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ABSTRACT

We construct a simple but self-consistent analytic ionization model for rapid exploration of 21cm
power spectrum observables in redshift space. It is fully described by the average ionization fraction
xe(z) and HII patch size R(z) and has the flexibility to accommodate various reionization scenarios.
The model associates ionization regions with dark matter halos of the number density required to
recover xe and treats redshift space distortions self-consistently with the virial velocity of such halos.
Based on this model, we study the line-of-sight structures in the brightness fluctuations since they are
the most immune to foreground contamination. We explore the degeneracy between the HII patch size
and nonlinear redshift space distortion in the one dimensional power spectrum. We also discuss the
limitations experimental frequency and angular resolutions place on their distinguishability. Angular
resolution dilutes even the radial signal and will be a serious limitation for resolving small bubbles
before the end of reionization. Nonlinear redshift space distortions suggest that a resolution of order 1
– 10′′ and a frequency resolution of 10kHz will ultimately be desirable to extract the full information
in the radial field at z ∼ 10. First generation instruments such as LOFAR and MWA can potentially
measure radial HII patches of a few comoving Mpc and larger at the end of reionization and are
unlikely to be affected by nonlinear redshift space distortions.

Subject headings: cosmology: theory — diffuse radiation — methods: analytical

1. INTRODUCTION

The epoch of reionization is perhaps one of the
“darkest” place in modern cosmology nowadays. On
one hand, Gunn-Peterson constraints (Gunn & Peterson
1965) from quasars (e.g., Becker et al. 2001; Fan et al.
2002) tells us that the Universe was mostly ionized by
z ∼ 6. On the other hand, the optical depth to Thom-
son scattering τ ∼ 0.17 from WMAP data (Kogut et al.
2003; Spergel et al. 2003) implies that reionization may
have begun as early as redshift z ∼ 17. While these data
suggest reionization was probably an extended and com-
plicated process, we still have little information about
what exactly happened during this period.

Among various approaches to explore the reionization
epoch, 21cm radiation from neutral hydrogen is in
principle on of the most powerful (e.g. Hogan & Rees
1979; Scott & Rees 1990; Madau, Meiksen &Rees
1997) and has recently received much attention
in preparation for a new generation of experi-
ments (e.g., Barkana & Loeb 2005a; Carilli 2005;
Chen & Miralda-Escude 2004; Ciardi & Madau
2003; Furlanetto, Sokasian, & Hernquist 2004;
Furlanetto, Zaldarriaga, & Hernquist 2004;
Furlanetto, McQuinn, & Hernquist 2005; Morales
2005; Morales & Hewitt 2003; Pen, Wu, & Peterson
2004; Santos, Cooray, & Knox 2005; Wyithe & Loeb
2004b; Zaldarriaga, Furlanetto, & Hernquist 2004).
Although contamination from foregrounds will likely
dominate the total signal, their smoothness in frequency
should allow the measurement of radial structures in the
brightness fluctuations.

Radial structures however are measured in redshift
space and are distorted by the peculiar velocity of the
neutral gas. Recent studies have addressed the impact

of linear velocity flows on 21cm power spectra (Barkana
2005; Barkana & Loeb 2005a,b; Bharadwaj & Ali 2005;
Cooray 2004).

In this paper, we provide a complete treatment includ-
ing the non-linear redshift space distortions or “Fingers
of God” that blur out radial structures along the line
of sight.We show how these effects impact 21cm power
spectra, how they manifest themselves with different ex-
perimental setups, and how they interact with intrinsic
reionization properties such as the size of the HII regions.
We show that nonlinear redshift space distortions will ul-
timately limit our ability to study small HII structures
during reionization.

The outline of the paper is as follows. In Section 2,
we construct a simple but self-consistent analytic ion-
ization model based on an association with dark matter
halos. Our model is similar in construction to that of
Furlanetto, Zaldarriaga, & Hernquist (2004a) but allows
for a rapid exploration of the possible parameter space of
alternate models. In Section 3, we employ the association
with dark matter halos to study redshift space distortions
based on their bias and virial velocity. In Section 4, we
study the impact of experimental angular and frequency
resolution on resolving the features induced by the HII
regions and redshift space distortions. In Section 5, we
discuss the impact of these considerations on first gener-
ation experiments such as MWA1 and LOFAR2 as well as
the design of an experiment that can recover essentially
all of the information in the radial temperature field. We
summarize our results in Section 6.

1 http://web.haystack.mit.edu/MWA/MWA.html
2 http://www.lofar.org
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2. REAL SPACE 21CM POWER SPECTRUM

2.1. Brightness temperature

The redshifted brightness temperature fluctuation in
the 21cm line can be viewed as a three dimensional field
where the position is specified by the angular coordi-

nates ~θ on a small patch of the sky and the observation
frequency ν. In the absence of redshift space distortions,
the mapping to comoving coordinates

~r = D⊥(z)~θ + D(z)~er (1)

involves the redshift z = ν21/ν − 1, where ν21 =
1420.4MHz, the comoving transverse (or angular diam-
eter) distance D⊥(z), and the comoving distance along
the radial direction ~er, D(z). In a flat universe, which
we assume throughout, D⊥ = D.

The amplitude of the brightness temperature fluctua-
tion is proportional to the neutral hydrogen density fluc-
tuation δHI ≡ δnHI/n̄H

δT (~r) = F 1/2(z)δHI(~r) , (2)

where n̄H is the mean hydrogen density. Under the as-
sumption that the spin temperature is much larger than
the CMB temperature, the proportionality coefficient
(Hogan & Rees 1979)

F 1/2(z)=
3

16

c3
~A21n̄H

kν2
21H(z)

1

1 + z

≈0.023K
1− Yp

0.75

Ωbh2

0.02

(

1 + z

10

0.15

Ωmh2

)1/2

. (3)

Here A21 is the Einstein coefficient for spontaneous emis-
sion and Yp is the primordial helium mass fraction.

Although the mapping involves integrals over the ex-
pansion rate H(z), which is currently uncertain at low
redshifts due to the dark energy, at high redshifts it is
already well determined by CMB observations. We will
consider a small range of observing frequencies around a
central value z ≫ 1. Differences in observing frequency
are then simply proportional to differences in radial dis-
tance

δD =
δz

H(z)
≈ 17Mpc

(

1 + z

10

0.15

Ωmh2

)1/2
δν

1MHz
. (4)

We set c = 1 where no confusion will arise. The trans-
verse distance in a flat universe can be scaled forward
from the CMB determined distance to recombination
D∗ ≡ D⊥(z∗) to avoid ambiguities due to the dark en-
ergy

D⊥ =D∗ −
∫ z∗

z

dz

H(z)

≈D∗ − 4.90Gpc

(

0.15

Ωmh2

10

1 + z

)1/2

×
[

1 −
(

1 + z

1 + z∗
+

1 + z

1 + zeq

)1/2
]

. (5)

where the redshift of matter radiation equality is given
by

1 + zeq = 3600

(

Ωmh2

0.15

)

. (6)

Notice there is no dependence on and no sensitivity to
the dark energy.

Likewise the conversion factor F from neutral hy-
drogen density to brightness fluctuation only adds a
sensitivity to the baryon density Ωbh2. Constraints
on these quantities from the first year WMAP data
(Spergel et al. 2003), require Ωmh2 = 0.14 ± 0.2 and
Ωbh

2 = 0.024± 0.001 which corresponds to D∗ = 13.7±
0.5 Gpc, z∗ = 1088+1

−2. For definiteness and in accor-
dance with large scale structure data sets (Seljak et al.
2005; Tegmark et al. 2004), we will illustrate our results
in a fiducial ΛCDM cosmology with Ωm = 1−ΩΛ = 0.29,
Ωbh

2 = 0.0244, Ωmh2 = 0.15. We assume that the initial
spectrum of curvature perturbations ζ takes the form

k3

2π2
Pζ = δ2

ζ

(

k

0.05Mpc−1

)n−1

(7)

with δζ = 4.8×10−5 and n = 0.99, corresponding to σ8 =
0.9. This requires D∗ = 13.4Gpc, z∗ = 1088 and the
total Thomson optical depth during reionization to be
τ = 0.103 or a lower limit on the redshift of the beginning
of reionization of z = 12. In the rest of this section, we
shall treat the observations as if they were made directly
in 3D physical space on the neutral hydrogen density
field.

2.2. Neutral hydrogen halo model

The neutral hydrogen fluctuations can be separated
into contributions from the ionization fraction x(~r) =
xe + δx(~r) and gas density fluctuations δ(~r)

δHI(~r) = [1 − xe − δx(~r)]δ(~r) − δx(~r) . (8)

The two point correlation function of
the neutral hydrogen field then becomes
(Furlanetto, Zaldarriaga, & Hernquist 2004)

ξδHIδHI
(r)= ξδxδx(r) − 2(1 − xe)ξδxδ(r)

+(1 − xe)
2ξδδ(r) + ξδxδ δxδ(r) . (9)

Here we have employed the notation

ξab(|~r1 − ~r2|) = 〈a(~r1)b(~r2)〉 (10)

for the two point correlation function between field a and
b. Analogously we define the power spectra as the Fourier
transform of the correlation functions

Pab(k) =

∫

d3k

(2π)3
ei~k·~rξab(r) . (11)

It is also useful to define the 1D line of sight projected
power spectrum since the radial structure of the field is
critical for removing foreground contaminants. In gen-
eral it is defined as

P 1D
ab (k‖)=

∫

d2k⊥
(2π)2

Pab(k)

=

∫ ∞

k‖

kdk

2π
Pab(k) , (12)

where k‖ and k⊥ are the components of ~k parallel and
perpendicular to the line of sight. Finally we will occa-
sionally use the shorthand notation Pa ≡ Paa where no
confusion will arise.
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The final term in equation (9) involves a product
of density and ionization fluctuations. Though for-
mally second order for linear fluctuations, we shall
see that for density perturbation on scales smaller
than a typical ionized region, this term must be in-
cluded to construct a physical model of the neutral
hydrogen field because of contributions of the form
(Furlanetto, Zaldarriaga, & Hernquist 2004)

ξδxδ δxδ(r) ≈ ξδxδx(r)ξδδ(r) . (13)

We model the underlying density and ionization cor-
relation functions with a halo model of ionization bub-
bles. Our implementation represents a simplification of
the Furlanetto, Zaldarriaga, & Hernquist (2004) model
in that we take a single characteristic bubble size at each
redshift. On the other hand, we leave the evolution of the
bubble size and mean ionization arbitrary to ensure flexi-
bility. For example, in our model reionization can end by
the percolation of many small bubbles or the growth of
rare bubbles until overlap. More importantly our model
captures, in a simple and fully analytic form, the required
physical scaling of the correlations as a function of mean
ionization and bubble size (cf. Santos et al. 2003).

Fig. 1.— Mass threshold and virial temperature (see equa-
tion (37)) as a function of the mean ionization xe for several choices
of the bubble radius R at z = 12 and z = 8.

In our model, the correlation functions are described by
two quantities: the typical radius of ionization bubbles
R(z) and the mean ionization fraction xe(z). We assume
that the probability that a given point in space is ionized
is determined by a Poisson process such that

〈x(~r)〉 = 1 − e−nb(~r)Vb , (14)

where nb is the number density of bubbles and Vb =
4πR3/3 is the volume of the bubbles. Brackets here de-
note averaging over the Poisson process. The mean num-
ber density is related to the mean ionization by

n̄b = − 1

Vb
ln(1 − xe) . (15)

By associating the seeds of the ionization bubbles with
massive dark matter halos of that number density, we
can model the statistics of the bubbles. Specifically we
set a mass threshold such that

n̄b =

∫ ∞

Mth

dM

M

dnh

d lnM
, (16)

where dnh/d lnM is the halo mass function
(Sheth & Tormen 1999)

dnh

d lnM
=

ρm0

M
f(ν)

dν

d ln M
. (17)

Here ρm0 is the matter density today, ν = δc/σlin(M ; z)
and

νf(ν) = A

√

2

π
aν2[1 + (aν2)−p] exp[−aν2/2] , (18)

and σlin is the rms of the linear density field smoothed
by a tophat of a radius that encloses a mass M . A
choice of δc = 1.69, a = 0.75, p = 0.3, and A such that
∫

dνf(ν) = 1 fits the results of simulations well. Note
that our model can accommodate collective effects where
smaller halos associated with the seed halo can make the
bubble radius much larger than the virial radius of the
seed halo (Barkana & Loeb 2004). In Figure 1, we show
the mass threshold Mth as a function of xe for several
choices of the bubble size R and redshift.

Fig. 2.— Bubble bias as a function of the mean ionization xe for
several choices of the bubble radius R at z = 12 and z = 8. The
bubble bias increases with R at fixed xe since the bubbles become
rare and highly correlated.

2.3. Two bubble correlations

For scales where r ≫ R, the two point functions are
dominated by the correlations between two separate bub-
bles as in the two halo regime of the halo model. These
correlations are induced by the enhanced probability of
bubble formation in over dense regions through equa-
tion (14).
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Fluctuations in the bubble number density will then
follow the density fluctuations of the dark matter through
the bubble bias

b =
1

n̄b

∫ ∞

Mth

dM

M
bh(M)

dnh

d lnM
, (19)

where the halo bias is given by (Sheth & Tormen 1999)

bh = 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]
. (20)

Specifically, we model

nb(~r) = n̄b(1 + bδW ) , (21)

where δW is the density fluctuation field smoothed by a
top hat window of radius R,

δW (~r) ≡
∫

d3r′δ(~r′)WR(~r − ~r′) , (22)

where WR(r) = V −1
b for r ≤ R and 0 otherwise. In

Figure 2, we show the bubble bias as a function of xe for
several values of R and z.

Fig. 3.— Neutral hydrogen power spectrum at z = 8 with
xe = 0.8 and R = 0.3Mpc/h broken up into components from the
two bubble and one bubble contributions. The one bubble contri-
butions are further shown with the full convolution factor (solid)
and the approximation of equation (35) (long dashed). Oscilla-
tions at high k are an artifact of taking a single bubble scale with
a top hat profile and should be removed by k-band averaging or
projection. For reference the density power spectrum is also shown
(short dashed).

Expanding equation (14) in the density fluctuations
and taking the Fourier transforms yields

P 2b
δxδx(k)= [(1 − xe) ln(1 − xe)bWR(k)]2Pδ(k) ,

P 2b
δxδ(k)=−(1 − xe) ln(1 − xe)bWR(k)Pδ(k) , (23)

where WR(k) is the Fourier transform of the top hat win-
dow and the superscript 2b denotes two bubble contribu-
tions. Here we have assumed that the gas density fluc-
tuations trace the dark matter fluctuations in the two
bubble regime. Furthermore, in this regime P 2b

δxδ δxδ is
second order in the density fluctuation and we therefore
set it to zero. The power spectrum of the two bubble
contributions then becomes

P 2b
δHI

(k) = (1 − xe)
2b2

effPδ(k) , (24)

where the total effective bias includes both density and
ionization fluctuations

beff = ln(1 − xe)bWR + 1 . (25)

Note that this expression has the proper limiting behav-
ior. As the mean ionization xe → 0, the ionization bub-
bles disappear, beff → 1 and P 2b

δHI
→ Pδ. As xe → 1 all

of the neutral hydrogen disappears and P 2b
δHI

→ 0. Note
that this behavior is independent of R. Full reioniza-
tion can occur either by the growth of small bubbles into
large ones or the creation of a high number density of
overlapping small bubbles. Finally the effective bias beff

of the neutral hydrogen field is typically negative in the
two bubble regime given a model such as ours where ion-
ization occurs in over dense regions. An example of the
two bubble power spectrum is shown in Figure 3.

2.4. One bubble correlations

For scales where r ≪ R, the correlation functions are
dominated by the presence or absence of a single bub-
ble. Two points separated by r ≪ R are either a part
of an ionization bubble or not and hence the ionization
probability must converge to xe. Two points separated
by r ≫ R have their ionization probability converge to
x2

e. Hence the full correlation function must interpolate
between the two (Gruzinov & Hu 1998)

〈x(~r1)x(~r2)〉 = x2
e + (xe − x2

e)f(r/R) . (26)

The interpolation function f(r/R) must satisfy

lim
r≪R

f(r/R)→ 1 ,

lim
r≫R

f(r/R)→ 0 . (27)

Therefore the ionization fluctuations become

ξ1b
δxδx = (xe − x2

e)f(r/R) . (28)

Since inside a bubble the medium is fully ionized, the
density ionization cross correlation is negligible in this
regime ξ1b

δxδ ≈ 0. Note however that ξ1b
δxδ δxδ is of the

same order as ξδδ and can not be neglected.
To determine f(r/R) for our assumed top-hat ioniza-

tion bubbles, we consider the case where bubble overlap
is negligible. By analogy to the one halo regime of the fa-
miliar halo model (see e.g. Cooray & Sheth 2001) where
the halo density profile is replaced with the ionization
profile, we can immediately obtain f(r/R) as the convo-
lution of two top-hat windows VbW (r)

f(r/R) = 1 − 3
4

(

r
R

)

+ 1
16

(

r
R

)3
, r ≤ 2R ,

= 0 , r > 2R .
(29)

We have verified through the procedure outlined in
Furlanetto, Zaldarriaga, & Hernquist (2004) that this re-
mains a reasonable approximation for the overlap regime
as it simply represents an interpolation between the two
physical limits imposed by equation (26) through the
scale R.

Summing the contributions in equation (9) and tak-
ing the the Fourier transform, we obtain the one bubble
contributions to the power spectrum

P 1b
δHI

(k) = (xe − x2
e)

[

VbW
2
R(k) + P̃δ(k)

]

, (30)



5

where

P̃δ(k) = Vb

∫

d3k1

(2π)3
W 2

R(k1)Pδ(~k − ~k1) . (31)

This construction guarantees the proper limiting behav-
ior of P 1b

δHI
→ 0 as xe → 0 and xe → 1. Note that we

have arbitrarily associated the density fluctuation term
with the two bubble contributions so that P 1b

δ = 0.
The first term in equation (30) represents the shot

noise contributions of the bubbles. In the limit where
bubbles overlap negligibly xe ≈ n̄bVb ≫ x2

e, the first term
becomes x2

e/n̄b as expected. The second term comes from
ξδxδx(r)ξδδ(r) and involves a convolution of power spec-
tra. Note that

lim
kR≫1

P̃δ(k) ≈ Pδ(k)Vb

∫

d3k1

(2π)3
W 2

R(k1) = Pδ(k) . (32)

On small scales the total contribution involving the den-
sity fluctuations directly become

(1 − xe)
2Pδ(k) + (xe − x2

e)Pδ(k) = (1 − xe)Pδ(k) . (33)

Again, the reason is that for r ≪ R the region is either
ionized or neutral so that density fluctuations contribute
to neutral hydrogen fluctuations with only one factor of
(1−xe) representing the volume fraction that is neutral.
Without this term, the neutral hydrogen power spectrum
would be unphysical in the one bubble regime. In the
opposite limit,

lim
kR≪1

P̃δ(k)≈Vb

∫

d3k1

(2π)3
W 2

R(k1)Pδ(k1)

=Vbσ
2
R , (34)

where σ2
R is the variance of the density field smoothed by

a tophat on a scale R. We find that a simple interpolation
between the two regimes

P̃δ(k) =
Pδ(k)Vbσ

2
R

[(Pδ(k))2 + (Vbσ2
R)2]1/2

, (35)

suffices for obtaining power spectra to 10-20% accuracy
(see Figure 3).

2.5. Fiducial model

The total neutral hydrogen power spectrum is simply
the sum of the one bubble and two bubble terms in equa-
tion (24) and equation (30). The 21 cm brightness tem-
perature power spectrum in real space is then

PδT (k) = F
[

P 1b
δHI

(k) + P 2b
δHI

(k)
]

, (36)

and is parameterized by the bubble radius R and mean
ionization xe at a given redshift (see Figure 3).

Like the model of Santos, Cooray, & Knox (2005),
our model is analytic and allows a rapid exploration
of parameter space. Furthermore like the model of
Furlanetto, Zaldarriaga, & Hernquist (2004a), it has the
right qualitative behavior as a function of xe and on
scales smaller than the bubble radius.

Despite the flexibility of our model, not all choices of
xe(z) and R(z) lead to physically plausible reionization
scenarios. Reionization can only proceed if the seed halo
is sufficiently large for cooling and fragmentation to oc-
cur. For atomic line cooling, the virial temperature of
the halo

Tvir

104K
= 1.1

(

Ωmh2

0.15

)1/3 (

1 + z

10

) (

M

108M⊙

)2/3

(37)

Fig. 4.— The condition that bubbles are seeded in halos of
Tvir > 104K sets a bubble number density and hence a bubble
radius R given the mean ionization xe.

must be greater than ∼ 104K; for molecular hydro-
gen cooling, M ∼> 106h−1M⊙ but the reionization
efficiency is lower (Barkana, Haiman, & Ostriker 2001;
Yoshida et al. 2003; Somerville, Bullock & Livio 2003).
Since we are mainly interested in redshifts z ∼ 10 it is
reasonable to choose the typical bubble radius R to corre-
spond that required by Tvir(Mth) = 104K and xe. This is
displayed in Fig. 4. The fiducial model is then described
by a single function xe(z).

3. REDSHIFT SPACE POWER SPECTRUM

3.1. Redshift Space Distortions

Redshift space distortions due to the peculiar velocity
of the neutral hydrogen change the mapping between ob-
servation frequency and radial distance. For the linear
velocity field, convergences in the velocity field are as-
sociated with over dense regions and hence enhance the
apparent clustering of the density field (Kaiser 1987).
The only difference between the neutral hydrogen field
and the familiar density field example is that the neutral
hydrogen can be an anti-biased tracer of the density field
in the two bubble regime (see Section 2.3). In this case,
redshift space distortions suppress rather than enhance
the power. In general the redshift space power spectrum
P s of a biased tracer X of the linear power spectrum
becomes

P s
X(~k) = L2(k‖/k, bX)b2

XPδ(k) , (38)

where k‖ is the line of sight component of ~k and

L(µ, b) ≡ 1 +
d lnDG

d ln a

µ2

b
. (39)

Here DG is the linear growth rate of the density field. For
the redshifts we consider, DG ∝ a and d lnDG/ ln a = 1.

On small scales, peculiar velocities are associated with
the virialized motion of the gas leading to a suppression
of radial power known as the Fingers of God (FoG). We
adopt a halo model for the FoG suppression (Sheth 1996;
White 2001). The 1D velocity dispersion of a halo of
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Fig. 5.— Comparison of the Fingers of God fitting functions Gp

(pairwise; exponential) and Gb (bubble; Gaussian) and the halo
model prediction. The functions are normalized at G = 0.1 such
that at z = 8, σp = 29km/s and for bubbles with R = 0.3 Mpc/h
and xe = 0.8, σb = 22km/s.

mass M

σ2
h(M) = G

(π

6
M2ρm∆vir

)1/3

, (40)

where ∆vir = 18π2 is the virial over-density at high red-
shift. This velocity dispersion translates into smoothing
across a radial spatial scale of

∆Dσ ≈ δz

H(z)
=

1

aH(z)
σh

=0.245Mpc

(

Ωmh2

0.15

1 + z

10

)−1/2
σh

30km/s
. (41)

In Fourier space, the convolution becomes a multiplica-
tion by a suppression factor of

Wσ(k‖) = exp

[

− (k‖/aH)2σ2
h(M)

2

]

. (42)

Halos of a range of masses contribute to the density and
ionization power spectra and so the total suppression de-
pends on a weighted average of these factors.

For the density fluctuations, we separate the one and
two halo contributions as usual

P s
δ (~k) = P 2h s

δ + P 1h s
δ , (43)

where

P 1h s
δ (~k)=P lin

δ (k)
[

∫

dM

M

(

M

ρm0

)

dnh

d lnM
b(M)

×Wσ(k‖)y(k; M)
]2

, (44)

P 2h s
δ (~k)=

∫

dM

M

(

M

ρm0

)2
dnh

d lnM
y2(k; M)W 2

σ (k‖) ,

where y is the Fourier transform of the gas density profile
normalized such that y(0) = 1. We take the gas density
to trace the dark matter density in the translinear regime

considered here. The dark matter density profile can be
described by (Navarro, Frenk, & White 2004)

ρ(r) ∝ 1

rc/rvir(1 + rc/rvir)2
, (45)

where the virial radius encloses the halo mass M
at the virial over-density ∆vir and the concentration
(Bullock et al. 2001)

c(M) =
9

1 + z

(

M

M∗

)−0.13

, (46)

where M∗ is defined by σlin(M∗; z = 0) = 1.698.
Let us define the suppression factor as

Gp(~k) =
P s

δ (~k)

Pδ(k)
, (47)

where the real space power spectrum follows equa-
tion (44) with Wσ → 0. The suppression can be well
approximated by (Sheth 1996)

Gp(~k) ≈ 1

1 + (k‖/aH)2σ2
p

(48)

or the functional form taken by an exponential distribu-
tion of pairwise velocities with dispersion σp. To extract
σp, we match the numerical calculation to the fitting form
at Gp = 0.1. An example of the accuracy of the approx-
imation is shown in Figure 5.

We follow the same procedure with FoG redshift space
distortions of the one and two bubble contributions to
the ionization fluctuations. The only difference is that in
the integrals over masses in equation (44) the lower limit
is set to Mth and the density profile y(k; M) is replaced
by the bubble profile WR(k). Again we can define the
suppression factor as the ratio of redshift to real space
power spectra. Since most of the contributions come
from bubbles near the mass threshold, the suppression
factor is better fit to a Gaussian

Gb(~k) = exp

[

−1

2
(k‖/aH)2σ2

b

]

. (49)

We find σb by matching this to the numerical results at
Gb = 0.1 and show an example in Figure 5.

Combining the linear redshift space distortions with
the ionization and density fluctuation FoG distortions
gives the final form for the redshift space power spectrum

P s
δHI

(~k)= (1 − x̄e)
2b̃2

effL2(µ, b̃eff)Gp(~k)P (k) (50)

+(x̄e − x̄2
e)Gp(~k)

[

L2(µ, 1)P̃ (k) + VbW̃
2
R

]

,

where the effective bias is

b̃eff =ln(1 − x̄e)bW̃R + 1 (51)

and we have rescaled the window function to absorb the
differences in the FoG suppression for density and ion-
ization fluctuations

W̃ 2
R(~k)=

Gb(~k)

Gp(~k)
W 2

R(k) . (52)

Note that the full redshift space power spectrum of the
temperature fluctuations

P s
δT (~k) = FP s

δHI
(~k) (53)
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is still defined by the cosmology and two parameters
R, xe. With a restriction to halos that can cool by atomic
lines in the fiducial model (see Subsection 2.5), this re-
duces to a single parameter xe per redshift. Conversely,
our functional form can be used to model an even wider
range of physical conditions if {xe, R, σp, σb} are all taken
as free parameters of the model and the bubble profile
WR generalized. Note that if WR is adjusted, Vb should
be consistently modified. Finally to account for a dis-
tribution in bubble sizes one can replace WR with 〈WR〉
in two bubble terms and W 2

R with 〈W 2
R〉 in one bubble

terms which would also eliminate oscillatory artifacts in
the power spectrum.

3.2. 1D power spectrum

Foreground contamination is perhaps the largest
problem facing all 21cm experiments. Since fore-
grounds tend to be smooth in frequency, it has long
been realized that one of the most robust observ-
ables will be the radial structure in the temper-
ature field (Hogan & Rees 1979; Scott & Rees 1990;
Gnedin & Shaver 2004; Morales, Bowman, & Hewitt
2005; Oh & Mack 2003; Wang et al. 2005). We will
therefore focus on the 1D power spectrum for the rest of
the paper. This will also enable us to understand intu-
itively the impact of redshift space distortions on future
experiments. The modeling of the 3D power spectrum
in the previous sections, however, can also be applied to
interpret foreground-cleaned data where the transverse
structures can be extracted.

Employing the general relationship between 3D and
1D power spectra from equation (12), we show several
examples of the real and redshift space 1D power spec-
trum in the 21cm temperature fluctuations in Figure 6.
We plot the variance of the temperature field contributed
per logarithmic interval in k or frequency

dσ2
δT

d ln k
=

k

π
P 1D

δT (k) , (54)

which then can be simply interpreted as the square of
the amplitude of the signal. All curves have the same
parameters except the HII bubble size R. Note that by
fixing xe and varying R, we are relaxing the constraint
that bubbles are seeded by atomic cooling halos in all
but the R = 0.3 h−1Mpc curves (see Figure 4).

In real space, the bubble size R places a feature in
the 1D power spectrum associated with the scale of ion-
ization fluctuations. For a large bubble radius R ∼> 1
h−1Mpc and high mean ionization, this feature should
be distinguishable from the smoother density fluctua-
tions even in projection. In practice, this feature may
appear as a smooth bend in the power spectrum if the
distribution of bubble sizes is wide. Note that the signal
is expected to continue to rise to smaller scales due to
density fluctuations outside of the bubbles.

In redshift space, peculiar velocities impose a second
scale that cuts off the 1D power spectrum regardless of
the bubble size. We define the cut off scale corresponding
to σp and σb as ∆Dσ according to equation (41). For the
density fluctuations σp controls the FoG effect, σp > σb.
All radial power on scales smaller than this cutoff scale
will be erased.

The existence of two scales in the power spectrum
means that the detection of a single feature should not

Fig. 6.— Real (dashed) and redshift (solid) space 1D power
spectra for different fiducial HII patch sizes with perfect angular
and frequency resolutions. All parameters are the same except HII
patch size R. The curves for R = 10h−1Mpc and R = 0.03h−1Mpc
have been multiplied and divided by 10 respectively for clarity.
Note the curves represent the variance of the temperature field in
mK2 contributed by a logarithmic interval in k.

automatically be associated with the bubble scale. When
R > ∆Dσ, HII structures always suppress the power
spectrum at lower k than the nonlinear redshift space
distortion does, so that we can distinguish the HII bub-
ble size signature from the power spectrum. With suffi-
cient radial or frequency resolution we will also be able
to observe that FoG distortions lead to a reduction in
power that continues to increases with k.

The observation of a feature followed by a cutoff in
the 1D power spectrum will ensure that the feature is
from HII patches. By measuring its evolution in redshift
we obtain a statistical measure of the evolution of the
typical size of the ionized region. However in the fiducial
atomic cooling model with R = 0.3 h−1Mpc only the
FoG feature is prominent. In scenarios where xe is also
adjusted, the prominence of the bubble feature can be
adjusted but a confusion between the two scales can still
occur.

If only a single feature is measured and barely resolved
then the ambiguity between FoG distortions and bubble
size must be broken by measuring the transverse power
spectrum. Fortunately, the cosmological redshift space
distortion or Alcock-Pacynski effect can be considered
known and does not introduce an ambiguity. Foreground
contamination in the transverse dimensions however will
have to be controlled.

4. OBSERVED POWER SPECTRUM

4.1. Modeling experimental resolutions

The observed 21cm power spectrum will also be dis-
torted by instrumental effects from finite angular resolu-
tion ∆θ and frequency resolution ∆ν. These modify the
3D power spectrum as

P obs
δT (~k, ∆θ, ∆ν) = P s

δT (~k)W 2
∆θ(k⊥)W 2

∆ν(k‖) , (55)
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and consequently the projected 1D power spectrum
through equation (12). We will take the smoothing due
to frequency resolution to be a Gaussian of FWHM ∆ν
so that

W 2
∆ν(k‖) = e−k2

‖δD2

, (56)

where δD is given by equation (4) with δν = ∆ν/
√

8 ln 2
to convert the FWHM to a Gaussian width.

For the angular resolution, a single dish experiment
with a Gaussian beam of FWHM resolution ∆θ would
produce a window function

W 2
∆θ(k⊥) = e−k2

⊥D2

⊥(∆θ/
√

8 ln 2)2 , (57)

where the angular diameter distance is given by equa-
tion (5). In our fiducial cosmology, this factor is approx-
imately

D⊥∆θ√
8 ln 2

≈ 1.65Mpc

[

1 − 0.33

(

10

1 + z

)1/2
]

(

∆θ

1′

)

,

(58)
where we have also converted the angular units from ra-
dians to arcminutes on the rhs for convenience.

All planned 21cm experiments are however interfer-
ometers. In this case the window function is given by a
sharp cutoff in k⊥ space defined by the longest baseline.
An interferometer array with a maximum baseline of L
measures the transverse power spectrum out to

kcut =
2πL

λD⊥
, (59)

where λ is the observation wavelength. With uniform
coverage of the baselines, the window function can be
approximated as

W 2
∆θ(k⊥) =

{

1 k⊥ ≤ kcut ,
0 k⊥ > kcut .

(60)

Since the net effect of this sharp cut on the 1D power
spectrum is similar to a Gaussian beam of FWHM

∆θ =
√

8 ln 2
λ

2πL
,

=
√

8 ln 2
1

kcutD⊥
. (61)

we will use the Gaussian window for illustrative purposes
in the following sections.

4.2. Observed 1D power spectra

The impact of frequency resolution on the 1D power
spectrum is simple in that equations (12) and (55) imply

P 1Dobs
δT (k; ∆θ, ∆ν)=W 2

∆ν(k)

∫

d2k⊥
(2π)2

W 2
∆θ(k⊥)

×P s
δT (

√

k2 + k2
⊥) , (62)

so that the relative effect of frequency resolution is inde-
pendent of the neutral hydrogen model. In Figure 7,
we plot W 2

∆ν or the ratio of 21cm redshift space 1D
power spectra for different channel widths ∆ν relative
to ∆ν = 0. Comparing this figure to the features from
the ionization bubbles and the FoG distortions one might
naively suppose that the criteria for resolving these de-
pend on ∆ν alone.

Fig. 7.— Ratio of redshift space power spectra with finite fre-
quency resolutions P 1Dobs

δT
(k;∆θ,∆ν) to the one with perfect fre-

quency resolution P 1Dobs

δT
(k;∆θ, 0), for a model with parameters

z = 8, xe = 0.8 and R = 0.3h−1Mpc.

Fig. 8.— Ratio of redshift space power spectra with finite angu-
lar resolutions P 1Dobs

δT
(k;∆θ,∆ν) to the one with perfect angular

resolution P 1Dobs

δT
(k; 0, ∆ν), for a model with parameters z = 8,

xe = 0.8 and R = 0.3h−1Mpc.

However for projected 1D power spectra, the angular
resolution plays an important role. Only modes whose

three dimensional wavevector ~k have transverse compo-
nents that can be resolved contribute to the radial fluctu-
ations in equation (62). Thus a finite angular resolution
degrades the 1D signal on all scales and additionally can
lead to a new feature in the 1D power spectrum. Fig-
ure 8 plots the ratio of redshift space power spectra with
different finite effective beam sizes ∆θ to the one with
∆θ = 0. Note that the suppression effect is independent
of ∆ν but does depend on the model 3D power spectrum.
Here we have assumed the fiducial R = 0.3 h−1Mpc,
xe = 0.8 model at z = 8. The feature in Figure 8 near



9

1 Mpc−1 is due to the assumed bubble scale. Even with
perfect frequency resolution, the angular resolution can
mask features from the bubble scale and FoG effects. In
the context of foreground removal, Figure 8 implies that
for ∆θ ∼> 30′′ the experimental angular resolution will
place a more important limitation on cleaning than FoG
redshift space distortions.

Note that the total suppression is simply the product
of the two curves in Figure 7 and 8. The optimal fre-
quency resolution to extract most of the power in the ra-
dial fluctuations is then dependent on angular resolution.
Furthermore, we can develop rules of thumb for the in-
strumental specifications required to unambiguously re-
solve features such as the FoG effect and the bubble scale
as we shall now see.

4.3. Resolving redshift space distortions

For FoG redshift space distortions, the critical scale
where all fluctuations will be suppressed is associated
with the pairwise velocity dispersion σp since that affects
the small scale density contributions. For the ionization
fluctuations, σb typically places the suppression scale be-
low that of the bubble scale and hence is less relevant.
The pairwise velocity dispersion scale is independent of
the bubble model and so leads to robust criteria for its
resolution.

Combining Figure 7 with Figure 8, if we have both
high frequency resolution ∆ν < 0.03MHz and high an-
gular resolution ∆θ < 30′′, which means both suppress
the power at smaller scales than the FoG effect does, we
would be able to unambiguously detect the FoG effect
in the fiducial model with instrumental sensitivity that
can extract mK level signals. More generally, we require
that δD ≪ ∆Dσp

and D⊥∆θ/
√

8 ln 2 ≪ ∆Dσp
to ob-

serve nonlinear redshift space distortions at small scales.
Combining equation (4), equation (41), and equa-

tion (58), we obtain the rule of thumb on resolution re-
quirements for observing FoG effect in 21cm experiments

∆ν ≪ ∆νσp
= 0.034MHz

(

1 + z

10

)−1 (

σp

30km/s

)

(63)

∆θ ≪ ∆θσp
= 8.9′′

[

(

1 + z

10

)1/2

− 0.33

]−1
(

σp

30km/s

)

(64)
neglecting the small cosmological dependence and assum-
ing z ≫ 1. Note that redshift space distortions can only
be resolved when both these criteria are satisfied. Like-
wise for foreground removal, the FoG suppression be-
comes the limiting factor only if both exceed this criteria.

The characteristic scales defined above decrease with
redshift. At z = 8 where we do all our calcu-
lations, assuming σp = 30km/s, equation (63) and
equation (64) suggest the characteristic resolutions are
∆νσp

= 0.04MHz and ∆θσp
= 14′′. These results are

consistent with Figure 7 and Figure 8.

4.4. Resolving HII regions

We can also establish rules-of-thumb for the resolution
of the HII regions or in our model the bubble size R.
These supplement the considerations in Subsection 3.2
for separability from the FoG scale. We will consequently

Fig. 9.— Redshift space 21cm 1D power spectra for different
beam sizes and channel widths, assuming fiducial HII region size
R = 10h−1Mpc. For comparison, we also plot power spectra with
perfect angular and frequency resolution (thick solid lines).

consider the R = 10h−1Mpc case where the two scales
are themselves well separated.

Figure 9 shows how the redshift space power spectrum
changes with different experimental resolutions. With a
perfect instrument (∆θ = 0 and ∆ν = 0) both the larger
R scale and the FoG scale are resolved. However, as ei-
ther increases, the small scale feature is replaced by the
instrumental resolution. We can tell from Figure 9 that
for ∆ν . 0.1MHz and ∆θ . 100′′, such large HII struc-
tures can be distinguished. It is also interesting to see
that when fixing ∆θ = 10′′, it does not help much to im-
prove the frequency resolution beyond 0.01MHz, which
implies the requirements for beam size and channel width
are correlated in resolving structures, as we pointed out
earlier in Subsection 4.2.

More generally, we need both δD ≪ R and
D⊥∆θ/

√
8 ln 2 ≪ R to resolve HII structures,

∆ν ≪ ∆νR = 0.14MHz

(

1 + z

10

)−1/2 (

R

Mpc

)

(65)

∆θ ≪ ∆θR = 36.4′′

[

1 − 0.33

(

10

1 + z

)1/2
]−1

(

R

Mpc

)

(66)
Either resolution not satisfying the above conditions will
result in a smearing scale larger than HII scale so that
the feature will be obscured.

Furthermore, because of the existence of redshift space
distortions, R and Dσ can lead to degenerate effects as
we have already discussed in Subsection 3.2. Thus the
required resolutions for observing any structures, either
HII patches, or finger-of-God features, are the results of
minimizing equation (63) and equation (65), plus equa-
tion (64) and equation (66), respectively.
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5. CONSIDERATIONS FOR EXPERIMENTS

5.1. An ultimate experiment

In order to fully take advantage of all data, and go
beyond the foreground dominated region to remove fore-
ground efficiently (Wang et al. 2005), we would of course
like to get as good angular and frequency resolution as
possible. On the other hand, with a reasonable ioniza-
tion model like that established here there are guides
to when an instrument will recover essentially all of the
useful cosmological signal.

In the absence of redshift space distortions, we have
seen that the predicted temperature fluctuations con-
tinue to rise in rms as the frequency resolution increases
due to density fluctuations outside of the ionization bub-
bles. This would imply that to be most immune to
smooth foregrounds in frequency space, one should con-
centrate the instrumental sensitivity in as small a fre-
quency band and field as possible. However, we have seen
that FoG smoothing in the radial direction will generi-
cally introduce a cutoff in the observed power and set
a lower limit of ∆ν ∼ 10kHz on the required frequency
resolution. To match this frequency resolution one would
desire an angular resolution of ∆θ = 10′′ although there
are gains all the way out to ∆θ = 1′′.

TABLE 1
Resolution requirements for future “ideal” experiments

Resolve R > ∆Dσp R < ∆Dσp

R ∆θσp < ∆θ < ∆θR Not applicable

∆νσp < ∆ν < ∆νR

FoG ∆θ < ∆θσp(< ∆θR) ∆θ < ∆θσp

∆ν < ∆νσp(< ∆νR) ∆ν < ∆νσp

Both ∆θ < ∆θσp(< ∆θR) Not applicable

∆ν < ∆νσp(< ∆νR)

The requirements on resolving ionization bubbles are
more model dependent. The best case scenario is that the
HII patches are larger than the characteristic scale intro-
duced by the velocity dispersion as one would expect near
the end of reionization. Under this scenario, HII patches
can be resolved without ambiguities from redshift space
distortions and the experimental requirements can be re-
laxed to satisfy ∆θ < ∆θR and ∆ν < ∆νR. In the un-
fortunate scenario when R < ∆Dσp

, e.g., if reionization
ends with the creation of many small ionization regions
or the observation redshift is too high, radial resolution
of HII structures will be difficult even with perfect ex-
perimental resolutions.

Table 1 summarizes our angular and frequency resolu-
tions considerations. Note that the signal to noise will
also have to be high enough to detect the ∼ 10 mK sig-
nals in question.

5.2. First generation experiments

The first generation 21 cm experiments will be far from
the ultimate angular resolution at the required signal to
noise levels considered in the previous section. We dis-
cuss here what the impact of redshift space modeling will
be for these experiments.

The upcoming MWA (Mileura Widefield Array) ex-
periment3 has 8kHz frequency resolution which is in fact
sufficient for even our ultimate experiment. At 200MHz
(z = 6.1), its beam size is 3.4′. The characteristic reso-
lutions at this redshift for resolving HII structures and
observing FoG effects are given by equations (63)-(66) as
∆νR = 0.17MHz(R/Mpc), ∆θR = 60′′(R/Mpc), ∆νσp

=

0.05MHz(σp/30kms−1), and ∆θσp
= 17′′(σp/30kms−1).

These results suggest that MWA will be able to observe
HII patches larger than ∼ 3Mpc. It also implies that the
FoG redshift space distortions will not be the limiting
factor in foreground removal as long as the average ve-
locity dispersion at that time is less than ∼ 350km/s, as
expected in any reasonable model.

At 100MHz (z = 13.2), MWA can achieve an an-
gular resolution ∼ 6.8′. The characteristic resolu-
tions at this redshift are ∆νR = 0.12MHz(R/Mpc),
∆θR = 50′′(R/Mpc), ∆νσp

= 0.02MHz(σp/30kms−1),

and ∆θσp
= 10′′(σp/30kms−1). Similarly, it will not

be able to resolve HII regions if they are smaller than
∼ 8Mpc and FoG distortions are even less of a limiting
factor for foreground removal.

Another upcoming experiment LOFAR4, has frequency
resolution 4kHz, angular resolution 3.1′ for virtual core
setup at 200MHz, and 5.2′ at 120MHz. At 200 MHz (z =
6.1), it will be able to observe HII regions larger than
∼ 3Mpc, yet will not be affected by FoG distortions as
long as σp < 300km/s. Similarly, at 120MHz (z = 10.8),
it will resolve HII regions which are larger than ∼ 6Mpc.

Improving the angular resolution with longer base-
lines can only improve these numbers before the char-
acteristic scale for FoG distortions is reached ∆Dσ =
0.3Mpc(σ/30kms−1). If HII bubbles are smaller than
this scale at the corresponding redshift, we are unable to
unambiguously resolve them from their radial structure
no matter how good the resolutions are. This complica-
tion may impact the next generation experiment beyond
MWA and LOFAR.

In conclusion, for both LOFAR and MWA, the com-
plication arising from nonlinear redshift space distortions
in foreground cleaning should be minimal. Both experi-
ments can detect large HII structures and their correla-
tions at the end of reionization epoch. Yet it could be
difficult for them to distinguish smaller patches expected
at earlier times.

One should also bear in mind that the actual abil-
ity of individual experiments to distinguish HII regions
also depends on many other factors such as quality of
foreground cleaning, treatment of systematics, signal-to-
noise ratio, etc. Experimental resolution is only one of
many factors that determine how much information from
the reionization epoch can be extracted from the obser-
vational data.

6. SUMMARY

In this paper, we construct a self-consistent analytic
model for 21cm brightness temperature power spectrum
in the observed redshift space domain. In its simplest
form, our model has two input parameters at each red-
shift, the average ionization fraction and HII bubble size.

3 http://web.haystack.mit.edu/MWA/MWA.html
4 http://www.lofar.org
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It can be readily generalized to consider a distribution of
bubble sizes with various profiles while maintaining the
proper scalings with ionization fraction. Though still a
toy model of reionization, it is easy to apply to rapidly
explore alternatives and has the flexibility to accommo-
date various physical reionization mechanisms, including
those based on atomic line cooling.

Utilizing this model, we study the 1D power spectrum
along the line of sight. Given that foreground contami-
nation is expected to be smooth in frequency space, the
1D structure of the brightness temperature is the most
robust observable and a likely stepping stone for con-
structing the foreground cleaned 3D maps.

We show the existence of redshift space distortions will
eventually limit our ability to observe epoch of reioniza-
tion. When the average size of HII regions is smaller
than the characteristic scale of the average velocity dis-
persion, as is likely toward the beginning of reionization,
they can not be radially resolved. Furthermore at the low
ionization levels typical of the beginning of reionization,
the brightness fluctuations will be dominated by density
fluctuations. Features due to the presence of HII regions
may be masked by even relatively small uncertainties in
the redshift space distortions.

Combining the radial structure induced by the HII
bubbles and nonlinear redshift space distortions, we out-

line criteria for planning the angular and frequency res-
olution of experiments. Even in the 1D spectra, angu-
lar resolution enters by eliminating contributions from
modes that are not purely radial thus degrading the sig-
nal. It is a serious limiting factor for the first generation
experiments such as MWA and LOFAR. For such ex-
periments, only HII bubbles that are larger than a few
Mpc can be radially resolved even with ideal frequency
resolution. On the other hand, nonlinear redshift distor-
tions will not seriously affect such experiments. They do
however suggest that for future experiments a frequency
resolution of ∼ 10kHz and an angular resolution of 10′′

will be sufficient to extract most of the information from
the radial power spectrum near the end of reionization.
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