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Single field inflationary models that seek to greatly enhance small scale power in order to form
primordial black holes predict both a squeezed bispectrum that is enhanced by this small scale power
and a potentially detectable enhancement of CMB spectral distortions. Despite this combination,
spectral distortion anisotropy on CMB scales remains small since the squeezed bispectrum repre-
sents an unobservable modulation of the scale rather than local amplitude for the short wavelength
acoustic power that dissipates and forms the µ spectral distortion. The leading order amplitude
effect comes from the local modulation of acoustic dissipation at the beginning of the µ epoch at
the end of thermalization by a long wavelength mode that is correlated with CMB anisotropy it-
self. Compensating factors from the suppression by the square of the ratio the comoving horizon
at thermalization to the smallest detectable primary CMB scales (∼ 0.0005) and maximal allowed
enhancement of µ (∼ 5000) leaves a signal in the µT cross spectrum that is still well beyond the
capabilities of PIXIE or LiteBIRD due to sensitivity and resolution while remaining much larger
than in single field slow roll inflation and potentially observable.

I. INTRODUCTION

There has been much recent interest in primordial
black holes (PBHs) from an extremely large enhancement
of small scale fluctuations during inflation (e.g. [1–18])
given their potential to explain dark matter and the bi-
nary black hole mergers detected by LIGO-Virgo [19–24].
Moreover primordial fluctuations on scales much smaller
than those probed by the cosmic microwave background
(CMB) and large-scale structure are currently relatively
poorly constrained [25–28].

Spectral distortions in the CMB are one way to con-
strain primordial power on small scales. After the ther-
malization epoch where photon number changing pro-
cesses in the plasma drop out of equilibrium, the energy
dissipated in small scale acoustic waves leaves observable
distortions in the frequency spectrum [29–33]. The am-
plitude of these acoustic waves is itself enhanced if the
PBH scale is not much smaller than the dissipation scale
at the end of thermalization. The current bounds for
chemical potential or µ distortions from COBE-FIRAS
already place strong bounds on such models and rule out
PBHs as a significant fraction of the dark matter between
104 − 1013M� [34, 35].

While current spectral distortion limits can be greatly
improved with future space-based spectrometers [36, 37],
an absolute measurement is limited by contamination
from foregrounds and systematics in addition to instru-
ment sensitivity. Anisotropy in spectral distortions, if
they are large and correlated with CMB anisotropy in
temperature and polarization, provides a promising com-
plementary approach that uses cross correlation and dif-
ferential measurement to mitigate these issues [38–44].

These correlations can arise if the amplitude of small
scale power is modulated by long-wavelength fluctuations
due to the squeezed bispectrum. However in single-field
slow roll inflation, the squeezed bispectrum obeys the
Maldacena consistency relation [45], where long wave-
length curvature fluctuations modulate the scale and not

the amplitude of the small scale power spectrum. More-
over this scale modulation is unobservable locally since
a coordinate system established using clocks and rulers
locally cannot reference the global coordinate system in
which the long-wavelength mode is embedded [46]. Since
spectral distortions depend only on the amount of power
dissipated and not the globally referenced comoving scale
from which it originates, single-field slow roll inflation
does not produce spectral distortion anisotropy at lead-
ing order [38, 42].

Recently it has been suggested that single field PBH
models may violate the conditions that make the spec-
tral distortion anisotropy vanish at leading order in the
squeezed bispectrum [47, 48]. All such PBH models
must violate the slow roll assumption in order to enhance
small scale power sufficiently rapidly [9]. Proposed PBH
models typically have a period of non-attractor behavior
which causes a violation of the Maldacena consistency
relation for long wavelength modes that exit the horizon
sufficiently close to or in the non-attractor phase [12, 49–
51].

In this work we show that for scales relevant for cor-
relation with CMB anisotropy, which are much, much
larger than the horizon at the onset of the non-attractor
phase, the Maldacena consistency relation holds in this
limit and spectral distortion anisotropy is suppressed by
the square of the ratio between the long wavelength scale
and a characteristic short wavelength scale. Neverthe-
less, these suppressed effects can still be much larger than
they are in slow roll inflation [42] and appear mainly due
to the modulation of the dissipation scale at the end of
thermalization by the long wavelength mode.

The outline of this paper is as follows. In §II, we review
non-attractor “ultra-slow roll” mechanism for enhancing
small scale power during inflation and discuss the mod-
ulation of short-wavelength modes by long-wavelength
modes in the form of the consistency relation. For the
relevant long-wavelength scales we show that the usual
Maldacena consistency relation holds and, in Appendix
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A, we explicitly verify that once combined with its impact
on short-wavelength acoustic evolution, the zeroth order
effect of the long-wavelength mode is a dilation of scales
that is unobservable locally. In §IV and §V, we calculate
the leading order effect of the long wavelength density
fluctuation on the local amplitude of acoustic oscillations
and their dissipation at the end of thermalization respec-
tively. We discuss the implications of this modulation on
spectral distortion anisotropy in §V. In §VII we assess
the prospects for detecting this signal and discuss these
results in §VIII.

II. USR CONSISTENCY RELATION

A common aspect of many inflationary models that
enhance the small scale curvature power spectrum by the
orders of magnitude that would be required to later form
PBHs in the radiation dominated epoch is a transient
period of so-called “ultra slow-roll” (USR) [52]. During
USR, the inflaton φ rolls faster than can be sustained by
the slope of its potential V (φ),∣∣∣∣ dφdN

∣∣∣∣� ∣∣∣∣V ′(φ)

H2

∣∣∣∣ , (1)

where H = d ln a/dt = dN/dt is the Hubble parameter
and N is the efold. This excess kinetic energy can arise
for example from a very flat potential around an inflec-
tion point (e.g. [2]) or from a sudden increase in kinetic
energy due to a downward feature in the potential [17]. In
either case, the excess kinetic energy of the field then red-
shifts away as (dφ/dN)2 ∝ a−6 and the curvature fluctu-
ation in unitary gauge grows as ζ = −δφ/(dφ/dN) ∝ a3

once it crosses the horizon.
Modes that were already outside the horizon at the be-

ginning of the USR phase also experience growth to the
extent that they have not completely frozen out. Fol-
lowing the treatment in Ref. [12], during the preceding
slow roll (SR) phase superhorizon curvature fluctuations
evolve to a constant as d ln ζ/dN ≈ −(k/aH)2. Once
USR begins dζ/dN ∝ a3 and so the value of (k/aH)2

USR,
where the subscript denotes the beginning of the USR
epoch, determines the growth of these modes. Given the
opposite sign of d ln ζ/dN during SR, there is a mode for
which this growth is just sufficient to overcome the ini-
tially constant SR piece and cause a near zero crossing
in the curvature power spectrum at k = kdip where(

kdip

aH

)2

USR

∼ e−3∆NUSR , (2)

and ∆NUSR is the number of efolds in the USR phase.
For example for the ∼ 107 enhancement of power typi-
cal to PBH models ∆NUSR ≈ ln(107)/6 and so kdip ∼
10−2(aH)USR. Note that these scalings also imply that
the enhancement in power for kdip < k . (aH)USR

scales as k4 [11]. Thus the curvature power spectrum

FIG. 1. The PBH curvature power spectrum ∆2
ζ(k) for a

USR enhancement starting at kdip = 681 Mpc−1 which pro-
vides the largest spectral distortion still allowed (see Fig. 2).
Vertical lines show kL = 0.1 Mpc−1 (of order the largest k
mode probed by the CMB), (aH)th the comoving size of the
horizon at the end of thermalization, kdip, and the dissipation
wavenumber at the end of thermalization kD(zth). The slow
roll power law extrapolation ∆2

SR is also shown for reference.

for k . (aH)USR can be parameterized as

∆2
ζ(k) ≡ k3Pζ(k)

2π2
= ∆2

SR(k)

[
1−

(
k

kdip

)2
]2

, (3)

where ∆2
SR is the SR power spectrum which we take for

simplicity to be a pure power law

∆2
SR(k) = As

(
k

0.05 Mpc−1

)ns−1

, (4)

with As = 2.1 × 10−9 and ns = 0.965 consistent with
CMB measurements [53]. Note that this form can be
derived more rigorously in specific models and it holds
to leading order in the downward step PBH model (see
[18] Eq. (39)). For k & (aH)USR the result becomes de-
pendent on the specific PBH model but for the modes
relevant for spectral distortions that satisfy current ob-
servational constraints Eq. (3) suffices.

In Fig. 1, we show the power spectrum (3) for kdip =
681 Mpc−1, which we shall see below in Fig. 2 is the
largest scale allowed by current constraints on spectral
distortions which arise from the power near the dissipa-
tion scale at end of thermalization kD(zth) ≈ 104 Mpc−1.
Notice the large hierarchy of scales between these values
and the smallest scale accessible to measurements of the
primary CMB anisotropy kL ∼ 0.1 Mpc−1 due to the
dissipation scale at recombination.

The wavenumber kdip separates two very different
regimes for the impact of long wavelength fluctuations
on much shorter wavelength power or equivalently the
squeezed bispectrum. For a long wavelength kL � kdip
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the squeezed bispectrum obeys the usual Maldacena con-
sistency relation [45]

lim
kL/kS→0

Bζ(kL, kS , kS) = −

[
d ln ∆2

ζ(kS)

d ln kS
+O

(
kL
kdip

)2
]

×Pζ(kL)Pζ(kS), (5)

which can be demonstrated by explicit calculations us-
ing the in-in or δN formalisms [12]. The interpretation
of this relation is that the scale of the short wavelength
modes are dilated by the nearly constant long wavelength
curvature perturbation, which acts as a spatial fluctua-
tion in the local scale factor

∆2
ζ(kS ,y) ≈ ∆2

ζ(kS(1− ζL(y))

≈ ∆2
ζ(kS)

(
1−

d ln ∆2
ζ(kS)

d ln kS
ζL(y)

)
, (6)

where local spatial variations are denoted by the comov-
ing coordinate y. Notice that the amplitude of the power
spectrum does not actually change locally, just the co-
moving scale that the power is associated with. Physi-
cally, the long wavelength mode just changes the efold at
which the short wavelength mode enters into USR, not
any of the dynamics due to the USR growth. As shown
in Ref. [42] this change in scale cannot modulate spectral
distortions, which depend only on the amplitude of the
power dissipated, not the scale. In the Appendix we ex-
plicitly verify that a constant ζL generates a locally unob-
servable dilation for both the primordial non-Gaussianity
and the subsequent dynamics of short wavelength modes
to second order in perturbations.

For kL & kdip, the leading effect of the long wavelength
mode is not simply a dilation of scales and hence the con-
sistency relation (5) no longer holds [49, 50]. Physically,
the inflaton field fluctuation of the long wavelength mode
changes the number of efolds that the short wavelength
mode experiences USR since there is no longer an attrac-
tor solution that makes it equivalent to a shift along the
background phase space trajectory [12]. For example, a
constant backwards fluctuation of the field means that lo-
cally the short wavelength modes see more efolds of USR
growth and so the actual amplitude of the small scale
power spectrum is modulated by the long wavelength
mode. This then would produce a spatial modulation
in spectral distortions.

We shall see that for modes relevant for correlation
with CMB anisotropy and models that satisfy spectral
distortion constraints, kL � kdip. Even in this regime,
there is always some dynamical effect of short wavelength
growth in the long wavelength field to the extent that
ζL 6= const. As we have seen, here the evolving part of
ζL during USR is suppressed by k2

L/k
2
dip. This expecta-

tion is consistent with an explicit calculation of the lead-
ing order correction the Maldacena consistency relation
given in Eq. (5) in an inflection point PBH model [12].
However since again the relevant kL � kdip this correc-
tion produces a very small µT correlation (see Fig. 1 and
§VI).

III. LOCAL EXPANSION

After inflation, there are (kL/aH)2 suppressed mod-
ulations of short wavelength physics by the long wave-
length curvature fluctuations ζL, analogous to the correc-
tions to the primordial bispectrum from kdip ∝ (aH)USR

in the previous section. To the local observer, the long
wavelength mode appears as a change to the background
cosmology induced by the density perturbation that it
carries. Since synchronous observers are freely falling
test particles, we can absorb these synchronous gauge
adiabatic density fluctuations δL [54, 55],

δL =
1

3

(
k

aH

)2

ζL ∝ a2 (7)

during radiation domination into a new background or
“separate universe”.

Following the construction of the separate universe for
the late time growth of structure [56, 57], we can define
a local background density ρ̄L as

ρ̄(1 + δL) = ρ̄L, (8)

which implies that the local observer sees a scale factor
aL that is related to the global scale factor a at equal
times as

aL ≈ a(1− δL/4), (9)

where we chosen the normalization such that aL → a at
early times. Notice that this normalization removes the
dilation effect of ζL in Eq. (6) by measuring scales locally
so that they coincide when δL � 1 at the end of inflation.

By virtue of this normalization and conservation of
particles, at the same numerical value of the scale fac-
tors (or efolds) from the end of inflation in the local and
global universe, all particle number and energy densities
are the same. However the scale factors do not coincide
at the same time in the local and global universe.

To extract the cosmological parameters of the sepa-
rate universe, we can express the expansion rate as a
function of the local scale factor. With the definition
HL ≡ d ln aL/dt and the radiation dominated growth of
δL ∝ a2 we have at equal times

H2
L ≈ H2(1− δL). (10)

In the global universe let us define a reference epoch ar in
the radiation dominated limit where H2(a) = H2

r (ar/a)4

so that we can express the local expansion rate in terms
of the local scale factor as

H2
L = H2

r

(ar
a

)4

(1− δL) ≈ H2
r

(
ar
aL

)4

(1− 2δL). (11)

In the local universe this takes the form of the Friedmann
equation with δL ∝ a2 ≈ a2

L playing the role of spatial
curvature to linear order in δL, specifically

H2
0 ΩKL = −2δL(ar)H

2
r a

2
r (12)
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so that δL(ar) at the reference epoch defines the comov-
ing curvature scale in units of the comoving Hubble scale
at that epoch. Finally it is useful to express the local
conformal time as

ηL =

∫
d ln aL
aLHL

≈ aL
ar

1

arHr

(
1 +

δL
3

)
. (13)

These relations now determine the modulation of all
short wavelength observables by a long wavelength cur-
vature fluctuation ζL which to leading order scales as
(kL/aH)2ζL. The specific size of the modulation will
then depend on the epoch at which it influences the short
wavelength observable the most. We shall see that for µ
distortions and PBH models, this is the end of the ther-
malization epoch.

IV. MODULATED ACOUSTIC POWER

The first step in understanding the local modulation
of spectral distortions is to determine the impact of the
long wavelength curvature perturbation ζL on the am-
plitude of short wavelength acoustic oscillations in the
CMB during radiation domination. These oscillations
then dissipate via diffusion damping leaving a spectral
distortion after the thermalization epoch. We shall see
that since acoustic oscillations are generated at horizon
crossing of the short wavelength mode kS , the impact of
the long wavelength mode occurs at horizon crossing of
the short wavelength mode aH = kS and therefore scales
as (kL/kS)2ζL. The impact of CMB scale wavenumbers
kL is therefore highly suppressed for the modes that con-
tribute to spectral distortions (see Fig. 1).

We can analytically understand this scaling in the sim-
ple case where the photons dominate the radiation den-
sity, i.e. neglecting the effect of neutrinos which only
change the numerical factors and not the overall scal-
ing. In this case we can solve the perturbation equations
in terms of the continuity and Euler equations for the
photon fluid under self gravity in the photon-dominated
local universe as (see [58] Eq. (10))

∆′γ −
y′

y
∆γ = − 4√

3

1− y′′/y + 2(y′/y)2

1 + 6/(fKy2)
Vγ ,

V ′γ +
y′

y
Vγ =

(
1− 6

fKy2

) √
3

4
∆γ , (14)

where ∆γ is the comoving gauge photon density per-

turbation, y = (ΩγH
2
0 )−1/2aLkS , ′ = d/dx with x =

kSηL/
√

3, and fK = 1+3ΩKLH
2
0/k

2
S . Here we have again

made use of the fact that at the same value for the scale
factor, the physical density of the photons is the same in
the local and global universe. The synchronous and co-
moving gauge differ in their density perturbations outside
the horizon due to radiation pressure so limx→0 ∆γ 6= δL
but they do approach each other for x� 1 in the regime
relevant for spectral distortions.

Without the curvature perturbation induced by the
long wavelength mode, x = y/

√
3 during photon dom-

ination and the solution is analytic

lim
y→
√

3x
∆γ = 4

(
sinx

x
− cosx

)
ζS , (15)

from which we can read off the usual transfer function1

for acoustic oscillations −4 cosx at x� 1

We can now solve for the leading order correction
from the small curvature induced by the long wavelength
mode. Since we neglect neutrinos H2

r = ΩγH
2
0a
−4
r and

we have

y ≈
√

3x

(
1− δL

3

)
≈
√

3x

(
1− x2

3
α

)
, (16)

so that Eq. (14) becomes to leading order:

∆′′γ +

(
1− 2

x2
− 4

3
α

)
∆γ = 0 (17)

with

α ≡
(
kL
kS

)2

ζL (18)

and fK = 1− 2α constant in time.

Notice that at x� 1 this takes the form of an oscillator
equation with a perturbed constant frequency

x̃ =

(
1− 2

3
α

)
x. (19)

We can now iterate to solve Eq. (17) to first order in α
using the zeroth order solution (15) to determine α∆γ as
an external source,

∆γ ≈ 4ζS

(
1 +

4

3
α

)(
sin x̃

x̃
− cos x̃

)
. (20)

We can explicitly verify that this form solves (17) and
satisfies ∆γ ≈ 4ζSx

2/3 in x� 1 to linear order in α.

Therefore there is an α = (kL/kS)2ζL change in the
amplitude and frequency of the acoustic wave. Since
kL/kS � 1, this is a large suppression factor and pro-
duces a negligible change in the local spectral distortion
once the acoustic modes have dissipated. We can there-
fore hereafter assume that the power in acoustic modes at
kS is effectively the same in the global and local universe
at the same value of the scale factors.

1 This transfer function is reduced to −4/(1 + 4Rν/15) ∼ −3.61
when neutrinos with Rν = ρν/(ρν + ργ) are included [59]
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V. MODULATED THERMALIZATION

We can now compute the local dissipation of energy
from the acoustic waves into µ spectral distortions in
the separate universe. Changes in thermalization due to
the local background induce larger local variations in µ
for PBH models, than the primordial effect from kdip or
the acoustic growth, since we shall see they scale with
the comoving horizon size at the end of thermalization
(kL/aH)2

thζL.
Let us now see how thermalization is altered by the

long-wavelength modulation in the local universe. The
thermalization rate for the joint action of double Comp-
ton scattering e− + γ ↔ e− + 2γ, which changes photon
number, and Compton scattering e−+γ ↔ e−+γ, which
redistributes energy, to establish a blackbody scales as
(see e.g. [60, 61])

Γth ∝ T 3/2ne ∝ a−9/2
L , (21)

where ne is the free electron density and T is the plasma
temperature and recall that at the same numerical value
of the scale factors all particle densities are the same in
the local and global universe.

Let us define the thermalization time by the condition∫
dtΓth =

∫ 0

ln ath

d ln aL
Γth

HL
= 1. (22)

Using Eq. (11), the change in the efold of thermalization
is given by

∆ ln ath = 2δL(ath) (23)

such that in an overdensity, thermalization continues to
a later efold due to a slower expansion rate.

The energy in acoustic waves is dissipated when the
photon diffusion length crosses the wavelength. If this oc-
curs after the thermalization epoch but before the Comp-
ton scattering becomes inefficient at redistributing en-
ergy, then this energy is transferred into a µ spectral dis-
tortion (see Eq. (30) below). The diffusion wavenumber
in the radiation epoch is given by

k−2
D ∝

∫
d ln a

aH

1

neσTa
, (24)

where σT is the Thomson cross section (see Eq. (28) be-
low for the general expression). Again let us make use
of the fact that the particle densities are the same in the
local and global universe at the same efold. We then get
the change in the diffusion wavenumber as

∆ ln kD(ath) = −3

2
∆ ln ath −

3

10
δL(ath) (25)

= −33

10
δL(ath) = −11

10

(
kL
aH

)2

th

ζL,

where recall that in the global universe kD ∝ a−3/2.
Therefore in an overdensity the diffusion wavenumber de-
creases. The net result is that the maximal wavenumber

FIG. 2. The average spectral distortion µ̄ for various PBH
enhancement scales kdip (see Eq. (3)). Values of kdip < kmin

are excluded by the FIRAS bound of µ̄ ≤ 9 × 10−5 whereas
allowed values that lead to enhancement over the slow roll
prediction of µ̄ ≈ 2× 10−8 follow µ̄ ∝ k−4

dip.

that dissipates into µ distortions given the same small
scale power spectrum in local coordinates as global coor-
dinates is modulated by (kL/aH)2

thζL. Since the power
spectrum is strongly blue tilted, it is this modulation that
changes the local value of µ. This is in contrast to sin-
gle field slow roll inflation where the larger horizon size
at the end of the µ epoch makes the modulation at that
time the dominant effect [42].

VI. SPECTRAL DISTORTION ANISOTROPY

With the local change in the thermalization and dissi-
pation scales due to the long wavelength curvature per-
turbation as calculated in the previous section, we can
now determine how it modulates the µ spectral distor-
tion. Because long wavelength curvature perturbations
also generate CMB anisotropy, this leads to a potentially
observable µT correlation in PBH models.

First we calculate the average spectral distortion in the
global universe with the PBH power spectrum of Eq. (3).
Following [41, 42],

µ̄ =

∫
d ln k∆2

ζ(k)W (k), (26)

where to good approximation

W (k) ≈ −4.54k2

∫ ∞
0

dz
dk−2
D

dz
Jµ(z)e−2k2/k2D(z). (27)

Here the diffusion wavenumber kD is given by

k−2
D (z) =

1

6

∫ ∞
z

dz

H

1

neσTa

R2 + 16(1 +R)/15

(1 +R)2
, (28)
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where R = 3ρb/4ργ . In the radiation dominated epoch
and with the best fit ΛCDM parameters

kD ≈ 4.05× 10−6(1 + z)3/2 Mpc−1. (29)

The Green function Jµ for µ distortions is well approxi-
mated by [33]

Jµ (z) ≈

[
1− exp

(
−
[

1 + z

5.8× 104

]1.88
)]

Θ(z − zrec)

×e−(z/zth)5/2 , (30)

where we have included a Θ step function at recombina-
tion zrec since below this redshift there are no acoustic
waves to dissipate. Here zth ≈ 2 × 106 is the thermal-
ization redshift in the global universe and the quantity
in brackets of Eq. (30) determines the gradual transition
from the µ epoch to the Compton y epoch. Notice that µ̄
receives contributions from the initial inflationary power
spectrum at wavenumber k mainly when it crosses kD
but these contributions are sharply cut off by the ther-
malization process above kD(zth).

In Fig. 2 we show µ̄ as a function of kdip in Eq. (3).
The COBE-FIRAS constraint µ̄ < 9 × 10−5 (95% CL)
[62] places a limit of

kdip > kmin ≈ 681 Mpc−1 (31)

and

µ̄ ≈ 9× 10−5

(
kmin

kdip

)4

(32)

for models with kmin < kdip . 5000 Mpc−1 whereas for
even larger kdip, µ̄ asymptotes to its slow-roll value of
µ̄ ≈ 2×10−8 because enhanced scales have already dissi-
pated by the thermalization epoch. Notice that even this
smallest allowed value of kdip is much greater than the co-
moving horizon at the end of thermalization (aH)th ≈ 4.3
Mpc−1.

The modulation of kD(zth) due to the long wavelength
mode therefore modulates the local value of µ from its
background value µ̄. Given that the PBH power spec-
trum rises as approximately ∆2

ζ ∝ k4−(1−ns) in the re-

gion which can enhance µ,2 we get the fractional change
in the local value of µ as

δ lnµ = [4− (1− ns)]∆ ln kD ≡ bth
(
kL
aH

)2

th

ζL, (33)

where from Eq. (25) bth ≈ −22/5 + 11(1− ns)/10. Note
that this approximation can in the future be improved
by numerically recalibrating the Green function Jµ in

2 For consistency with Eq. (3) we have retained 1 − ns here but
note that any actual O(1− ns) correction to the local slope will
depend on the details of the model.

FIG. 3. Maximum µ white noise level Cµµ` = Anoise that
allows for a S/N = 1 measurement of the maximal µ̄ = 9 ×
10−5 and fiducial bth = −22/5 PBH signal as a function of
largest multipole measured `max. Anoise saturates at 10−23

around `max ∼ 103 and other models can be scaled as Anoise ∝
b2thµ̄

2.

the separate universe so we parameterize the result as a
“bias” factor bth, similar to the slow-roll calculation of
Ref. [42] but with respect to the horizon scale at the end
of thermalization rather than the end of the µ epoch.
For example if we assume that the functional form of
Jµ remains the same and only zth changes according to
Eq. (23), then bth ≈ −4.1 for kdip = kmin.

Given the level of precision in these estimates, we sim-
ply take

bth = −22/5 (34)

as our fiducial bias.
Following Ref. [42], we can characterize the long wave-

length correlation between CMB temperature anisotropy
and µ anisotropy with the angular cross power spectrum

CµT` ≡ µ̄bthCµT,bth` , (35)

where

CµT,bth` =
4π

(aH)2
th

∫ ∞
0

dkk∆2
ζ(k)∆µ

` (k)∆T
` (k). (36)

Here ∆T
` is the CMB temperature transfer function which

we take from CAMB3 and

∆µ
` (k) = e−k

2/q2µ,Dj`(η0 − ηrec), (37)

where qµ,D ≈ 0.084 Mpc−1 is the dissipation scale of µ
inhomogeneities at recombination [40].4 Notice that this

3 https://camb.info
4 This approximation can also be refined in the future with the

Green function for spectral spatial anisotropy (Chluba, private
communication).

https://camb.info
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damping factor is comparable to that of the temperature
transfer function at kD(zrec) and in combination they
limit the integral in Eq. (35) to the long wavelength kL
values of the CMB. It is straightforward to generalize this
result for the cross correlation with CMB polarization
with the polarization transfer function which we leave
that to a future work.

Finally notice that the primordial deviation from the
dilation or consistency relation and the separate universe
growth of acoustic oscillations takes the same form as
Eq. (35) but are suppressed by factors of (aH/kdip)2

th .
4 × 10−5 and (aH/kD)2

th ≈ 10−7 respectively and hence

provide a negligible correction to CµT` as calculated in
Eq. (35) from the thermalization bias.

VII. SIGNAL-TO-NOISE

The µT cross power spectrum as calculated in the pre-
vious section is enhanced in PBH models by the k4 rise
in the small scale curvature power spectrum as long as
kdip � kD(zth) but also suppressed by the smallness of
the density perturbation associated with ζL at the ther-
malization epoch (kL/aH)2

thζL. Consequently unlike µT
correlations from nearly scale invariant perturbations in
multifield inflation [38–42, 44], the signal-to-noise is dom-
inated by the smallest angular scales at which the cor-
relation can be detected, namely the damping scale of
primary CMB anisotropy kL ∼ 0.1 Mpc−1.

To estimate the signal-to-noise in µT , we take the
Gaussian approximation for µ anisotropy(

S

N

)2

=

`max∑
`=2

(2`+ 1)
(CµT` )2

(CµT` )2 + Cµµ` CTT`
, (38)

where the Cµµ` and CTT` terms in the denominator in-
clude both the sample variance of the signal and any
instrumental noise from their measurement.

Given the smallness of the µ anisotropy, Cµµ` will be
noise dominated for the forseeable future.5 To assess the
maximal white noise level Cµµ` = Anoise at which the
signal is barely detectable at S/N = 1, we can drop the

CµT` sample variance term in the denominator of Eq. (38)
and solve for white noise term

Anoise =

`max∑
`=2

(2`+ 1)
(CµT` )2

CTT`
(39)

= b2thµ̄
2
`max∑
`=2

(2`+ 1)
(CµT,bth` )2

CTT`
.

5 The ultimate limit comes from the residual fluctuations from the
averaging across CMB scales of the patches that dissipate [38, 40,
42] but note that in the PBH context the patches that contribute
most to µ̄ are much smaller in size than the SR contributions at
the end of the µ epoch and do not appreciably enhance the noise.

To estimate the maximal noise level for detection, we as-
sume that the TT measurement is cosmic variance lim-
ited to `max. In Fig. 3, we show this maximal noise
amplitude as a function of `max for the maximal signal
µ̄ = 9 × 10−5 and bth = −22/5. Notice that the result
saturates at around `max ≈ 103 at a level of ∼ 10−23 since
both T and µ anisotropies are damped by diffusion. To
constrain other PBH models, this result can be scaled as
Anoise ∝ b2th〈µ〉2 using Eq. (32).

As this represents the maximal signal, detecting this
effect will be challenging experimentally. First, to opti-
mize detection, an experiment would need at least several
arcminute scale resolution since

Cµµ` = Anoisee
`2θ2b
8 ln 2 , (40)

where θb is the full width half max of the beam in radians.
Second, the required noise level Anoise < 10−23 is quite

stringent even ignoring foregrounds and systematics. For
reference, a PIXIE-like mission [63, 64] which aims to
measure µ in single field slow roll with θb ≈ 1.6◦, will at
best achieve Anoise ∼ 10−15 which would suffice to con-
strain a squeezed bispectrum signal from multifield infla-
tion to |fNL| . 3000 at 68% CL [38, 39]. To constrain
the maximal PBH signal, one would require the equiv-
alent sensitivity to |fNL| < 0.3 but with a much higher
angular resolution. LiteBIRD can potentially achieve a
detector sensitivity of Anoise ≈ 10−18 but still with only
∼ 0.5◦ resolution and subject to foreground contamina-
tion [44].

VIII. DISCUSSION

We have shown that in spite of the large squeezed bis-
pectrum due to the enhancement of small scale power
in single field inflationary PBH models, the spectral dis-
tortion anisotropy is highly suppressed since for scales
relevant to CMB cross correlation, it represents an un-
observable modulation of global scales rather than of the
local amplitude of the short wavelength modes. Nonethe-
less the µ anisotropy can be larger than in single field slow
roll inflation because of the large enhancement of small
scale power itself. The largest effect comes from the local
modulation of the expansion rate at a given locally mea-
sured efold from the end of inflation and hence the end
of the thermalization epoch. This modulation provides a
spatial variation in the amount of power in acoustic waves
dissipated near thermalization that causes a µ distortion
that is correlated with CMB anisotropy itself.

This leading order correlation is enhanced by the
k4 rise in small scale power in PBH models but sup-
pressed by the square of the ratio of the comoving hori-
zon at end of thermalization to observable CMB scales,
(kL/aH)2

th . 0.0005. On the other hand, the enhance-
ment of the average µ itself can be up to ∼ 5000 and
still satisfy current COBE-FIRAS bounds. These com-
pensating factors leave the signal potentially observable
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but still well beyond the capability of proposed space-
based instruments like PIXIE and LiteBIRD. Moreover
to detect the correlation at the smallest observable CMB
scales, where the signal peaks, would require a telescope
with several arcminute scale resolution or better.

These properties of the PBH µT correlation suggest
that in the future, ground based instruments may pro-
vide a competitive path forward, given the rapid advance
in the scale of detectors deployed on large telescopes into
the CMB-S4 [65] era and beyond. Unlike the absolute
measurement of µ̄, systematics and foregrounds can also
be mitigated by differential measurements and cross cor-
relation [39]. Furthermore the µT correlation can be sup-
plemented by polarization cross correlation [44, 66]. We
leave these studies to a future work.
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Appendix A: Dilation Consistency Relation at Second Order

In this Appendix, we show that at second order in Newtonian gauge, the response of the short wavelength density
perturbation to the long wavelength ζL is a pure dilation and when combined with the Maldacena consistency relation
there is no locally observable effect of a constant ζL. Since we focus on the µ-distortion, mainly produced during
the radiation dominated epoch, we concretely calculate the second-order perturbations in that era. Note that the
calculation and notation here, which differs from the main text, is based on Ref. [67].

First, let us summarize our notation in this appendix. In Newtonian gauge, we can write the scalar parts of the
metric perturbations as

ds2 = gµνdx
µdxν = a2

{
−(1 + 2Φ(1) + Φ(2))dη2 +

[
(1− 2Ψ(1) −Ψ(2))δij

]
dyidyj

}
, (A1)

where the superscript denotes the order in perturbations. Here, we assume a perfect fluid for simplicity, which leads
to Φ(1) = Ψ(1), and thus ignore the correction from neutrinos. Then, we can express the energy-momentum tensor as

Tµν = (ρ+ P )uµuν + Pδµν , (A2)

where ρ is the energy density, P is the pressure, and uµ is the 4-velocity. We take the following notation for their
perturbations up to the second order:

ρ = ρ(0) + δρ(1) +
1

2
δρ(2), (A3)

P = P (0) + δP (1) +
1

2
δP (2), (A4)

ui =
1

a

(
δv(1),i +

1

2
δv(2),i +

1

2
δviV

(2)
)
, (A5)

where δv is the velocity potential and δviV is the vector part of the velocity perturbation. We define the density

perturbation, δ(a), as

δ(a) ≡ δρ(a)

ρ(0)
. (A6)
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At the first order in perturbations, this is related to the curvature perturbation as

δ
(1)
k (η) = −2

3
ζ

(1)
k Tδ(x), (A7)

where the subscript k represents the Fourier mode whereas perturbations are in real space otherwise in this Appendix,
x ≡ kη with k ≡ |k|, and ζ(1) = −(3/2)Φ(1) in the superhorizon limit. The transfer function is defined as

Tδ(x) ≡
6x(−6 + x2) cos( x√

3
)− 12

√
3(−3 + x2) sin( x√

3
)

x3
. (A8)

Next, let us calculate the second-order density perturbations. The density perturbation is related to the other
perturbations as [67]

δ(2) =− 2Ψ(2) + 2N j
iB

i
j

(2) − 2

H
Ψ(2)′ +

2

3H2
Ψ

(2),i
,i +

2

H2

(
Φ(1)′

)2

+
16

3H2
Φ(1)Φ

(1),i
,i

+
1

H2

(
2− 8

9(1 + w)

)
Φ(1),iΦ

(1)
,i −

8

9(1 + w)H3
(Φ(1),iΦ

(1)
,i)
′ − 8

9(1 + w)H4
Φ(1)′

,iΦ
(1),i′, (A9)

where the prime here denotes the derivative with respect to η, H(≡ a′/a) is the conformal Hubble parameter, and w
is the equation of state parameter. Bij and N i

j are defined as

Bij
(2) ≡

[
4(5 + 3w)

3(1 + w)
Φ(1),iΦ

(1)
,j +

8

3(1 + w)H

(
Φ(1),iΦ

(1)
,j

)′
+

8

3(1 + w)H2
Φ(1),i′Φ

(1)
,j

′
]
, (A10)

N j
iA

i
j(x) ≡ 3

2
∇−2

(
∂j∂i
∇2
− 1

3
δji

)
Aij(x)

=

∫
d3k

(2π)3

(
− 3

2k2

)(
kjki
k2
− 1

3
δji

)
Ak

i
j , (A11)

where Aij is an arbitrary tensor. Since δ(2) depends on Ψ(2), we need to calculate Ψ(2) first. The equation of motion

for Ψ(2) is [67]

Ψ(2)′′ + 3(1 + c2s)HΨ(2)′ +
[
2H′ + (3c2s + 1)H2

]
Ψ(2) − c2sΨ

(2),i
,i = S(2), (A12)

S(2) ≡
(

3c2s −
1

3

)
Φ(1),iΦ

(1)
,i + 8c2sΦ

(1)Φ
(1),i

,i + (3c2s + 1)
(

Φ(1)′
)2

+
[
(3c2s + 1)H2 + 2H′

]
N j

iB
i
j

(2)

+HN j
i

(
Bij

(2)
)′

+
1

3
N j

i

(
Bij

(2)
),k
,k

+

(
1

3
− c2s

)
4

3(1 + w)H2

(
HΦ(1),i + Φ(1),i′

)(
HΦ

(1)
,i + Φ(1)′

,i

)
, (A13)

where cs is the sound speed.
Here, we focus on the second-order perturbations induced by a superhorizon mode “L” on the much smaller mode

kL/k � 1. This case corresponds to the µ-distortion production in the presence of the superhorizon perturbations.
In this case, we can approximate Eq. (A12) as

Ψ(2)′′ + 4HΨ(2)′ − 1

3
Ψ

(2),i
,i '

8

3
Φ

(1)
L Φ

(1),i
,i, (A14)

where we have substituted The other contributions in S(2) are sub-leading because they include spatial derivative on
the superhorizon mode “L”. In the Fourier space, the equation becomes

Ψ(2)′′
k +

4

η
Ψ(2)′

k +
k2

3
Ψ

(2)
k ' −8

3
Φ

(1)
L k2Φ

(1)
k , (A15)

where we have assumed that the superhorizon perturbation as the constant quantity, ΦL, because it does not evolve in
the Newtonian gauge. Note that ΦL here and below is still a function of spatial comoving coordinates but variations
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are small locally compared to the short wavelength mode so we have ignored them in the Fourier transform. Then,

we can solve Ψ
(2)
k using the Green function method:

Ψ
(2)
k (η) ' Ψ

(2)
k (0)T (x) +

∫ η

0

dη̄

(
a(η̄)

a(η)

)2

G(k, η; η̄)

(
−8

3
ΦLk

2Φ
(1)
k (η̄)

)
, (A16)

where the concrete expression of the Green function is given by

kG(k, η; η̄) = −Θ(η − η̄)
xx̄√

3

[
j1(x/

√
3)y1(x̄/

√
3)− j1(x̄/

√
3)y1(x/

√
3)
]
. (A17)

The initial condition of Ψ(2) is given by

Ψ
(2)
k (0) = −16

9
ζ

(1)
L ζ

(1)
k , (A18)

where we have here assumed a Gaussian distribution of ζ, which means that the contribution from primordial non-
Gaussianity from the Maldacena consistency relation is not included in Ψ(2) (and δ(2)) in this expression. We will
independently take into account that contribution later. Then, we obtain Ψ(2) as

Ψ
(2)
k (η) '

[
16
√

3

3

sin(x/
√

3)

x
+

64 cos(x/
√

3)

x2

]
ζ

(1)
L ζ

(1)
k , (A19)

where we have neglected the contribution of O(x−3) because we want to know the evolution of the second-order density
perturbations on subhorizon scales, which is related to the µ-distortion production. In the large x limit, Eq. (A9) can
be approximated in the Fourier space as

δ
(2)
k ' −2x2

3
Ψ

(2)
k − 2x

dΨ
(2)
k

dx
− 16x2

3
Φ

(1)
L Φ

(1)
k

'

(
−32
√

3

9
x sin(x/

√
3)− 32 cos(x/

√
3)

)
ζ

(1)
L ζ

(1)
k . (A20)

Then, we finally get the following expression for the total energy density perturbation:

δk(η) = δ
(1)
k (η) +

1

2
δ

(2)
k (η)

' −2

3

(
1 +

4

3
ζ

(1)
L

)
Tδ

(
x

(
1− 4

3
ζ

(1)
L

))
ζ

(1)
k , (A21)

where the approximate equality is valid in x� 1.
In the following, we relate this result to the dilation transformation. The dilation consistency relation in the

Newtonian gauge is given by [68]

lim
q→0

〈πqδk1 · · · δkN 〉
c

Pπ(q)
ε(η) =

N∑
a=1

[
−ε(ηa)

(
ρ̄′

ρ̄

∣∣∣∣
ηa

+ ∂ηa

)
+ λ (3 + ka · ∂ka)

]
〈δk1
· · · δkN 〉

c
, (A22)

where 〈πqπp〉 = (2π3)δD(q + p)Pπ(q), π is the velocity potential (π = δv), and the superscript c of the braket means
the connected part. The ε and λ are the coordinate transformation parameters to go from a gauge where the effect is
a pure dilation and are given by yµ → y′

µ
= yµ + ξµ with ξ0 = ε and ξi = λyi. During a radiation dominated epoch,

we can derive the following relations: λ = −3ε/η, ρ̄′/ρ̄ = −4/η, and π ' ηζ/3 in the superhorizon limit. Here, we
take λ = ζL and N = 2 to determine the modulation of short wavelength power by ζL, such that the transformation
is from comoving gauge to Newtonian gauge and rewrite the consistency relation as

lim
q→0

〈ζqδk1δk2〉
c

Pζ(q)
ζ

(1)
L =

2∑
a=1

[(
4

3
ζ

(1)
L −

1

3
ζ

(1)
L η ∂η

)
− ζ(1)

L (3 + ka · ∂ka)

]
〈δk1δk2〉

c
. (A23)
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Note again that ζL is in real space as ζL(y), but its perturbation scale is much larger than the scales of k1 and k2

so that we can approximately consider it constant except when considering the correlation to the large scale mode q.
Using Eq. (A21), we can rewrite the left-hand side as

lim
q→0

〈ζqδk1δk2〉
c

Pζ(q)
ζ

(1)
L =

4

9

[(
1 +

8

3
ζ

(1)
L

)
T 2
δ

(
x1

(
1− 4

3
ζ

(1)
L

))
− T 2

δ (x1)

]
(2π3)δD(k1 + k2)Pζ(k1)

− ζ(1)
L

d ln ∆2
ζ

d ln k

∣∣∣
k=k1

(2π3)δD(k1 + k2)Pζ(k1), (A24)

where we have used 〈
ζ(1)
q ζ

(1)
L (y)

〉c
=

∫
d3k

(2π)3
eik·y

〈
ζ(1)
q ζ

(1)
k

〉c
= Pζ(q). (A25)

The first line in Eq. (A24) corresponds to the contribution from δ(2). On the other hand, the second line corresponds
to the Maldacena consistency relation [45], that is, it just comes from the contribution proportional to 〈ζqζk1

ζk2
〉, not

related to the evolution of the second-order scalar perturbations. On the other hand, once we substitute

〈δk1δk2〉
c

=
4

9
T 2
δ (x1)(2π3)δD(k1 + k2)Pζ(k1) (A26)

into the right-hand side of Eq. (A23), we can see that the right-hand side is the same as Eq. (A24) at least at the
lowest order in the perturbations, O(ζLPζ). From this, we can see that the dilation consistency relation is satisfied,
once both the second-order evolution and primordial non-Gaussianity of the Maldacena relation are included, which
indicates that the constant ζL does not give locally observable effects. Although our calculation is based on the perfect
fluid assumption, we can expect that the dilation consistency relation would be satisfied even in imperfect fluid.
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