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The self-accelerating braneworld model (DGP) can be tested from measurements of the expansion
history of the universe and the formation of structure. Current constraints on the expansion history
from supernova luminosity distances, the CMB, and the Hubble constant exclude the simplest flat
DGP model at about 3σ. The best-fit open DGP model is, however, only a marginally poorer fit
to the data than flat ΛCDM. Its substantially different expansion history raises structure formation
challenges for the model. A dark-energy model with the same expansion history would predict a
highly significant discrepancy with the baryon oscillation measurement due the high Hubble constant
required and a large enhancement of CMB anisotropies at the lowest multipoles due to the ISW
effect. For the DGP model to satisfy these constraints new gravitational phenomena would have
to appear at the non-linear and cross-over scales respectively. A prediction of the DGP expansion
history in a region where the phenomenology is well understood is that high-redshift galaxies should
be substantially correlated with the CMB through the ISW effect. This correlation should provide
a sharp test of the DGP model in the future.

PACS numbers:

I. INTRODUCTION

Cosmic acceleration may arise either from a new
form of energy density, dubbed dark energy, or from a
modification of gravity on cosmological scales. Dvali,
Gabadadze and Porrati (DGP) [1] have proposed a
braneworld modification of gravity to explain accelera-
tion (see [2] for a recent review). In this model our uni-
verse is a (3+1)-dimensional brane embedded in an infi-
nite Minkowski bulk. The cosmological solution of this
theory exhibits self-acceleration on the brane classically
[3, 4] (see [5] for problems with the quantum theory).

Various cosmological probes which can distinguish
DGP from dark energy models (DE) have been inves-
tigated in the literature [6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17]. These come in two classes: those that test DGP
modifications of the expansion history and those that test
changes in how cosmological structures are formed. The
advantage of the former class is that the predictions of
the DGP model are well understood theoretically. The
main disadvantage is that they currently lack the power
to distinguish the DGP model from its dark energy coun-
terpart the ΛCDM model at high significance. Moreover,
expansion rate tests cannot distinguish between the DGP
model and an arbitrary form of smooth dark energy that
is constructed to mimic it in the background. Structure
formation tests on the other hand can in principle solve
both these problems. However due to complexities in the
theory they currently can only be rigorously implemented
on a rather small range of scales.

In this paper, we examine the combination of these
two types of tests. We employ three tests of the expan-

∗Electronic address: ysong@cfcp.uchicago.edu

sion history: the angular diameter distance to recom-
bination from the three-year WMAP data [18], luminos-
ity distance to high-redshift supernovae (SNGold[19] and
SNLS[20]) and the local expansion rate from Hubble con-
stant measurements. These tests do in fact strongly dis-
favor the simplest version of the DGP model: a modi-
fication of gravity in a spatially flat cosmology with no
bulk cosmological constant. The best fit DGP model has
a significant negative curvature and a high Hubble con-
stant. Even with the addition of spatial curvature, it is
a slightly poorer fit to the data than flat ΛCDM.

The best fit DGP model yields an expansion history
that is strikingly different from flat ΛCDM. The dark
energy model that mimics this expansion history has
negative curvature and a dark energy equation of state
that increases sharply with redshift. In the dark energy
context such an expansion history would be strongly ex-
cluded by structure formation tests. These include the
baryon acoustic oscillations (BAO) in galaxy clustering
[17, 21], the integrated Sachs-Wolfe (ISW) enhancement
of low CMB multipole power, the abundance of galaxy
clusters, and fluctuations in the Lyman-α forest. While
these probes likely also test the DGP model, none of these
phenomena are sufficiently well understood in the model
to provide a definitive test.

Structure formation in DGP is currently well under-
stood on scales between a few percent of the Hubble scale
and the scale radius of a typical dark matter halo. Since
the ISW enhancement persists to these scales and is mea-
surable in its correlation with galaxies [22, 23, 24, 25], it
is a robust test of the DGP model in principle. This
enhancement however occurs mainly at higher redshifts
than currently observed. The ΛCDM model on the other
hand predicts negligible true correlation at high redshift.
Therefore CMB-galaxy correlations at high redshift will
in the future provide a sharp test of DGP braneworld
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acceleration.

II. EXPANSION HISTORY

A. Supernovae, CMB and H0

The expansion history of a DGP model is deter-
mined by the usual Friedman-Robertson-Walker param-
eters and the crossover distance. The crossover distance
is defined as the ratio of 5-dimensional to 4-dimensional
Planck mass scales

rc =
M

(4) 2
Pl

2M
(5) 3
Pl

. (1)

It is a free parameter of the theory. If rc is close to the
current horizon scale, the acceleration of cosmic expan-
sion is replicated without dark energy. Gravity on scales
much less than rc does not penetrate into the bulk signifi-
cantly, and exhibits the usual Newtonian potential falling
as the inverse distance. In the DGP model, as the Hubble
scale approaches rc, the universe enters an accelerating,
asymptotically de-Sitter phase despite the absence of a
cosmological constant.

The main evidence for cosmic acceleration is geometri-
cal and based on the luminosity distance to high-redshift
supernovae (SN) [19, 26, 27, 28] and the angular diame-
ter distance to the recombination epoch of the CMB (e.g.
[29]). Both distances are given as usual by the (comov-
ing) angular diameter distance in units of H−1

0

D(z) =
√

Ωk sinh
(

r(z)/
√

Ωk

)

, (2)

where r(z) is

r(z) =

∫ z

0

dz′E(z′). (3)

E(z) is the Hubble parameter in units of the Hubble con-
stant. The DGP model modifies the Friedman equation
or the relationship between E(z) and the energy densities
of matter and radiation in units of the critical density

E2 ≡
H2

H2
0

(4)

= Ωka−2 +
(

√

Ωrc +
√

Ωrc + Ωma−3 + Ωra−4
)2

,

where H0 = 2997.9h Mpc−1. Here the scale factor a =
1/(1 + z), Ωrc(=1/4r2

cH
2
0 ) is given by

Ωrc =
(1 − Ωk − Ωm − Ωr)

2

4(1 − Ωk)
. (5)

We implement the SN constraints from the “gold” SN
data set of [19] and the SNLS set of [20]. For the CMB,
we fix the distance to recombination at zlss = 1088+1

−2

through the measurement of the acoustic peak scale
lA = 302+0.9

−1.4 and its length calibration through the mat-

ter density Ωmh2 = 0.1268+0.0072
−0.0095 [29]. Note that the SN

are a relative distance indicator and hence constrain D
whereas the CMB is an absolute distance measure which
constrains D/h.

FIG. 1: The ∆χ2 between the best fit flat and open DGP versus
that of flat ΛCDM model. SNGold supernova (SN) data set is used
in the top panel and SNLS SN data set is used in the bottom panel.
The DGP model requires curvature and a high Hubble constant.
With the addition of Key Project (KP) direct Hubble constant
measurements open DGP is a marginally poorer fit to the data
than flat ΛCDM.

Like flat ΛCDM (fΛCDM), flat DGP has a single pa-
rameter Ωm that is over-constrained by the distances to
recombination, Ωmh2, and high-redshift supernovae. Un-
like fΛCDM, flat DGP is not a good fit to these data.
In DGP cosmologies, the SN favor a lower Ωm than in
fΛCDM resulting in a shorter angular diameter distance
to the CMB than is measured by WMAP. For the SNGold
data set the excess χ2 over fΛCDM is ∆χ2 ≈ 4 while for
SNLS the excess is ∆χ2 ≈ 9 (see Fig. 1).

A negatively curved geometry elongates the CMB dis-
tance and allows a low Ωm in agreement with the SN dis-
tances [17, 30]. Even so, the CMB constraint on Ωmh2

favors a high Hubble constant of h = 0.8 (SNGold) and
h ≈ 0.9 (SNLS) compared with observations from the
HST Key Project (KP) h = 0.72 ± 0.08 [31]. fΛCDM
on the other hand, despite being highly over-constrained
satisfies the observations with h = 0.73.

With the addition of the KP H0 constraint, the best
fit open DGP (oDGP) model has h = 0.76 (SNGold) and
h = 0.82 (SNLS) but is a marginally poorer fit to the
data than fΛCDM. The excess over fΛCDM of the latter
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is ∆χ2 ∼ 2.5 with one fewer degree of freedom due to
the fit to spatial curvature. The other parameters of this
best fit model are Ωm = 0.18, Ωk = 0.036.

If the Hubble constant measurements can be improved
by a factor of 2 in the future, then the oDGP and fΛCDM
will be clearly distinguished from each other. They are
currently both acceptable fits to these data. We will
hereafter take the best fit model to the WMAP, SNLS
and KP data sets as the oDGP model for further tests.

B. DGP vs. Dark Energy

The main expansion history differences between the
best fit oDGP model and fΛCDM can be exposed by
finding the scalar field or QCDM model that matches
the oDGP distance measures exactly. With the same
curvature, Ωmh2 and H0, that QCDM model has a time-
dependent equation of state

w(a) = −
1

3

dE2

d ln a + 3Ωma−3 + 2Ωka−2 + 4Ωra
−4

E2 − Ωma−3 − Ωka−2 − Ωra−4
− 1 .(6)

This equation of state starts at w = −1/3 during radia-
tion domination, becomes w = −0.5 during matter domi-
nation and decays to w = −0.85 at the present time. The
value of w(a) is substantially higher than the w = −1 of
fΛCDM. The implied increase in the dark energy density
causes both the larger Hubble constant and a decrement
in D(z) at high redshift. This decrement is compensated
by negative curvature to match the CMB distance.

The expansion history of this QCDM model is strik-
ingly different from fΛCDM despite the fact that they
both satisfy CMB and SN constraints. Both the in-
creased dark energy density and the negative spatial cur-
vature contribute to changes in structure formation that
would violate even current observations. One therefore
expects that structure formation tests should provide a
strong constraint on the oDGP model. It is important to
emphasize that it is not necessary to distinguish between
oDGP and QCDM based on difference in the growth of
structure. The comparison is between oDGP and fΛCDM
because the QCDM model is not viable. We therefore use
the degenerate QCDM model as a guide to understand
the qualitative predictions of oDGP. The main task of
testing the expansion history consequences for oDGP is
to find a structure formation probe that can be robustly
calculated in the DGP model.

III. STRUCTURE FORMATION

A. Baryon acoustic oscillations

As discussed in the previous section, the largest ex-
pansion history discrepancy between oDGP and fΛCDM
lies in the current expansion rate or Hubble constant. In

the distance-degenerate QCDM model, the large Hub-
ble constant would be in strong conflict with the mea-
sured baryon acoustic oscillations in the SDSS galaxy
correlations. Baryon acoustic oscillations appear near
the scale where density perturbations become non-linear
and hence cannot be considered a purely geometric test.
Detailed predictions in the oDGP model below this scale
require the solution of the N -body problem with a non-
linear Poisson equation. It is nonetheless useful to quan-
tify the extent of the problem in the QCDM model since
it determines the level at which nonlinear oDGP cor-
rections would have to alter linear theory predictions to
satisfy the data [17].

The baryon oscillations are imprinted at a fixed phys-
ical scale by the CMB at recombination. Under ordi-
nary gravity, they yield a nearly geometric test since non-
linearities are insufficient to change the physical scale of
features substantially. The SDSS luminous red galaxy
(LRG) survey measures the features between 0.16 ≤
z ≤ 0.47. At these redshifts, this distance is sensitive
mainly to the Hubble constant [32]. More specifically,
it can be converted to a relative distance measure be-
tween the effective LRG redshift and recombination of
D(z = 0.35)/D(zlss) = 0.0979 ± 0.0036. Recall that the
CMB measures D(zlss)/h. Hence in the high Hubble con-
stant QCDM model this number is too low, specifically
0.0818 leading to a 4.5σ discrepancy. This discrepancy
can be slightly ameliorated by refitting the models to all
data including the BAO data [17].

If oDGP shared the same non-linear effects with
QCDM, the BAO measurement would exclude it as well.
In the DGP model, there is a key distance scale, r∗, above
which the linearized perturbations experience the weak-
brane phase [2, 33, 34, 35, 36]. In the weak-brane regime
rc ≫ r ≫ r∗, gravity is modified as a scalar-tensor the-
ory. Below r∗, gravity is described by the standard Ein-
stein theory. For a point mass M , the transition scale

r∗ = (r2
crg)

1/3 , (rg = 2GNM). (7)

Since even the linear density field is constructed from the
spatial average of collapsed dark matter halos under any
hierarchical structure formation model, the critical scale
is associated with the r∗ of the dark matter halos.

For definiteness let us take the other cosmological pa-
rameters as in the best fit QCDM model: Ωmh2 = 0.122,
Ωbh

2 = 0.0224, τ = 0.11 with a power law spectrum of
adiabatic fluctuations with ns = 0.958, δζ = 4.5 × 10−5

at knorm = 0.05 Mpc−1. In this QCDM model, the
LRG galaxy number densities correspond to halos of
M∗ ≈ 1013h−1M⊙ corresponding to r∗ ≈ 3 Mpc. This
scale is only marginally smaller than the baryon oscil-
lation scale. Furthermore, without a determination of
how dark matter halos form under DGP and whether
the observed galaxies indeed reside in 1013h−1M⊙ halos
it remains unclear whether weak-brane phase predictions
can be applied to the BAO measurements.
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B. Linear Growth Rate

The same expansion history discrepancy between
QCDM and fΛCDM which raises h also causes both an
earlier decay of the growth of structure and a larger to-
tal change in the growth to z = 0. For example, in the
QCDM model σ8 = 0.6 and Ωm = 0.18. These values
are in conflict with the abundance of local clusters. Un-
fortunately, this QCDM prediction again relies on the
non-linear aspects of structure formation and hence can-
not yet be applied to oDGP. In order to test oDGP we
must find a probe on scales rc ≫ r ≫ r∗.

In this regime, the linear theory predictions of DGP
are now well understood. In general, the equations of
motion of linear perturbations in DGP are not closed on
the brane. They require knowledge of the gradient of
metric perturbations into the bulk as quantified by the
so-called master variable [37]. This in turn depends on
boundary conditions in the bulk. Koyama and Maartens
[14] solved this system in the small scale limit k/aH ≫ 1
where the expansion rate can be ignored compared to
the master variable frequency ω ∼ k. In this quasi-static
(QS) limit, the Newtonian metric perturbations become

k2

a2
Φ− = 4πGρm∆m ,

k2

a2
Φ+ = −

4πG

3β
ρm∆m , (8)

where Φ− = (Φ − Ψ)/2 and Φ+ = (Φ + Ψ)/2 and

β = 1 − 2rcH

(

1 +
Ḣ

3H2

)

. (9)

Here ∆m is the comoving matter density perturbation
and for k/aH ≫ 1 satisfies

∆̈m + 2H∆̇m = −
k2

a2
(Φ+ − Φ−). (10)

These relations agree with the earlier conclusions of Lue
[6] obtained in a different manner.

This QS solution implies a 5% to 10% extra decay of
Φ− in the oDGP compared with the QCDM model with
the same expansion history. We show the evolution of
Φ− for each model in Fig. 2. The main effect however is
not a difference between oDGP and QCDM but between
either and fΛCDM. In either case, Φ− begins to decay at
high-z such that there is as much decay at z > 1 as there
is in fΛCDM at z < 1.

In order to find an appropriate test of this prediction,
we need to determine the validity of the quasistatic so-
lution on large scales approaching rc. In a companion
paper [38], we solved the dynamical equations by mak-
ing a starting assumption that outside the horizon the
evolution is scale free and that perturbations in the bulk
vanish at the causal horizon. We then iterate the solution
through the dynamical equations until they reach conver-
gence. The starting scaling assumption is mildly violated

during the transition from matter domination to acceler-
ated expansion but the iteration yields stable solutions.
We call this the dynamical scaling (DS) solution.

Under these assumptions the quasistatic solution is
stably approached by k = 10aH and hence is valid to
better than 2% at k >∼ 0.01 Mpc−1 for z = 0. Com-
bined with the condition from r∗, a robust test of the
quasi-static predictions of oDGP would involve fluctua-
tions between 0.01 <∼ k(Mpc−1) <∼ 0.1.

FIG. 2: The growth factor of Φ− of fΛCDM and oDGP under
the quasi-static (QS) assumption normalized to Φ−(z ≫ 1) = 1.
The model parameters are chosen as the best fit to the CMB (3yr-
WMAP), SN (SNLS), and H0 (KP). QCDM is the scalar field dark
energy model which has the same expansion history as oDGP. The
growth rate is plotted on subhorizon scales where the dark energy
is smooth and oDGP follows the QS assumption.

C. ISW Effect

The decay in the gravitational potential Φ− at k >∼
0.005 Mpc−1 causes an enhancement of the large-angle
anisotropy in the CMB through the ISW effect.

The angular power spectrum of the ISW effect is given
by

CII′

l = 4π

∫

dk

k
[II

l (k)]2
k3PΦ−Φ−

(k, 0)

2π2
, (11)

where PΦ−Φ−
(k, 0) is the power spectrum of Φ− at the

present time and the kernel II
l is

II
l (k) =

∫

dz
Φ−(k, z)

Φ−(k, 0)
W I(k, z)jl(kD)

(

dD

dr

)1/2

. (12)
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The window function is given by

W I(k, z) =
2

Φ−

∂Φ−

∂z
. (13)

We have have here assumed that the spatial curvature is
small enough that the spherical Bessel function jl accu-
rately represents the radial harmonics.

FIG. 3: The CMB temperature anisotropy power spectra of the
various models. Top panel: oDGP under the quasi-static (QS) ap-
proximation versus QCDM and fΛCDM for the total power (upper
curves) and the ISW effect (lower curves). Bottom panel: oDGP
(QS) compared with the dynamical scaling (DS) solution. The DS
solution predicts a further enhancement of the ISW effect such that
l < 10 strongly violates the WMAP measurements (points). The
errors are mainly associated with cosmic variance at these multi-
poles and the 68% and 95% CL bands per l have been attached to
the DS model.

Fig. 3 shows the difference between predictions for CII
l

from oDGP under the quasistatic approximation com-
pared with fΛCDM and QCDM. We also show the to-
tal temperature power spectrum CTT

l . The enhance-
ment of the low-multipole power spectrum directly re-
flects the high-redshift decay of the gravitational poten-
tial in oDGP and QCDM. In QCDM the effect at the low-
est multipoles is smaller since a scalar field has a Jeans
scale at the horizon. Beyond this scale, dark energy per-
turbations slow the decay of the potential.

There are analogous corrections for oDGP on large
scales but they have the opposite sign. Under the DS ap-
proximation the decay rate of the Φ− actually increases
at the largest scales (see Fig. 4) leading to even larger
fluctuations. In [38], we show that this approximation
should at least give the right sign of the effect. The QS
solution should thus be taken as a lower bound on the

FIG. 4: Top panel: the spatial wavenumbers corresponding to the
ISW effect under the QS approximation for multipoles l = 2, 20.
For l = 20 the scales associated with the effect are 1/rc ≪ k ≪ 1/r∗
and even the quadrupole receives much of its contribution from
1/rc ≪ k. Bottom panel: the fractional difference between the
dynamical scaling (DS) and quasi-static (QS) solutions for DGP at
the relevant scales for l = 2, 20. For l = 20, the QS approximation
is accurate to the several percent level.

ISW effect. Hence the discrepancy between the oDGP
QS predictions and the measurements at l = 2− 5 in the
3year WMAP data are a challenge to the model that will
require new phenomena near rc to overcome.

At l ∼ 20 the ISW effect comes from physical scales
that are within the limit of the quasistatic approxima-
tion as well as well below rc. The ISW effect here is a
small fraction of the total anisotropy and is best isolated
through cross correlation with tracers of the gravitational
potential, e.g. galaxies. Moreover the cross correlation
can isolate the redshift history of the potential decay and
expose a key prediction of the oDGP structure formation:
an early decay of the potential.

IV. GALAXY-ISW CORRELATION TEST

The oDGP model predicts a stronger and earlier decay
of the gravitational potential than the fΛCDM model.
By cross-correlating galaxies of different redshifts with
the CMB, one can in principle reconstruct the redshift
history of the potential decay. Furthermore, the cross-
correlation arises from the well understood quasi-static
(QS) regime of oDGP.

The cross-power spectrum of the CMB and a set of
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FIG. 5: The galaxy-ISW cross-correlation coefficient Ri

l in each galaxy bin from z = 0 to z = 3. Solid curves denotes fΛCDM
and dash curves denotes oDGP. Note the much larger correlation at high z in oDGP.

galaxies gi is given by a generalization of Eq. (11)

CgiI
l = 4π

∫

dk

k
Igi

l (k)II
l (k)

k3PΦ−Φ−
(k, 0)

2π2
, (14)

where the galaxy kernel Igi is

Igi

l (k) =

∫

dz
Φ−(k, z)

Φ−(k, 0)
W gi(k, z)jl(kD)

(

dD

dr

)1/2

.(15)

Under the QS approximation, the window function be-
comes

W gi(k, z) =
2

3Ωm

k2

H2
0

ni(z)bi(z)

1 + z
, (16)

where ni(z) is the redshift distribution of the galaxies
normalized to

∫

dzni = 1 and bi(z) is the galaxy bias.
For definiteness, we assume that the galaxy sets come

from a net galaxy distributions of

ng(z) ∝ z2e−(z/1.5)2 , (17)

where the normalization is given by the LSST expecta-
tion [42] of 35 galaxies per arcmin2. For the subsets of
galaxies, we assume that this total distribution is sep-
arated by photometric redshifts which have a Gaussian
error distribution with rms σ(z) = 0.03(1 + z) (see [39]
for details). The redshift distributions are then given by

ni(z) =
Ai

2
ng(z)

[

erfc

(

zi−1 − z√
2σ(z)

)

− erfc

(

zi − z√
2σ(z)

)]

,

where erfc is the complementary error function and Ai is
determined by the normalization constraint.

Our galaxy bias bi(z) is determined by a halo model
and ranges from 1.4 at z ∼ 0 to 3.8 at z ∼ 3. How-
ever with our narrow binning, the bias is nearly constant

across the bin and so its value can be empirically de-
termined through comparing the auto and cross power
spectra once the data are in hand. In particular, the
cross-correlation coefficient Ri

l in harmonic space

Ri
l =

CgiI
l

√

CTT
l Cgigi

l

(18)

is independent of the bias and is a robust measure of the
galaxy-ISW correlation.

In Fig. 5, we show Ri
l for oDGP and fΛCDM. The main

difference appears in the high-redshift bins and reflects
the early decay of the potential in oDGP. The correla-
tion of high-redshift galaxies with the CMB is therefore
a sharp test of the oDGP model.

To determine whether these correlations are poten-
tially observable, we estimate the sampling and noise er-
rors in the cross-correlation measurement. First let us
define the total galaxy power spectra C̃gigi

l as

C̃gigi

l = Cgigi

l + Ngigi

l . (19)

Here the shot noise Ngigi

l = 1/ni
A where ni

A is the angular
number density of galaxies in the bin. With our number
densities the variance is nearly sample limited in all of
the redshift bins.

Likewise the total power in the CMB measurements is
given by

C̃TT
l = CTT

l + NTT
l (20)

where the instrumental noise NTT
l is ∆2

T el(l+1)σ2/8ln2.
With either WMAP or Planck satellite assumptions for
the noise ∆T and the beam σ the temperature map is
sample variance limited to good approximation.

The error on cross-correlation can be calculated under
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the Gaussian assumption as

∆CgiI
l =

√

1

(2l + 1)fsky

[

(

CgiI
l

)2

+ C̃gigi

l C̃TT
l

]1/2

,(21)

where fsky is the sky fraction covered by the galaxy sur-
vey.

Statistical Properties of Galaxy Correlations

z̄ 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0

(Si/N i)/
√

fsky 2.5 5.0 5.9 6.0 5.7 5.3 4.9 4.5

l50% 12 18 23 26 29 31 33 35

RoDGP
l50%

/RfΛCDM
l50%

0.83 1.1 1.6 2.2 2.8 3.6 4.4 5.3

TABLE I: Rows: mean redshift, total signal-to-nose of corre-
lation, multipole l below which 50% of the (Si/N i)2 arises,
ratio of correlation between oDGP and fΛCDM at that mul-
tipole.

The signal to noise in each bin is given by

(

Si

N i

)2

=
∑

l

(

CgiI
l

∆CgiI
l

)2

(22)

and these values are given in Tab. I. In the sample vari-
ance limit approached by our fiducial assumptions

(

Si

N i

)2

≈
∑

l

(2l + 1)fsky
(Ri

l)
2

1 + (Ri
l)

2
. (23)

Even at high redshift z ∼ 2− 3 the signal to noise allows
a 15% − 20% measurement of the correlation. Such a
measurement would be more than sufficient to distinguish
the factor of a few difference between the oDGP and
fΛCDM models.

Most of the detectable signal comes from the regime
where the QS approximation is appropriate. At low mul-
tipoles l < 10, the cosmic variance of both the galaxy
and temperature fields dominate [40]. By l = 100 the
sample variance of the acoustic peaks dominates. From
the signal to noise sum in Eq. (22), one can define l50% as
the multipole at which the (Si/N i)2 reaches half its total
value. This scale is also given in Tab. I and lies between
l = 20−40 for most of the bins. At this scale the ratio of
correlation coefficients in oDGP and fΛCDM approaches
a factor of 6 at z = 3. High redshift galaxies can thus test
the quasi-static oDGP predictions with high significance.

V. DISCUSSION

The self-accelerating DGP braneworld model is chal-
lenged by expansion history constraints from the CMB,

supernovae and the Hubble constant. Unlike a model
with a cosmological constant as the dark energy, the DGP
model requires spatial curvature to satisfy the CMB and
supernovae constraint and even so mildly exceeds bounds
on the Hubble constant.

In a dark energy model, the DGP expansion history
would be ruled out by structure formation tests. Among
the most powerful are the baryon oscillations and the
large angle CMB anisotropy from the ISW effect. In the
DGP model, these two phenomena lie close to the two
critical scales: r∗ where gravity transitions from obey-
ing the usual Einstein equations to a scalar-tensor or
weak brane phase and rc when gravity exits the weak
brane phase and becomes fully 5 dimensional. At these
transitions, the theoretical framework to calculate struc-
ture formation is currently incomplete. Nonetheless, non-
linear and 5 dimensional corrections at these scales would
have to be stronger than expected to accommodate these
phenomena.

The enhancement of the ISW effect from the decay
of the gravitational potential extends to intermediate
scales where the theoretical calculations are robust. The
main difference between the DGP and the flat cosmolog-
ical constant expansion history is the prediction that the
gravitational begins its decay at high redshift. A sharp
test of the DGP scenario would be to isolate this decay at
high redshift by cross correlating the CMB with a high-
redshift galaxy population. We show that a galaxy sur-
vey that covers a substantial fraction of the sky at z > 1
can detect this correlation at high significance. Such sur-
veys are currently being planned for the measurement
of high-redshift baryon oscillations. Alternately, radio
sources, X-ray sources and quasars provide other high-
redshift populations for cross correlation.

A possible source of confusion for this test is the ap-
parent number density fluctuation induced by magnifi-
cation from gravitational lensing by the same structures
associated with the ISW effect [41]. Magnification both
lowers the number density for a fixed population behind
a lens and also raises it for a fixed flux limit by bring-
ing faint galaxies into the sample. This effect may be
separated from a true spatial correlation by examining
different populations of objects where the competition
between these two effects differ and the cross-correlation
between high and low redshift galaxy populations. A full
examination of this issue is beyond the scope of this paper
but it is likely that the galaxy-ISW cross correlation will
become a sharp test of the DGP braneworld acceleration
model in the future.
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