x, the distance in units of the causal horizon,
for a given wave number k/aH.

We therefore propose a new ansatz for the solution to the
master Eq. (27):

QO = A(p)a’G(x). (42)

With this assumption, the master Eq. (27) becomes the
ordinary differential equation

h+h*+ K

dziG 4h® + hQ2p — 1) + 21’
dx? (

B B dG
2h(1 + x€(1 +2h)  2(1+x&)  h(1 + x&(1 + h))) dx
(L4 20)(h(4h +2p — 1) + 2)p

1+ h)(h+ h*+ h)p

hp2p —5) =2h'p  3p
< 4h%(1 + x§) 2(1 + x&)?

where the primes denote differentiation with respect to
In a—the new time coordinate which will be used hence-
forth—and h = H'/H. In deriving the above, we have
neglected time derivatives of p and ¢: the scaling ansatz
is not expected to be valid when p is not a constant, i.e.
during times when the cosmology is undergoing a change
from the domination of one fluid to another. In addition,
strictly speaking, G is actually a function of both x and
k/aH, even in the scaling limit. We have therefore also
assumed that k/aH is a constant, which is valid in the k =
0 limit. As we explain later, as k/aH approaches unity,
where its time derivatives might impact the solution sig-
nificantly, the character of Eq. (43) changes and terms
which do not involve the derivatives of k/aH dominate.

Note that, provided w is constant, one of the denomi-
nators in Eq. (43) can be reexpressed as

1+xE0+20)=1—x. (44)
Thus the equation has a regular singular point x =1,
exactly at the causal horizon. This is not a coordinate
singularity (all the entries of the metric are regular there),
but is a reflection of the junction between perturbed and
unperturbed space-times.

Supplying H, p as a function of the scale factor is
enough to solve this ordinary differential equation as a
boundary-value problem, requiring that G(x) be 1 on the
brane and 0 at x = 1. This in turn gives the value of R as

4r2(1 + x&(1 + 2h))

R+ (1 + h)xé)

(kY (1 + (1 + h)xé)? B

<ﬁ> (1 +x€°( + x&(1 + 2h))>§2G =0, (43
= 1 % x=0

- E Glx:O ’ (45)

and closes the evolution equations for the perturbations on
the brane.

We will henceforth refer to this solution as the dynami-
cal scaling or just scaling solution and use the acronym
“DS.”

C. Iterative solution

In practice, one does not know the scaling index p
a priori and, moreover, it can change during the evolution
of a kK mode as the master variable leaves one scaling
regime and enters another. We therefore solve for p iter-
atively by demanding consistency with the Bianchi
identity.

To determine the zeroth-order solution for p, we sub-
stitute the ansatz Eq. (42) into Eq. (31) to obtain

2a%P
Alp) = 13 K(H)H?[J(H) + F(H)(k/aH)*] wiph
J(H) = plp + h — 3F(H)] + K(Hl)Hr 2HI:lCr_ 1R'
(46)

Before the acceleration epoch, when the expansion is
dominated by a single fluid, J(H) and F(H) are constant,
while K(H) is a simple power law in a. We therefore set
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p = pY the zeroth-order solution for k/aH < 1

| din[pAO/(K(H)H?)]

0 =3
P dlna

(47)

Note that this definition allows transitions between scaling
regimes where w changes. We shall see that the solutions
for R become independent of p for k/aH > 1 and so we
use this as the zeroth-order solution for all modes, both
superhorizon and subhorizon.

Finally we need a zeroth-order solution for A©. Modes
of interest to large-scale cosmological tests are superhor-
izon during radiation domination and enter the horizon
either during matter domination or the current acceleration
epoch. Before the acceleration epoch and in the absence of
anisotropic stress, these modes obey [24]

D’ +2p*-8p -8 +16/p+1

AO o
DD+ 1) ’

(48)

where D = a/ Aeq- In order to obtain the zeroth-order
solution for p©© we assume that the growth prescribed by
Eq. (48) continues until today (see Fig. 1).

Given this, we solve the master equation (43) to obtain
the off-brane gradient, R, and then dynamically solve the
Bianchi identity Eq. (31) coupled to the cosmology, for the
particular mode. Once the dynamic evolution for the first-
order solution Q! is obtained, we can iteratively improve
our estimation of p by numerically calculating

T (49)

— Naive p(o)

6 = = = Iterated p(i)

|
|
|
|
|
|
a4t |
|

|

|

|

|

\

|
1 | | |
-6 —4 -2 0 2

loga

FIG. 1. Value of exponent p in the scaling solution Q|,—, « a”
for superhorizon modes, plotted as a function of the scale factor.
The p© calculation assumes that the density perturbation A
follows Eq. (48) at all times. The p result is the output of an

iterative process, where p is used to calculate R and hence the
evolution of ) which is in turn used to derive a correction to p.

PHYSICAL REVIEW D 75, 064002 (2007)

and repeating the above prescription. We find in the next
section that this procedure converges quickly and alters the
value of p only when p is not a constant, as expected. We
display the effects of the iteration on p in Fig. 1.

IV. COSMOLOGICAL IMPLICATIONS

A. Limiting cases and numerical solutions

The evolution of the master variable exhibits several
distinct phases that are distinguished by the on-brane scal-
ing evolution: that during radiation domination, matter
domination, and the de Sitter acceleration phase, both in-
side and outside the horizon. The scaling of the Bianchi
identity Eq. (31) determines the value of p at a particular
scale factor, while the solution to the master equation
Eq. (43) determines the off-brane gradient R. To under-
stand better the nature of the solution and how it impacts
perturbation evolution, we will compare the analytic ex-
pectations to the full numerical results in the various
phases.

1. Superhorizon modes

During radiation domination, Hr, > 1, H'/H = —2 +
a/2aeq, and F(H) = 1/3. The particular combination in
the denominator of K(H) causes the first-order contribu-
tion of H'/H to cancel, leaving us with K(H) « a~!. The
Bianchi identity Eq. (31) for superhorizon modes then
dictates that

A o« a* PA. (50)

Since A =« a? during radiation domination, this gives p =
6 for superhorizon modes. Inserted back into the master
equation under the scaling ansatz Eq. (43), this value of p
implies

R= -3, (k/aH < 1, radiation domination). (51)

With R determined, the equations of motion for the per-
turbations on the brane are closed.

This analytic expectation also serves as the initial con-
ditions for the numerical scaling solution. In practice, we
begin the integration at a = 107, when all modes of
interest are outside the horizon. The numerical solution
for p is shown in Fig. 1 and for R in Fig. 2. Note that, in the
radiation-dominated era, their values stay stable at the
analytic prediction for all iterations of the solution.

The large-scale modes of interest remain outside the
horizon during the whole radiation-dominated epoch. In
the matter-dominated epoch, the evolution outside the
horizon can be obtained by noting F(H) = 1/2, K(H) =
4, H'/H = —3/2, and Hr,> 1. The Bianchi identity
dictates that

A« @3PA. (52)

Given that A «a, p =4. Since the matter-dominated
solution is of particular interest, we explicitly give the
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master equation under the scaling ansatz

PHYSICAL REVIEW D 75, 064002 (2007)

(x—4)7

&G  (7-2p 1+2p 1 \dG

dx? (4(x—1) 2(x +2) x—4)a
pRp—17)  p(5—2p)
<12(x -1 12(x+2)

This is solved as a boundary-value problem with boundary
conditions G(0) = 1 and G(1) = 0. The form of the nu-
merical solution to this equation is shown in Fig. 3. In the
large-scale limit, the gradient reaches

R= -1, (k/aH < 1, matter domination). (54)
In the numerical solution of Figs. 1 and 2, these values of
p =4 and R = —1 are achieved gradually as the expan-
sion becomes matter dominated. The iteration of the nu-
merical solution in fact further smooths the transition until
a stable form is achieved as would be expected. Note also
that R is very insensitive to k/aH, provided it be less than 1
such that the mode is larger than the horizon.

2. Subhorizon modes

The modes of interest cross the horizon either during
matter domination or the acceleration epoch. For large
values of k/aH, the final term of the master equation
(43) dominates over other parts of the coefficients of
G(x) and G'(x). As evidenced in Fig. 3, in this regime,
the solution does not penetrate very far into the bulk. We
can thus expand the master equation around x = 0, reduc-
ing it to

2

|
|
|
'
& —4 i
(-
12
-6 -
=
5
— k=0 wd
=8 —1 I
=== k=0.001 Mpc |
“““““ k = 0.002 Mpc > 1
-10 ‘ ‘ ‘
-6 -4 -2 0 2
loga

FIG. 2. Evolution of ratio of off-brane gradient to master
variable, R, as defined in Eq. (32), for a selection of modes.
On superhorizon scales, R is constant whenever p is a constant.
Once the mode enters the horizon, it rapidly approaches R =
—k/aH. As the Universe enters the de Sitter phase, the modes
again leave the horizon and R asymptotes to 1.

p 3p k \2
6 —4) 2+ 2p (a_H> 8- Dix + 2

)G =0. (53)

{
d’G

k\2
O 0 - 2§x)<ﬁ> G =0 (55)

X

This matches the quasistatic approximation up to first order
in x. Therefore, for k/aH > 1, the relation giving the
gradient on the brane is exactly as in the QS approximation
[11], with no dependence on the value of p:

k
aH
The numerical solution for R evolved through horizon
crossing is shown in Fig. 2. It reaches this scaling shortly
after horizon crossing.

Despite this independence of p, the master variable does
achieve a scaling form during matter domination. The
Bianchi identity (31) can be reduced to the QS form,
Eq. (36), and implies

R=— (k/aH > 1, matter/acceleration). (56)

A o a2PA, (57)

and hence p = 3.

G(x)

FIG. 3 (color online). Off-brane profile for G(x) obtained by
solving Eq. (43) during matter domination (loga = —2), com-
pared to off-brane profiles for the quasistatic (QS) solution. For
high k/aH the profiles are very narrow and effectively indepen-
dent of the position of the causal horizon: they penetrate very
little into the bulk and the behavior of the solution is practically
independent of the value of p. In this regime, the QS solution is
practically coincident with the scaling solution. For modes with
low k/aH, the solution is nonzero in the whole interval x €
[0,1) and therefore it depends strongly on the value of p. QS
severely underestimates the gradient of the profile in this regime.
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In general then, R is a function of both k/aH and p(a)
and therefore each mode needs to be followed separately
through its evolution both outside and inside the horizon.
However, only outside the horizon does the value of the
off-brane gradient actually affect the evolution on the
brane, since for high k/aH it is subdominant in the
Bianchi identity, Eq. (31).

3. Asymptotic de Sitter phase

At late times, the DGP cosmology enters the self-
accelerated de Sitter phase. During this time, all modes
exit the horizon while the causal horizon in the bulk, &,
grows rapidly toward infinity. This allows us to concentrate
on the k < aH limit. Deep into the de Sitter phase of the
expansion, Hr, = 1, K(H) = F(H) = 1. The master equa-
tion (27) can now be rewritten (in the scaling approxima-
tion) as

2Q 2 @_p(p—3)9=
ay? 1+ Hy gy (1 + Hy)?

0. (58)

This equation has an analytic solution. Assuming that the
perturbations vanish at the causal horizon, {} =0 at y =
&/H, and that p # 3/2, we can find the off-brane gradient:

1 12p — 3|
R=-3-12p-3])— . 59
53— 12p=3D Qo i1 (59)
This can now be combined with the Bianchi identity
6H3r2Q A
(P> —3p+1 +R)Q=—°r]:2 nZ(60)

It can be shown that A becomes a constant during the
acceleration era.

In the limit where r2A/Q — 0 and & — oo, i.e. at very
late times, the solution to the above two equations com-
|

" " /
(I)”—\If’—H(I)’-i-H—E‘P-‘r
H' H H

H/

! [(w —c)Ap + (1 —w+ —)5,5}.

2Hr,

Hl
H 3 3H

In the large-scale limit, k/aH — 0, 6y = 0; if we also
assume that ¢2 = w or that Ay = O(k/aH)>® from the
Poisson equation, we obtain

11 11 !
o — v -y (H— - 5)@ —0.  (64)
H H H
Note that this equation for the metric perturbations is the
same as that found in general relativity [see e.g. [25]
Eq. (50)]. Therefore, before the DGP modifications change
the expansion rate or generate anisotropic stress, the evo-
lution of the metric is identical to general relativity.
Furthermore, as pointed out by Bertschinger [26] in the
absence of anisotropic stress, ¥ = —® and this equation
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bined is R=1 and p =2 or p =1, where we would
expect the fastest-growing mode, p = 2, to dominate. We
plot the numerical solutions in Figs. 1 and 2. Note that
iteration of the solution here is crucial but p = 2, R = 1 is
approached at late times.

The numerical results only converge to p =2, R=1
very slowly. This also can be understood analytically.
There is a slight correction to this result arising as a result
of £ being finite, but it is already insignificant by log a ~ 2.
A more significant correction to the scaling behavior arises
as a result of A not being zero. Its size can be estimated by
assuming that p =2 + €. Substituting this into both
Eq. (59) and (60) we obtain

1 6H3r2Q A
=1 - 4+ 20 1
¢ 2y Qk? (oD

Indeed, as () grows, the correction decreases until p = 2 is
achieved. In particular, the continued growth of () implies
that the anisotropy at the largest scales will continue
growing as

D + W o TE o glte (62)
a

4. Superhorizon metric evolution

Deriving an evolution equation for the metric highlights
the fact that the metric evolution is not sensitive to the DGP
modification until the acceleration epoch. Even in the
acceleration epoch, the metric obeys a simple equation of
motion on superhorizon scales.

By appropriately rearranging the linearized Einstein
equations and the Bianchi identity, we can obtain a single
differential equation for the gravitational potentials

2Hr, —

G (¢ 3 2 =) * s e @+ 0w

(63)

[
yields solutions that depend only on the expansion history
through H even in the acceleration epoch.

In DGP gravity, however, the anisotropy at the largest
scales is never negligible and, in fact, grows at late times,
as discussed in Sec. IVA3. We can rewrite Eq. (64) by
defining

O, =35(D+ V), O =3(D - W) (65)
In the de Sitter era, when H'/H =0 and H"/H' = -3,
and assuming that the two new variables obey a scaling
solution with &, = A, a’+ and ®_ = A_a’-, Eq. (64)
becomes
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AyaP+(pr +2p, —3)+A_a’(p> +4p_+3)=0.
(66)

One would expect that ®, would grow with exponent
p+ = 1, while ®_ would decay away with exponent p_ =
—1. However, because of the need to preserve the Bianchi
identity with a nonzero A, as discussed in Sec. IVA 3, the
scaling solution is slightly violated. We find that p, =
1 + € while p_ = 1. This leads to the relation

A_ €a
o- 7
Ay 2’ 67

where € — 0 monotonically. At late times, our solution
tends to a regime where the ratio ®_/d, — 0, with
b, xa.

It is interesting to note that in this opposite limit to that
studied in [26] where ®_ < P, Eq. (64) also becomes
closed and has solutions that depend only on the expansion
history through H.

In fact, Eq. (64) is equivalent to the statement that the
Bardeen curvature, { = @ + Hg, is conserved during the
de Sitter era, once the mode leaves the horizon. This is also
true of the comoving density perturbation A, which satu-
rates to a constant during the de Sitter era. However, the
comoving and longitudinal hypersurfaces warp with a shift
Hgq that grows without bound.

B. Quasistatic vs dynamical-scaling solutions

It is useful to summarize the differences between the
quasistatic (QS) and dynamical-scaling (DS) solutions un-
covered in the previous section.

Beginning at the initial conditions in the radiation-
dominated era, the superhorizon value of the master vari-
able is highly suppressed with Qpg/Qqs = O((k/aH)?)
(see Fig. 4). As the mode enters the horizon during matter
domination, the DS solution for () grows rapidly and then
executes damped oscillations around the QS solution. This
can be understood analytically since the Bianchi identity
takes the form of a damped oscillator in ) /a? that is driven
by A. During the time when () significantly deviates from
the QS solution, the Weyl corrections to the Poisson equa-
tion (16) are suppressed, since Hr, >> 1, and there is no
additional correction to the gravitational potentials over
and above that of QS (see Fig. 7).

We find that the results of the scaling solution match the
quasistatic results for all modes that enter the horizon well
within the matter-dominated epoch k > 0.01 Mpc~! (see
Figs. 4—7). For larger scales, this is not so: as shown in
Fig. 4, Q) now only decays toward the QS solution, rather
than oscillating around it. Since at late times the Weyl
perturbations are no longer suppressed, this now makes a
significant contribution to the Poisson equation, resulting
in additional decay of the potentials. As shown in Fig. 7,
there is a 15% deviation from QS in @ — ¥ at the scale
k =0.001 Mpc~! for the chosen sets of cosmological
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7 | | ‘
: —— k=0.001 Mpc"
| : - == k=0.010Mpc! |
N k =0.100 Mpc™"
| ]
<z |
a
~
& 51 |
a
2 L
1 L
6 -5 —4

loga

FIG. 4. Ratio of master variable ) for dynamic scaling and
quasistatic solutions. In QS, () responds instantaneously to
changes in A. Fully dynamic solution to the Bianchi identity
(31) requires time to respond and eventually decays to the QS
solution. Initializing the calculation at earlier times changes
neither the scale factor at which ) responds nor its value today.
Rapid growth occurs during the time before horizon crossing.

parameters. The direction of this effect agrees with esti-
mates made by Lue in [27] and is such that the scaling
solution is an even worse fit to CMB anisotropy data than
the quasistatic (see [15] for a discussion).

| k =0.001 Mpc™!
> 08
| N
® 06 |—Lcom e
. - _QS "’/
“““““ DS :
0.4 :
1 k =0.01 Mpc™!
E’l“ 0.8
=)
0.6
0.4 : : :
i) -15 -1 -0.5 0
loga

FIG. 5. Evolution of the principle gravitational observable
® — W for concordance ACDM, the quasistatic solution, and
our new dynamical scaling solution. For scales k = 0.01 Mpc ™!
the scaling and QS solutions do not differ appreciably: the decay
in the potentials is a little faster than ACDM as a result of slower
growth of density contrast. At larger scales, the DS solution
exhibits significant additional decay owing to the different value
of () at late times, as exhibited in Fig. 4. All potentials normal-
ized to 1 at loga = —2.
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80

60~ = -QS

k =0.001 Mpc™!

<40t

20+

0 f
k =0.01 Mpc™!

601
< 407

20t

FIG. 6. Evolution of the comoving density contrast A for
concordance ACDM, QS and our DS solution. The growth
function in DGP is suppressed compared to ACDM, even in
the case of a flat cosmology. There is no significant difference
between the scaling ansatz and the quasistatic solution, with DS
departing at most by 2% from QS at the largest scales. All
quantities are normalized to 1 at loga = —2.

On the other hand, up to the present time, the QS
solution for comoving density perturbations A is a very
good approximation for the DS solution at all scales. The
additional suppression is of the order of 2% for k =
0.001 Mpc ™.

1 —— ]
= o
HE S
sl 09 1 R
Ll —— k=1le-2Mpc” .
el 0.8} - = = k=5e-3Mpc™ -
IR k= 1e=3 Mpc™ .
""" k= 5e—4 Mpc ™! a
0.7 ; } }
8 | -, |
g T o
P L |
a
< 0.99¢
0.98 ‘ | | ,
-2 -15 -1 -0.5 0
loga

FIG. 7. Comparison of results of QS and DS solutions: Upper
panel presents the ratio of @ — W in the two approximations. For
modes with k > 0.01 Mpc ™! the two solutions differ by less than
2%. The difference is much more pronounced for larger scales
where () has not decayed to the QS value, resulting in additional
decays of up to 15%. Lower panel presents the ratio of comoving
density perturbations in the two solutions: A is affected much
less, with approximately a 2% deviation from QS at the largest
scale, k = 0.001 Mpc ™.

92 -1.5 -1 -0.5 0
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V. DISCUSSION

We have introduced a new scaling ansatz which allows
solutions to linear perturbations in the DGP model on all
scales less than the cross-over scale r. up to the present
epoch. The equations of motion for linear perturbations on
the brane require knowledge of the gradient of the so-
called master variable into the bulk. The master variable
obeys a master equation in the bulk. To solve the master
equation, it is sufficient to have two boundary conditions,
one on the brane and the other in the bulk.

Our scaling solution begins with an ansatz for the brane
boundary condition: that the evolution of the master vari-
able is scale free on the brane. The second boundary
condition is that the master variable vanishes at the causal
horizon in the bulk. With these two boundary conditions,
we solve the master equation to determine the gradient.
With the gradient known, we can then replace the scale-
free ansatz with the dynamical solution and iterate the
solution until convergence.

We find that the quasistatic (QS) solution of [11] is
rapidly approached once the perturbation crosses the hori-
zon. Before horizon crossing there are strong deviations
from the quasistatic solution. For modes that crossed the
horizon only recently during the acceleration epoch, we
find that the metric perturbation ® — W decays more rap-
idly that the QS solution. The QS solution itself has a
stronger decay than the ACDM model. The extra decay
compared with ACDM is extremely robust to changing the
gradient of the master variable into the bulk, the one
variable that is required to close the equations of motion
on the brane. We consider the observational consequences
of these results in a companion paper [15].
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APPENDIX: SCALING ANSATZ ROBUSTNESS

Assuming that the scaling ansatz is appropriate, the
solution presented in this paper is correct at all scales.
However, the scale-free assumption for the solution in
the bulk depends crucially on the existence of only one
scale in the problem: the Hubble parameter. It is possible
that through some additional physics in the vicinity of r,
this assumption is broken and the evolution of the bulk
profile will depend on both H and r, independently.

However, any violation of scaling will enter the equa-
tions solely through the off-brane gradient R: this is the
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quantity which we obtained by solving the master equation
Eq. (43) using the scaling ansatz. It is important to note
that, in our analysis, we have not dropped any terms either
arising from the Weyl-fluid-driving Bianchi identity (31) or
the master equation (27). We have assumed that the solu-
tion in the bulk depends only on yH /£ but the form of the
master equation implies that this scaling assumption
should be a good one. We are only testing the robustness
of our solution in order to estimate the effect of any new
physics which might be important at scales around r, and
which is not embodied in the master equation already.
One way of testing the robustness of the scaling ansatz is
to change the values of R at late times and investigate how
much of a departure from scaling-ansatz values is neces-
sary to significantly change the behavior of observables.
We concentrate on the change to the evolution of the
potential ® — W, which drives the ISW effect, as we alter
the off-brane gradient. Since the QS solution already has a
significantly sharper decay than ACDM, and therefore is a
worse fit to the large-angle CMB anisotropy [15], and the
DS solution decays even more rapidly (see Fig. 5), we
attempt to violate the scaling solution in such a way as to
soften this decay. We present the modification to R in
Fig. 8: we employ a linear interpolation for R between its
scaling ansatz value at log a = —2 and a chosen off-brane
gradient value today, Ry. One should note that this break-
ing is rather extreme, since the scale under consideration,
k = 0.001 Mpc~!, is inside the horizon today and it should
be well within the quasistatic regime at the present time.
We have found that choosing negative values for R
strengthens the decay of @ — W, with the scaling solution

1 w 7

FIG. 8. Off-brane gradient for k = 0.001 Mpc~! for the scal-
ing solution and the scaling-violating scenarios employed in
robustness testing. Since any scaling violation is only likely to
occur at scale factor close to Hr, ~ 1, we modify the gradient
starting at loga = —2. A value of the gradient today, Ry, is
chosen and the gradient is interpolated linearly between these
two scale factors. In this modification, we disregard the fact that
the mode enters the horizon at late times.
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60
<40
20
-1 —0‘.8 —0‘.6 —O‘.4 —0‘.2 0
loga
FIG. 9. Evolution of ® -V and A for mode k=

0.001 Mpc™! for a selection of scaling-violating scenarios.
Increasing R brings the solution closer to that of QS, and, for
very large values, reduces the decay of ® — W to that of ACDM.
The effect of changing R, on A is much smaller, the quantity
remains insensitive to the precise details of the scenario.

approximately replicated for R, = —2. Positive values of
R, reduce the rapidity of the decay at late times: the QS
solution is matched for Ry = 5, which is a value much
higher than ever achieved by the scaling solution (see
Fig. 9). In order to achieve the low levels of decay exhib-

D-Y
(P - W)gs

A/Ags

0.8 — ‘ ‘ ‘ ‘

FIG. 10. Ratio of & — ¥ and A for scaling and scaling-
violating scenarios to their values in QS for mode k=
0.001 Mpc~!. Dashed line represents the final value of the
quantity in QS, dotted line in DS, and dotted-dashed line in
ACDM. The solution is very sensitive to negative values of Ry,
but choosing such scenarios only increases the decay, strength-
ening the ISW effect. Positive values of R, bring the evolution of
the observables closer to that of the QS solution and, for very
large values, achieve decays as low as those of ACDM. A is
quite insensitive to the choice of R. All quantities were normal-
ized to the same value at loga = —2.
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ited by ACDM, R, needs to be set in the vicinity of 50 (see
Fig. 10).

The effect is different for A: here, negative values of R,
also decrease the growth rate even further beneath that of
DS; however, A asymptotes to a value approximately 2%
beneath that of the QS solution as Ry is sent to infinity.

PHYSICAL REVIEW D 75, 064002 (2007)

The above considerations show that the new physics
required around r, would have to violate the scaling be-
havior rather strongly in order to give an ISW effect
comparable to that of ACDM.
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