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ABSTRACT
We study contributions to the cosmic microwave background (CMB) bispectrum from non-

Gaussianity induced by secondary anisotropies during reionization. Large-scale structure in the reionized
epoch both gravitationally lenses CMB photons and produces Doppler shifts in their temperature from
scattering o† electrons in infall. The resulting correlation is potentially observable through the CMB
bispectrum. The second-order Ostriker-Vishniac e†ect also couples to a variety of linear secondary
e†ects to produce a bispectrum. For the currently favored Ñat cosmological model with a low matter
content and small optical depth in the reionized epoch however, these bispectrum contributionsq[ 0.3,
are well below the detection threshold of MAP and at or below that of Planck, given their cosmic and
noise variance limitations. At the upper end of this range, they can serve as an extra source of noise for
measurements with Planck of either primordial nongaussianity or that induced by the correlation of
gravitational lensing with the integrated Sachs-Wolfe and the thermal Sunyaev-ZelÏdovich e†ects. We
include a discussion of the general properties of the CMB bispectrum, its conÐguration dependence for
the various e†ects, and its computation in the Limber approximation and beyond.
Subject headings : cosmic microwave background È cosmology : theory È

large-scale structure of universe È gravitational lensing

1. INTRODUCTION

The increase in sensitivity of upcoming cosmic micro-
wave background (CMB) experiments, especially satellite
missions, raises the possibility that higher order corre-
lations in the CMB temperature Ñuctuations, beyond the
two-point function, may be experimentally detected and
studied in detail to look for deviations from Gaussianity. In
the absence deviations in the initial conditions, they may
arise from the imprint of the nonlinear growth of structures
on secondary anisotropies.

Early theoretical work on the three-point correlation
function was aimed at distinguishing between various theo-
ries of the origin of the Ñuctuations (e.g., Falk, Rangarajan,
& Frednicki 1993 ; Luo & Schramm 1993 ; Luo 1994 ;
Gangui et al 1994). Within the context of inÑationary
models, especially within slow-roll inÑation, this topic has
been further addressed in several recent papers (e.g., Gangui
& Martin 2000 ; Wang & Kamionkowski 2000). In typical
models, the expected non-Gaussian contribution is below
the level that can be detected owing to cosmic variance
limitations.

Recently, there has been much renewed interest in the
three-point function and its Fourier analogue the bispec-
trum, both in anticipation of the high-precision satellite
data and from analyses of the COBE DMR data (e.g.,
Hinshaw et al 1995 ; Ferreira, Manguiijo, & Gorski 1998 ;
Pando, Vallas-Gabaud, & Fang 1998). The detection
reported by Ferreira et al. (1998) and Pando et al. (1998) has
been subsequently shown to be associated with a known
systematic error in the data time-stream (Banday, Zaroubi,
& Gorski 1999 ; see also Bromley & Tegmark 1999). This
should be taken as a cautionary tale that even if an experi-
ment has the raw sensitivity to detect expected bispectrum
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signals, removing systematic e†ects to the required level will
prove challenging indeed.

Nonetheless, the upcoming CMB experiments, especially
MAP3 and Planck surveyor,4 with their higher sensitivity
and angular resolution can in principle be used to study the
bispectrum. It is therefore important to investigate what
signals are expected in the currently favored cosmological
models and how they might be separated from each other.
Recently Spergel & Goldberg (1999) and Goldberg &
Spergel (1999) studied the CMB bispectrum under the
context of non-Gaussian contribution due to second-order
gravitational e†ects, notably the correlation induced by
gravitational lensing of CMB photons and secondary aniso-
tropies from the integrated Sachs-Wolfe (ISW; Sachs &
Wolfe 1967) e†ect and the thermal Sunyaev-ZelÏdovich (SZ;
Sunyaev & ZelÏdovich 1980) e†ect.

Here we present two additional e†ects resulting through
reionization. The Ðrst one is the correlation induced by
lensing through the secondary Doppler e†ect. The second
one arises from the coupling of the second order Ostriker-
Vishniac e†ect (OV; Ostriker & Vishniac 1986 ; Vishniac
1987) to other linear secondary e†ects such as the ISW,
Doppler, and SZ e†ects. The resulting bispectrum is pro-
portional to the square of the matter density power spectra.
We also study the conÐguration dependence of these e†ects
to address means by which they may be separated from
each other and any primordial nongaussianity.

The layout of the paper is as follows. In ° 2, we review the
background material relevant for understanding the CMB
bispectrum and its statistical properties in the context of the
adiabatic cold dark matter (CDM) models. A summary of
useful properties of the Wigner-3j symbol is presented in the
Appendix. In ° 3, we detail the coupling between gravita-
tional lensing angular excursions and secondary aniso-
tropies. Results for the currently favored cosmology are

3 http ://map.nasa.gsfc.gov.
4 http ://astro.estec.esa.nl/Planck/ ; also, ESA D/SCI(6)3.
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presented in ° 4. In ° 5, we treat the coupling between
Ostriker-Vishniac (OV) e†ect and secondary temperature
Ñuctuations ; results for the favored cosmological model are
presented in ° 6. We conclude in ° 7.

2. PRELIMINARIES

We Ðrst review the properties of adiabatic CDM models
relevant to the present calculations. We then discuss the
general properties of the angular bispectrum of the CMB.

2.1. Adiabatic CDM Model
The expansion rate for adiabatic CDM cosmological

models with a cosmological constant is

H2\ H02[)m
(1] z)3] )

K
(1] z)2] )"] , (1)

where can be written as the inverse Hubble distanceH0today, We follow the conventionsH0~1 \ 2997.9h~1Mpc.
that in units of the critical density the contribu-3H02/8nG,
tion of each component is denoted i\ c for the CDM, b)

i
,

for the baryons, " for the cosmological constant. We also
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bution of spatial curvature to the expansion rate, respec-
tively.

Convenient measures of distance and time include the
conformal distance (or look-back time) from the observer at
redshift z\ 0
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and the analogous angular diameter distance
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A

] r r(z\O)\ r0.The adiabatic CDM model possesses a power spectrum
of density Ñuctuations
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where dD is the Dirac delta function5 and

*2(k) \ dH2
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Bn`3
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in linear perturbation theory. We use the Ðtting formulae of
Eisenstein & Hu (1999) in evaluating the transfer function
T (k) for CDM models. Here is the amplitude of present-dHday density Ñuctuations at the Hubble scale ; we adopt the
COBE normalization for (Bunn & White 1997).dHThe density Ðeld may be scaled backward to higher red-
shift by the use of the growth function G(z), where d(k, r)
\ G(r)d(k,0) (Peebles 1980), and
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Note that in the matter dominated epoch
GP a \ (1] z)~1 ; it is therefore convenient to deÐne an
auxiliary quantity F4 G/a.

5 We also use this symbol for Kronecker deltas.

The cosmological Poisson equation relates the density
Ðeld to the Ñuctuations in the gravitational potential

'\ 3
2

)
m

AH0
k
B2A

1 ] 3
H02
k2 )

K

B~2
F(r)d(k, 0) . (7)

Likewise, the continuity equation relates the density and
velocity Ðelds via

¿ \ [iG0 d(k, 0)
k
k2 , (8)

where overdots represent derivatives with respect to radial
distance r.

For Ñuctuation spectra and growth rates of interest here,
reionization of the universe is expected to occur rather late,

such that the reionized media is optically thin tozri[ 50,
Thomson scattering of CMB photons The probabil-q[ 1.
ity of last scattering within dr of r (the visibility function) is

g \ q5 e~q \ XH0 qH(1] z)2e~q . (9)

Here is the optical depth out to r, X is theq(r) \ /0r drq5
ionization fraction, and

qH \ 0.0691(1[ Y
p
))

b
h , (10)

is the optical depth to Thomson scattering to the Hubble
distance today, assuming full hydrogen ionization with pri-
mordial helium fraction of Note that the ionization frac-Y

p
.

tion can exceed unity : for singlyX \ (1 [ 3Y
p
/4)/(1[ Y

p
)

ionized helium, and for fullyX \ (1 [ Y
p
/2)/(1 [ Y

p
)

ionized helium. We assume that

X(z) \ 1 [ 1
2

erfc
Azri[ z

J2*z

B
(11)

such that hydrogen reionizes smoothly but promptly at zri ;some aspects of the Doppler e†ect, in particular its power
spectrum and to a lesser extent Doppler-Doppler-OV coup-
ling, are sensitive to the sharpness of this transition.

Although we maintain generality in all derivations, we
illustrate our results with the currently favored "CDM
cosmological model. The parameters for this model are

h \ 0.65, n \ 1,)
c
\ 0.30, )

b
\ 0.05, )" \ 0.65, Y

p
\ 0.24,

and This model has mass Ñuctuations ondH \ 4.2] 10~5.
the 8h Mpc~1 scale in accord with the abundance of galaxy
clusters A reasonable value here is importantp8\ 0.86.
since the bispectrum is nonlinearly dependent on the ampli-
tude of the density Ðeld. We consider reionization redshifts
in the range or and assume5 [ zri[ 40 0.025 [ q[ 0.5
*z/(1 ] z) \ 0.1.

2.2. Bispectrum
The bispectrum is the spherical harmonic trans-B

l1 l2 l3form of the three-point correlation function just as the
angular power spectrum is the transform of the two-C

lpoint function. In terms of the multipole moments of the
temperature Ñuctuation Ðeld T (nü ),

a
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the two-point correlation function is given by
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Under the assumption that the temperature Ðeld is sta-
tistically isotropic, the correlation is independent of m,

Sa
l
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D d

m1m2
D C

l1
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and called the angular power spectrum. Likewise the three-
point correlation function is given by
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where the sum is over Statistical(l1, m1),(l2, m2),(l3, m3).isotropy again allows us to express the correlation in terms
an m-independent function,
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Here the quantity in parentheses is the Wigner-3j symbol.
Its orthonormality relation equation (A2) implies
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The angular bispectrum, contains all the informa-B
l1l2l3

,
tion available in the three-point correlation function. For
example, the skewness, the collapsed three-point function of
Hinshaw et al (1995), and the equilateral conÐguration sta-
tistic of Ferreira et al. (1998) can all be expressed as linear
combinations of the bispectrum terms (see Gangui et al
1994 for explicit expressions).

It is also useful to note its relation to the bispectrum
deÐned on a small Ñat section of the sky. In the Ñat sky
approximation, the spherical polar coordinates (h, /)
are replaced with radial coordinates on a plane (r \ 2
sin h/2 B h, /). The Fourier variable conjugate to these
coordinates is a two-dimensional vector l of length l and
azimuthal angle The expansion coefficients of the/

l
.

Fourier transform of a given l is a weighted sum over m of
the spherical harmonic moments of the same l (White et al.
1999)
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Likewise, the two-dimensional bispectrum is deÐned as
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The triangle inequality of the Wigner-3j symbol becomes a
triangle equality relating the two-dimensional vectors. The
implication is that the triplet can be considered to(l1,l2,l3)contribute to the triangle conÐguration l1, l2, l3\[l1]l2where the multipole number is taken as the length of the
vector.

2.3. Fisher Matrix
To quantify the amount of information contained about

a parameter in the bispectrum, we shall deÐne the Fisherp
imatrix The Cramer-Rao inequality (Kendall & StuartF

ij
.

1969) says that the variance of an unbiased estimator of p
icannot be less than . In terms of the likelihood L of(F~1)iiobserving bispectrum elements (arranged as aBa 4B

l1 l2 l3data vector) given the true parameters p (called the Ðducial
model), the Fisher matrix is deÐned as

F
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U
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Under the approximation that the likelihood is Gaussian,
this expression becomes

F
ij
\ ;
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j
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The covariance matrix between the a and a@ bispectrum
term is in general a complicated quantity to calculate (see
Heavens 1998). However there are two simplifying assump-
tions that make this expression tractable. Firstly, since the
CMB is expected to be nearly Gaussian, the dominant con-
tribution to the covariance comes from the six-point func-
tion of the Gaussian Ðeld. This can be expressed in terms
the power spectrum of all contributions to the Ðeld com-
bined, i.e., the cosmic signal, detector noise, and residual
foregrounds in the map,

C
l
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l
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l
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l
foreg . (23)

Secondly, assuming all-sky coverage6 the power spectrum
covariance is diagonal in l, m and the covariance then
becomes (Luo 1994)
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dD(abc) \ d
l1la{
D d

l2lb{
D d

l3lc{
D . (25)

Here we have assumed that Thel1D l2, l2D l3, l1D l3.covariance increases by a factor of 2 when two ls are equal
and by a factor of 6 when all three ls are equal.

Under these assumptions, the Fisher matrix reduces to
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Note that the covariance between permutations of
restricts the sum to(l1, l2, l3) l3º l2º l1.Since the signal is expected to be small, in this paper we

will be mainly concerned with the overall observability of

6 Even satellite missions will not have all-sky coverage because of the
need to remove galactic contamination. This will increase the covariance of
the estimators but we neglect such subtleties here.
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the bispectrum. Consider the most optimistic scenario
where the form of the bispectrum is considered known and
the only parameter of interest is its amplitude, i.e., B

l1l2l3
\

where the true value of A\ 1. The Fisher matrixAB
l1l2l3

ofidtells us that the variance of the measurements of A is no less
than orp2(A)\ (F~1)
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,

s24
1

p2(A)
\ ;

l3zl2zl1

B
l1l2l3
2

p
l1l2l3
2 , (28)

which corresponds to the statistic introduced by Spergel &
Goldberg (1999). We will often plot the contribution to s2
from a single summed over asl3, l1,l2 ds2/dl3.

2.4. Detector Noise & Foregrounds
Detector noise will degrade the sensitivity of a given

experiment to the bispectrum through equation (23). As
pointed out by Knox (1995), detector noise in a given fre-
quency channel l can be treated as an additional sky signal
with a power spectrum

C
l
noise(l)\ w~1(l)eh2(l)l(l`1) , (29)

if the experimental beam is Gaussian with width h(l) in
radians (FWHM\ (8 ln 2)1@2h(l)). Here the sensitivity
measure w~1(l) is deÐned as the noise variance per pixel
times the pixel area in steradians. Modern experiments have
many frequency channels with independent pixel noise. In
this case we inverse variance weight the noise so that

1
C

l
noise\ ;

l

1
C

l
noise(l) , (30)

where the sum is over the di†erent frequency channels.
We will use the MAP and Planck satellite speciÐcations

to illustrate the e†ects of detector noise (see Table 1). Note
that this is somewhat optimistic since the multifrequency
coverage of these experiments will have to be used to
remove foreground contamination. Tegmark et al. (2000)
have shown that given current expectations for foreground
contributions, the increase in due to foregroundC

l
tot

removal is not expected to exceed D10%. Of course, the

TABLE 1

DETECTOR NOISE SPECIFICATIONS

Experiment l FWHM 106*T /T

MAP . . . . . . . 22 56 4.1
30 41 5.7
40 28 8.2
60 21 11.0
90 13 18.3

Planck . . . . . . 30 33 1.6
44 23 2.4
70 14 3.6

100 10 4.3
100 10.6 1.7
143 7.4 2.0
217 4.9 4.3
353 4.5 14.4
545 4.5 147
857 4.5 6670

NOTE.ÈSpeciÐcations used for MAP and
Planck. FWHM of the beams are in arcminutes.
w~1@2\*T ] FWHM] n/10800.

underlying premise that foregrounds add noise as a Gauss-
ian random Ðeld is certainly incorrect at some level. It may
well be that the bispectrum of the foregrounds is the limit-
ing factor for observations of the cosmic bispectrum, a
subject that lies beyond the scope of this paper. Figure 1
displays the total power as a sum of the cosmic spectrum
and inverse-variance weighted noise spectrum for the MAP
and Planck satellites.

2.5. Secondary Anisotropies
Secondary anisotropies in the CMB are those that are

produced well after recombination at zD 1000. They gener-
ally fall into two broad classes : those arising from gravita-
tional e†ects and those arising from Compton scattering.

The gravitational e†ects are due to gravitational redshift
and lensing. The di†erential redshift e†ect from photons
climbing in and out of a time-varying gravitational poten-
tial along the line of sight is called the integrated Sachs-
Wolfe (ISW; Sachs & Wolfe 1967) e†ect while Ñuctuations
are still linear, and the Rees-Sciama (Rees & Sciama 1968)
e†ect for the second-order and nonlinear contributions. The
ISW e†ect is important for low matter density universes,

where the gravitational potentials decay at low red-)
m

\ 1,
shift, and contributes anisotropies on and above the scale of
the horizon at the time of decay (see Fig. 1 calculated from
eq. [42]). The Rees-Sciama e†ect is small in adiabatic CDM
models (Seljak 1996), and we will not consider it further
here.

Gravitational lensing of the photons by the intervening
large-scale structure both redistributes power in multipole
space and enhances it because of power in the density per-
turbations. The most e†ective structures for lensing lie half
way between the surface of recombination and the observer
in comoving angular diameter distance. In the Ðducial
"CDM cosmology, this is at zD 3.3, but the growth of
structure skews this to somewhat lower redshifts. In general,
the efficiency of lensing is described by a broad bell-shaped

FIG. 1.ÈPower spectrum for the temperature anisotropies in the Ðdu-
cial "CDM model with (see ° 2.5 forq\ 0.1(SzriT \ 13)*z\ 0.1(1] zri)details). The curve labeled ““ primary ÏÏ actually includes the small ISW,
Doppler, and lensing contributions. Note that the predictions for the SZ
power spectrum are highly uncertain and frequency dependent. We have
also shown the instrumental noise contribution of MAP and Planck, calcu-
lated using parameters in Table 1, which is important for signal-to-noise
calculations.
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function between the source and the observer. The curve
labeled ““ primary ÏÏ in Figure 1 includes the gravitational
lensing e†ect on the power spectrum as calculated by the
CMBFAST code (Seljak & Zaldarriaga 1996 and Zaldar-
riaga & Seljak 1997) ; lensing is responsible for the power-
law tail of anisotropies for l[ 4000 here.

Rescattering of the photons during the reionized epoch
can both generate and erase anisotropies. The primary
anisotropies are reduced as exp ([q) by scattering on small
scales Density Ñuctuations can lead to optical depthlZ 50.
variations and hence a patchy erasure of Ñuctuations. For
the optically thin conditions considered here, this is a negli-
gible e†ect.

The bulk Ñow of the electrons that scatter the CMB
photons leads to a Doppler e†ect. Its e†ect on the power
spectrum peaks around the horizon at the scattering event
projected on the sky today (see Fig. 1). The contributions
are strongly dependent on the optical depth in the reionized
epoch ; we take q\ 0.1 as our Ðducial model but explore
optical depths up to q\ 0.5. On scales smaller than the
horizon at scattering, the contributions are mainly canceled
as photons scatter against the crests and troughs of the
perturbation. As a result, the Doppler e†ect is moderately
sensitive to how rapidly the universe reionizes since contri-
butions from a sharp surface of reionization do not cancel.
Following current thinking that the universe reionized
promptly (see Haiman & Knox 1999 for a review), we take

in Figure 1.*z\ 0.1(1] zri)The Sunyaev-ZelÏdovich (SZ; Sunyaev & ZelÏdovich
1980) e†ect arises from the inverse-Compton scattering of
CMB photons by hot electrons along the line of sight. This
e†ect has now been directly imaged toward massive galaxy
clusters (e.g., Carlstrom, Joy, & Grego 1996), where tem-
perature of the scattering medium can reach as high as 10
keV producing temperature changes in the CMB of order 1
mK. Here we are interested in the SZ e†ect produced by
large-scale structure in the general intergalactic medium
(IGM), where the exact calculation on its signiÐcance as a
secondary anisotropy is not directly possible owing to the
unknown distribution and clustering properties of baryonic
gas and its temperature structure. Under certain simplify-
ing, albeit largely untested assumptions detailed in ° 3.5, its
power spectrum is given in Figure 1 for both linear and
nonlinear contributions. Given the untested assumptions,
these spectra should be taken as provisional, even in their
order of magnitude. Note that the SZ e†ect also bears a
spectral signature that di†ers from the other e†ects. We
have assumed observations in the Rayleigh-Jeans regime of
the spectrum; an experiment such as Planck, with sensitivity
beyond the peak of the spectrum, can separate out these
contributions based on the spectral signature.

The Ostriker-Vishniac e†ect arises from the second-order
modulation of the Doppler e†ect by density Ñuctuations
(Ostriker & Vishniac 1986 ; Vishniac 1987). Its nonlinear
analogue is the kinetic SZ e†ect from large-scale structure
(Hu 2000) ; we denote it OV(nl) here to avoid confusion with
the thermal SZ e†ect. Because of its density weighting, the
OV e†ect peaks at small scales : arcminutes for "CDM. For
a fully ionized universe, contributions are broadly distrib-
uted in redshift so that the power spectra are moderately
dependent on the optical depth q, which we generally take
to be 0.1.

Variations in the ionization fraction of the gas around the
epoch of reionization can also modulate the Doppler e†ect

(Aghanim et al. 1996 ; Gruzinov & Hu 1998 ; Knox, Scocci-
marro, & Dodelson 1998). This e†ect depends on the
detailed physical processes occurring at reionization though
it probably contributes substantially to the subarcminute-
scale anisotropy. Because of the small scale of the e†ect and
its unknown relationship to the density Ðeld and hence the
other secondary e†ects, we do not consider its contribution
to the power spectrum or bispectrum here.

In summary, for "CDM cosmologies with optical depths
qD 0.1, the ISW contributions dominate at low l-values, the
Doppler contributions cominate at intermediate l-values,
and the SZ contributions dominate at small scales. Given
the crudeness of the approximation for the SZ e†ect, one
cannot rule out the possibility that OV contributions domi-
nate at high values ofl. The power spectra of these e†ects
imply that the intrinsic contributions of the ISW, Doppler,
and SZ e†ects are comparable but appear at di†erent
angular scales and arise from di†erent redshifts. It is for this
reason that we shall consider the bispectrum contributions
from these e†ects in the following sections.

3. LENSING EFFECTS : DERIVATION

The general derivation of CMB bispectrum due to the
coupling of lensing with secondary anisotropies, originally
considered by Goldberg & Spergel (1999), is reviewed in
° 3.1. It is applied to Doppler secondary anisotropies in
° 3.2. For comparison, in °° 3.3 and 3.4 we brieÑy revisit the
coupling between gravitational lensing and ISW and SZ
e†ects, respectively, studied by Goldberg & Spergel (1999).

3.1. General Considerations
Large-scale structure deÑects CMB photons in transit

from the last scattering surface. These structures also give
rise to secondary anisotropies. The result is a correlation
between the temperature Ñuctuations and deÑection angles.
This e†ect cannot be seen in the two-point function since
gravitational lensing preserves surface brightness : deÑec-
tions only alter the temperature Ðeld on the sky in the
presence of intrinsic, primary, anisotropies in the unlensed
distribution. The lowest order contribution thus comes
from the three-point function or bispectrum.

In weak gravitational lensing, the deÑection angle on the
sky is given by the angular gradient of the lensing potential,
which is itself a projection of the gravitational potential (see
e.g., Kaiser 1992),
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P
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d
A
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d
A
(r)d

A
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'(r, mü r) . (31)

This quantity is simply related to the more familiar con-
vergence

i(mü ) \ 1
2
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2 '(r, mü r) , (32)

where note that the two-dimensional Laplacian operating
on ' is a spatial and not an angular Laplacian. The two
terms i and # contain superÐcial di†erences in their radial
and wavenumber weights, which we shall see cancel in the
appropriate Limber approximation. In particular, their
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spherical harmonic moments are simply proportional,
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with
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Here we have used the Rayleigh expansion of a plane wave
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(kr)Y
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and the fact that In an open universe,+2Y
l
m \ [l(l] 1)Y

l
m.

one simply replaces the spherical Bessel functions with
ultraspherical Bessel functions in expressions such as equa-
tion (34). Since this is the case, we present the derivation in
Ñat space.

Since expressions of the type in equation (34) frequently
occur in the following calculations, it is useful to note that it
may be evaluated efficiently with a temporal version of the
Limber approximation (Limber 1954) called the weak coup-
ling approximation (Hu & White 1996) :
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and note that the ratio of gamma functions goes to forJ2/l
l? 1. For the open universe generalization of this result, see
Hu (2000). We employ this approximation for sufficiently
high l-values (usually l[ 200), where the di†erence between
full integral and the approximation is sufficiently low
(\1%).

Assuming a relation between the multipole moments and
as in equation (33), we Ðnd that the cross-correlationI

l
X

power between X and Y then becomes
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where the approximation involves a change in variables
and we have restored generality for open geome-d

A
\ l/k,

tries where (see Hu 2000). Note that in the Limberr D d
Aapproximation where is interchangeable with l/k, thed

AsuperÐcial di†erence in the weights for i and # disappears.
The quantity of interest is the correlation between the

deÑection potential and secondary anisotropies
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which becomes
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Again statistical isotropy guarantees that we may write the
correlation as
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where we have used equation (33) to relate the power spec-
trum deÐned by Goldberg & Spergel (1999) and the i-b

l
S

secondary cross power spectrum deÐned by Seljak &
Zaldarriaga (1999). The last line represents the Limber
approximation and we have assumed that the secondary
anisotropies are linearly related to the density Ðeld project-
ed along the line of sight,
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Note that the power spectrum of the secondary e†ect is then
given by
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We will discuss explicit forms for W S for speciÐc secondary
e†ects in the following sections.

Unfortunately, the secondary-lensing correlation is not
directly observable. As pointed out by Goldberg & Spergel
(1999), it does however have an e†ect on the bispectrum that
is in principle observable. The lensed temperature Ñuctua-
tion in a given direction is the sum of the primary Ñuctua-
tion in a di†erent direction plus the secondary anisotropy

T (nü ) \ T P(nü ] +#) ] T S(nü ) (43)

B ;
lm

[(a
lm
P ]a

lm
S )Y

l
m(nü )]a

lm
P +#(nü ) É +Y

l
m(nü )] ,

or

a
lm

\ a
lm
P ] a

lm
S ] ;

l@m@
a
l{m{P
P

dnü Y
l
m*(nü )+#(nü ) É +Y

l{m{(nü ) .

(44)

Utilizing the deÐnition of the bispectrum in equation (17),
we obtain
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where the Ðve permutations are with respect to the ordering
of (l1, l2, l3).
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Integrating by parts and simplifying further following
Goldberg & Spergel (1999) leads to a bispectrum of the
form
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where we have employed equation (A5) to perform the
angular integration.

3.2. Doppler-L ensing E†ect
The Doppler e†ect generates temperature Ñuctuations as
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P
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With the help of equation (8),
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and the Clebsh-Gordan coefficients for the addition of
angular momenta with l\ 1, we can write the multipole
moments as
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Through integration by parts, this expression can be
brought into the standard form of equation (41) with

W dop(k, r)\ 1
k2 (g5G0 ] gG� ) , (50)

through integration by parts.
Employing equation (40) for the lensing correlation, we

obtain
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in the Limber approximation for lZ 200.

3.3. Double-Scattering L ensing E†ect
As pointed out by Kaiser (1984), double-scattering e†ects

must also be considered since the single-scattering contribu-
tions are canceled along the line of sight at short wave-
lengths. Equation (49) implies that the Doppler e†ect
produces an isotropic temperature Ñuctuation in the
photons which subsequently last-scatter into the line of
sight,

a00dop(k)Y 00 4 k~2Siso(k, r)d(k)

\ d(k)
k
P
r

r0
dr@gG0 j1[k(r [ r@)] , (52)

where g is to be interpreted as the visibility function for an
observer at r, i.e., For scales thatg \ q5 exp [[q(r@) ] q(r)].
are much smaller than the width of the visibility function,
i.e., approximately one can take out of thek(r0[ r)? 1, gG0

integral leaving

Siso(k, r) B q5G0 . (53)

The contribution to the anisotropy today takes the stan-
dard form of equation (41)

W iso(k, r) \ k~2g(r)Siso(k, r) . (54)

In the Limber limit, equation (40) can be simpliÐed as
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again valid for lZ 200.

3.4. ISW L ensing E†ect
The integrated Sachs-Wolfe e†ect (Sachs & Wolfe 1967)

results from the late time decay of gravitational potential
Ñuctuations. The resulting temperature Ñuctuations in the
CMB can be written as
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P
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Using the Poisson equation (eq. [7]), we can then bring the
contributions into the standard form of equation (41)
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The two-point function produced between gravitational
lensing angular deÑections and ISW e†ect can now be
written as in the Limber limit as (Goldberg & Spergel
1999)7
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For calculational purposes, we employ numerical integra-
tion to l of 200 and use Limber approximated formulation
thereafter.

3.5. SZ L ensing E†ect
The SZ e†ect leads to an e†ective temperature Ñuctuation

in the Rayleigh-Jeans part of the CMB given by the inte-
grated pressure Ñuctuation along the line of sight :
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where is the Boltzmann constant. Unfortunately, thek
Bclustering properties of the gas and its temperature struc-

ture is uncertain even with state of the art hydrodynamic
simulations.

7 Note that our Limber approximated correlation between lensing and
ISW e†ect is factor 2 lower than eq. (14) of Goldberg & Spergel (1999) ; the
same equation also contains an additional misprint with respect to weigh-
ing by their q factors.
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FIG. 2.ÈDoppler-lensing e†ect. Shown are the combined Doppler and
double-scattering e†ects, (solid line), the Doppler e†ect (dotted line), and the
Limber approximation to the Doppler e†ect (dot-dashed line). At sufficient-
ly high l, the di†erence between these three treatments can be ignored for
most practical purposes. Top panel : The correlation power spectrum.
Bottom panel : Contribution to s2 per log interval in l3.

To obtain an order of magnitude estimate of the e†ect, we
follow Goldberg & Spergel (1999) in making several sim-
plifying but largely untested assumptions. We assume that
the gas is a biased tracer of the dark matter density dgas \and that the IGM temperature distribution varies asbgas d Finally we ignore temperature ÑuctuationsT
e
(r)\ a(r)Te0.in the gas.
The e†ect can then be expressed as a weighted projection

of the density Ðeld of the form in equation (41),

W SZ(k)\ [2ASZgaG , (60)

with a normalization given by
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For illustration purposes, we adopt andbgas \ 4 Te0 \ 1
keV throughout.

The cross power between lensing and SZ can be written
using equation (40) :
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Since the SZ-lensing results in a correlation that peaks at
lD 100 (see Goldberg & Spergel 1999), with no signiÐcant
contribution at low l-values, the Limber approximation
may be used to calculate the whole e†ect.

Both SZ e†ect and gravitational lensing angular deÑec-
tion potentials will be enhanced by nonlinear Ñuctuations in
the density Ðeld. To get a qualitative understanding of the
e†ects, assume that the gas density and potential Ñuctua-
tions continue to track the dark matter in the nonlinear
regime. The nonlinear evolution of the dark matter density
distribution has been well-studied with N-body simulations
for adiabatic CDM cosmological models of interest here.
We employ the scaling relation of Peacock & Dodds (1996)
to obtain the nonlinear power spectrum today (see Fig. 4) as
well as its evolution in time. In Figure 1, the curve labeled
““ SZ(nl) ÏÏ is the power spectrum formed by the SZ e†ect
using the nonlinear matter density power spectrum. The
nonlinear e†ects generally increases the power due to SZ
temperature Ñuctuations by a factor of 3 to 4 when l is in the
interested range of 1000 to 5000.

With the introduction of the nonlinear power spectrum,
we can write the cross-correlation between lensing and SZ
as
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Since the nonlinear power spectrum no longer grows as G2,
it must be evaluated along the line of sight at the corre-
sponding look-back time.

4. LENSING EFFECTS : RESULTS

4.1. Doppler-L ensing Bispectrum
The contribution to the bispectrum from the coupling of

lensing to the Doppler e†ect is encapsulated in the power
spectrum of the correlation (see eq. [51]). Figure 2 (top)b

l
dop

shows its value for the Doppler e†ect in our Ðducial "CDM
q\ 0.1 cosmology assuming cosmic variance only C

l
tot \C

l(see eq. [23]). The zero crossing at l D 100 is due to the
competition between contributions on the reionization
surface and those from the intermediate redshifts. Likewise
the Limber approximation to the integral also becomes
excellent beyond l \ 200. The inclusion of double-scattering
contributions to the Doppler e†ect only makes a minor
di†erence for qD 0.1.

We also show the contribution to the overall signal to
noise squared (s2) per logarithmic interval in in Figure 2l3(bottom). The minor di†erences in the s2 contributions at
high between the Limber-approximated and Doppler-l3only spectra from the full calculation are primarily due to
the di†erences of the term at low l-values. Low l-values inb

lcontribute to high in s2 since the latter is a sumb
l

l3-values
over The structure in the s2 plot and the rapidl1¹ l2¹ l3.increase of its values around l D 1000 arises in large part
from the structure of the primary itself, which determinesC

lthe Gaussian noise per mode.
Since the signal is dominated by the smallest angular

scales available in the measurements, it is important to
include the experimental beam and instrumental noise con-
tributions. In Figure 3, we show the signal-to-noise ratio
per mode of assuming MAP and Planck noise (see Tablel31). Here we also show the a†ect of varying the optical
depths from 0.1 to 0.5. Note that because reionization
decreases the power spectrum of the anisotropies as e~2q,
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FIG. 3.ÈDependence of the Doppler-lensing e†ect on the ionization
optical depth for q of 0.1, 0.3 and 0.5 with Top panel : The*z\ 0.1(1 ] zri).term for the Doppler-lensing e†ect. Middle panel : CMB power spectrumb
lused in the noise calculation. L ower panel : The contribution to s2 per log

interval in with MAP and Planck detector noise included.l3

the Gaussian noise in the bispectrum is also decreased with
increasing optical depth. We have assumed a reionization
width of here, but the lensing correlation is*z\ 0.1(1] zri)not sensitive to this parameter. The lensing efficiency is a

FIG. 4.ÈLinear and nonlinear density power spectra for the dark
matter under the Peacock & Dodds (1996) scaling approximation for our
Ðducial "CDM cosmological model evaluated at the present.

broad bell-shaped function in angular diameter distance
and does not correlate well with contributions localized
near the distant surface of reionization.

As shown in Figure 3, the bispectrum mode contribution
to s2 for any due to coupling between reionized Dopplerl3e†ect and gravitational lensing angular deÑections is gener-
ally less than 10~2, unless the optical depth to reionization
is greater than what is currently inferred from the observed
power spectrum of anisotropies (q\ 0.5 ; Griffiths, Barbosa,
& Liddle 1999 ; see Haiman & Knox 1999 for a recent
review). Adding all the mode contributions, the total s2-l3value is generally at a level below where one can expect its
detection in the upcoming satellite data for reasonable
optical depths (q[ 0.3).

4.2. Comparison of L ensing E†ects
In Figure 5 we compare the relative contribution to the

CMB bispectrum from all the e†ects calculated. Both ISW
and Doppler e†ects contribute at low l-values to the corre-
lation while SZ e†ect to l D 100. The Doppler-l3b

l
/2n,

lensing coupling is suppressed by a factor of D 8 when
compared to ISW-lensing coupling, which is in large part

FIG. 5.ÈComparison of various lensing e†ects for our Ðducial "CDM
model and with q\ 0.1 and Top panel :È The power*z\ 0.1(1] zri).spectrum of the correlation. Middle panel : Contributions to s2 per log
interval in assuming cosmic variance only. L ower panelÈ : The samel3,adding in detector noise for MAP and Planck.
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FIG. 6.ÈConÐguration dependence of the secondary-lensing signal. Plotted is the contributions to s2 of from single mode as a function of andl3\ 300 l2The conÐguration shapes are determined by both the power spectra of the cross-correlation terms ; see Fig. 5) and the CMB power spectrum. The spikyl1. (b
lbehavior in these plots is an artifact of the plotting near the sharp crest introduced by the Wigner-3j symbol (see Fig. 10).

due to the inefficiency with which high-redshift structures
lens the CMB. As shown, the SZ-lensing coupling and ISW-
lensing coupling dominate the Doppler-lensing e†ect for
optical depths The nonlinear growth of Ñuctuationsq[ 0.5.

increases the SZ-lensing cross-correlation when l[ 100
when compared to pure linear e†ects with a modest
enhancement factor of D5 at l D 5000. Such an enhance-
ment in the SZ-lensing cross-correlation power spectrum is
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FIG. 7.ÈContribution to s2 per log interval in for the OV coupling e†ects for the Ðducial "CDM model with q\ 0.1, and nol3 *z\ 0.1(1 ] zri)instrumental noise. L eft panel : Coupling with two secondary e†ects of the same kind. Right panel : Hybrid e†ects involving secondaries of di†erent kind.
Other than Doppler-Doppler-OV and Doppler-SZ-OV couplings, the secondary-secondary-OV bispectra are only mildly sensitive to the reionized optical
depth and width.

consistent with increases in both SZ and lensing individual
power spectra due to nonlinear e†ects.

If untested assumptions on the SZ thermal e†ect were
found to be false and the SZ contribution to be lower than
currently presumed, than most of the contribution, at least
in a Ñat cosmological model, would come fromlow-)

mcoupling between gravitational lensing and the ISW e†ect.
However, even if this turns out to be the case, one may be
able to use the spectral signature of the SZ e†ect to separate
its contribution. If SZ-lensing coupling is clearly detected, it
would also support the current notion that most of baryons
are present in the IGM as form of a gas at temperature of
D1 keV. As suggested by Goldberg & Spergel (1999), this
would certainly solve the ““ missing baryons ÏÏ problem (Cen
& Ostriker 1999). In the meantime, improvements of our
knowledge of the physical nature of the baryonic gas is
clearly needed and can come from both observations as well
as numerical simulations (e.g., da Silva et al. 1999).

Another obstacle for the unambiguous detection of the
SZ, ISW and Doppler lensing e†ects is the ability to dis-
tinguish their bispectrum contribution from those of other
physical mechanisms. The s2 statistic of Goldberg &
Spergel (1999) lumps all the information on each e†ect into
one number and makes such an assessment difficult. Once
all the e†ects are known the question of separability can be
addressed with the Fisher matrix techniques of ° 2.3. In the
meantime, it is useful to ask what combination of (l1, l2, l3)is most of the signal coming from, i.e., what triangle conÐgu-
rations in the bispectrum dominate. In Figure 6 as an
example, we show the general behavior of individual mode
contribution to our signal-to-noise statistic s2 as a function
of and Here we have taken which is represen-l1 l2. l3\ 300,
tative of the their behavior in the range of interest. Sincel3is zero when is odd, we haveB2(l1, l2, l3) l1 ] l2] l3omitted these values for plotting purposes.

The conÐguration dependences results from a com-
bination of the secondary-lensing cross-correlation power
spectra and the CMB power spectrum. They are modulated
by the behavior of the Wigner-3j symbol and variations in
the noise term from the CMB power spectra. As shown in

Figure 10, the Wigner-3j symbol also peaks at the lowest l1that satisÐes the triangle rule The CMB powerl1 \ l3[ l2.spectrum noise introduces features associated with the
acoustic peaks at (see Figs. 3 and 5).l Z 200

The SZ-lensing bispectrum gets most of its contribution
when with taking values in the intermediatel1D l3[ l2 l1l-range of few hundreds where the cross-power peaks. This
behavior also suggest why the SZ(nl)-lensing bispectrum is
not strongly enhanced even at high by nonlinearl3-values
e†ects, as most of the contributions come from intermediate

values, where nonlinear enhancement is negligible.b
l
SZ(nl)
For ISW-lensing, the cross-correlation term peaks

toward low l- values, and thus, its conÐguration dependence
is such that the contributions to bispectrum peaks when

with in the range of few tens. This behaviorl1D l3[ l2 l1continues out to high l3-values.
The Doppler-lensing conÐguration also shows a similar

behavior but with contributions from somewhat smaller
with again taking values close to the peak inl1[ l3[ l2, l1the cross-correlation power spectrum. These subtle di†er-

ences in conÐguration may assist in isolating and identify-
ing the various contributions to the bispectrum once it is
observed.

5. OSTRIKER-VISHNIAC COUPLING : DERIVATION

We consider the generation of CMB bispectra through
coupling between the second order reionized Ostriker-
Vishniac (OV) e†ect and two other linear sources of aniso-
tropies. Since the OV e†ect is itself a secondary anisotropy
source, we shall see that it only couples to other secondary
anisotropy sources. First, we present a general derivation of
the coupling between OV e†ect and secondary e†ects and in
° 5.1 and then turn to speciÐc secondary e†ects such as the
ISW, SZ and reionized Doppler e†ect.

5.1. General Considerations
The OV e†ect arises from the modulation of the Doppler

e†ect by density Ñuctuations, which a†ect the probability of
scattering (Ostriker & Vishniac 1986 ; Vishniac 1987). The
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OV temperature Ñuctuations can be written as

T OV(nü )\
P

drg(r)n É v(r, nü r)d(r, nü r)

\ [i
P

drgG0 G
P d3k

(2n)3
P d3k@

(2n)3

] d(k [ k@)d(k@)eik Õ n9 r[nü Æ D(k, k@)] , (64)

where

D(k, k@)\ 1
2
C k [ k@
o k [ k@ o2] k@

k@2
D

, (65)

is the projection vector that couples the density and velocity
perturbations.

We can now expand out the temperature perturbation,
T OV, into spherical harmonics :

a
lm
OV* \ i

P
dnü
P

dr(gG0 G)
P d3k1

(2n)3
P d3k2

(2n)3 d*(k1)d*(k2)

] e~i(k1`k2) Õ n9 r[nü Æ D(k1, k2)]Y l
m(nü ) , (66)

where we have symmetrized by using and to representk1 k2k and k [ k@, respectively. Now the dot product between nü
and the projection vector is

nü Æ D(k1, k2)\
1
2
Anü Æ k1

k12
] nü Æ k2

k22
B

, (67)

with

nü Æ k \;
m@

4n
3

kY 1m{(nü )Y m{*1(k
ü ) . (68)

Since the dot product is symmetric, we consider only one
term here, and multiply the result by 2. By using the Ray-
leigh expansion (eq. [35]), we can rewrite the multipole
moments as

a
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OV* \ i

(4n)3
3
P

dr
P d3k1

(2n)3
P d3k2

(2n)3 ;
l1m1
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j
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(k2 r)d*(k1)d*(k2)

] Y
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m1*(kü 1)Y m{*1(k

ü
1)Y l2

m2*(kü 2)

]
P

dnü Y
l
m(nü )Y

l1
m1(nü )Y

l2
m2(nü )Y 1m{(nü ) . (69)

The power spectrum of the OV e†ect may be calculated
from this expression. Since the end expression is cumber-
some, we revert to the expressions of Hu (2000) in calcu-
lating the OV power spectrum shown in Figure 1.

To leading order in *2(k), bispectrum contributions
involve one OV term and two linear sources of anisotropies.
Recall that a general linear e†ect can be expressed as a
weighted projection of the density Ðeld (see °3.1)

a
lm
S \ il

P d3k
2n2 d(k)I

l
S(k)Y

l
m(kü ) ,

I
l
S(k)\

P
drW S(k, r) j

l
(kr) . (70)

After some straightforward but tedious algebra, we can
write

a
l1m1
S a

l2m2
S a

l3m3
OV* \ (4n)2

P dk1
k1

P dk2
k2

*2(k1)*2(k2)

] I
l1
S (k1)Il2S (k2)[Il1,l2OV (k1, k2)

] I
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]
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where

I
l1,l2OV (k1, k2) \

P
drW OVj

l2
(k2 r) j

l1
@ (k1 r) ,

W OV(k1, r) \ [ 1
k1

gG0 G . (72)

In simplifying the integrals involving spherical harmonics,
we have made use of the properties of Clebsch-Gordon
coefficients, in particular, those involving l \ 1.

In order to construct the bispectrum, note that

Sa
l1m1
S a

l2m2
S a

l3m3
OV T \ ([1)l3Sa

l1m1
S a

l2m2
S a

l3~m3
OV* T . (73)

Under the assumption that ““ S ÏÏ denotes the sum of all the
sources so that the two contributions are indistinguishable,
the bispectrum becomes
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where we have used equations (A5), (A2), and (A6). Here

b
l1,l2S~S \ (4n)2

P dk1
k1

P dk2
k2

*2(k1)*2(k2)

] I
l1,l2OV (k1, k2)Il1S (k1)Il2S (k2) . (75)

Note that we have rewritten the term in equationk1] k2(71) as an interchange so that in equation (74)l1 ] l2““ Perm.ÏÏ means a sum over the remaining 5 permutations of
as usual. In the following sections, we evaluate this(l1,l2,l3)

expression with

I
l
S(k) \ I

l
ISW(k) ] I

l
SZ(k) ] I

l
dop(k) ] I

l
SW(k) . (76)

The last term is the Sachs-Wolfe e†ect, which we explicitly
consider to show that the OV e†ect mainly couples with
secondary not primary anisotropies. We drop the double-
scattering e†ect of ° 3.3, as it is a small contribution for
small optical depths. Note that expanding IS in equation
(75) produces many cross-terms, which we will call hybrid
e†ects.

In general, equation (75) involves Ðve integrations, three
over radial distances and two over wavenumbers. As in the
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lensing bispectrum calculation, these integrals can be sim-
pliÐed using the Limber approximation for sufficiently large

Here we employ a version based on the complete-(l1, l2).ness relation of spherical Bessel functions :

P
dkk2F(k) j

l
(kr) j

l
(kr@)B

n
2

d
A
~2dD(r [ r@)F(k) o

k/(l@dA) , (77)

where the assumption is that F(k) is a slowly varying func-
tion. Applying this to the integral over yieldsk2
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Integrating by parts and assuming negligible boundary
terms yields
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This Limber approximation reduces the dimension of the
integrals from 5 to 1. Note that where the Limber approx-
imation applies only equal time correlations contribute. On
small angular scales, then, only secondary, not primary,
anisotropies couple to the OV e†ect in the bispectrum.

5.2. ISW -ISW -OV coupling
Recall that from °3.4, the weight function for the ISW

e†ect is

W ISW(k, r)\ [ 3)
m

H02
k2 F0 . (80)

Substituting this weight function into equation (79) leads to
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We employ this Limber approximation in our calculation of
the ISW-ISW-OV bispectrum e†ect.

5.3. SZ-SZ-OV
In a similar manner, we can calculate the SZ-SZ-OV

e†ect following the discussion in ° 3.5 where the weight
function is given as

W SZ(k, r)\ [2ASZagG , (82)

and is independent of the wave vector k. Now the Limber
approximated bispectrum term, used in the calculations

presented here, is

b
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Similar to our calculation on the enhancement of SZ-
lensing bispectrum due to nonlinear growth of density Ñuc-
tuations, we also consider the e†ect of nonlinearities on the
SZ-SZ-OV bispectrum. As shown in Figure 1, nonlinearities
enhance both SZ and OV e†ects and at high l, the OV e†ect
involves the large-scale velocity Ðeld and small-scale density
Ðeld in the nonlinear regime (Hu 2000). For the bispectrum
coupling, therefore, we replace only one of the power spec-
trum terms with the nonlinear relation,

b
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As before, with SZ-lensing nonlinear cross-correlation,
the SZ-SZ(nl)-OV coupling is calculated with the nonlinear
density power spectrum evaluated along the line of sight at
the corresponding look-back time.

5.4. Doppler-Doppler-OV
The reionized Doppler e†ect was discussed in detail in

° 3.2 and has a weight function

W dop(k, r) \ 1
k2 (g5G0 ] gG� ) . (85)

Unlike ISW-ISW-OV and SZ-SZ-OV, where the Limber
approximation is sufficiently accurate for our purposes,
explicit integration over wavenumber is necessary here. The
Limber approximation breaks down in the large-angle
regime and hence a†ects the coupling between the velocity
Ðeld in the OV e†ect and the Doppler e†ect. On the other
hand, the density Ðeld in the OV e†ect is dominated by
small-scale Ñuctuations where the Limber approximation is
excellent. This implies that we may use equation (78) in
calculating the Doppler-Doppler-OV e†ect :

b
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The integrals above include a derivative of the Bessel func-
tion and is numerically difficult to evaluate. As in equation
(79), one can integrate by parts to obtain a more tractable
form. We considered both these approaches and the
resulting bispectra agree at a level of 10%, with most of the
di†erence resulting from the numerical computation of the
coupling term involving the derivative of the Bessel func-
tion. This agreement also suggests that the evaluation at

in the Limber approximation can be performedk \ l/d
Aafter all the integration by parts are complete as is assumed

in equation (79).

5.5. ISW -SZ-OV
In addition to coupling between OV e†ect and secondary

anisotropies of similar kind, we also consider hybrid coup-
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lings. The hybrids that contribute the most involve a large-
scale e†ect such as the ISW e†ect to couple with the velocity
Ðeld in the OV e†ect, and a small-scale e†ect such as the SZ
e†ect to couple with the density Ðeld in the OV e†ect,

b
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To estimate the e†ects of nonlinearities, we take the approx-
imations introduced for the SZ-SZ(nl)-OV above and Ðnd

b
l1,l2ISW~SZ(nl)\ [ 24n4

l17 l23
)

m
H02ASZ

P
dr*2

Al1
r
B
*2(nl)

]
Al2

r
, r
B
g2aG0 d

A
8
A d
dr

F0
d
A
2
B

. (88)

5.6. Doppler-SZ-OV
Similar to ISW-SZ-OV e†ect, the hybrid coupling of the

reionized Doppler and SZ e†ects to OV e†ect. As with the
Doppler-Doppler-OV calculation, we integrate the coup-
ling between Doppler e†ect and OV velocity part and use
the Limber approximation to describe the coupling between
SZ and OV density part. The bispectrum term is then

b
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As with the other OV-SZ couplings, the nonlinear gener-
alization of the e†ect is given by
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5.7. SW -SZ-OV
Finally, we consider a hybrid involving the Sachs-Wolfe

(SW) e†ect at the last scattering surface and the SZ e†ect.
The weight function for the SW e†ect can be written as

W SW(k, r
*
)\ [ )

m
H02

2k2 FdD(r [ r
*
) (91)

and is evaluated at the last scattering surface, Ther
*

B r0.Limber approximation implies that there is no coupling
between the SW e†ect and the SZ or OV e†ects because
there is no overlap in their weight functions. To the extent,
that such a coupling exists the Limber approximation fails.

Since it is at large scales that the Limber approximation
breaks down, we are interested in the coupling between OV
velocity part and the SW e†ect. As in the Doppler e†ects, we
use equation (78) to evaluate the deviations from the
Limber approximation,
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and its nonlinear analogue
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Here we do not consider couplings such as SW-SW-OV
e†ect as the OV density part, with a redshift window at low
redshifts, does not couple to SW e†ect at the last scattering
surface.

6. OSTRIKER-VISHNIAC COUPLINGS : RESULTS

In Figure 7 we show s2 contributions per logarithmic
interval of for the coupling between linear secondaryl3e†ects and the OV e†ect as derived in the previous section.
Here we have assumed cosmic variance in the noise only.
For the coupling between two secondaries of the same type,
the bispectrum contributions per are substantiallyl3smaller than their lensing counterparts (see Fig. 5). An
examination of the conÐguration dependence of the contri-
butions shows that most of the contributions come from
triplets, which makes triangles with (see Fig. 8l1> l2[ l3for an example). The reason for this behavior is that the OV
e†ect involves the large-scale bulk velocity Ðeld and small-
scale density Ñuctuations. One secondary e†ect couples to
the former and one to the latter creating the desired con-
Ðguration. Because secondary e†ects tend to be strongly
peaked to either small or large angular scales, any coupling
involving two secondaries of the same type su†ers suppress-
ion on one end or the other.

Such conÐguration dependence also suggests that hybrid
couplings should contribute more strongly. In particular in
the last section, we considered hybrids composed of one
large-scale secondary e†ect coupling to the OV velocity
Ðeld and one small-scale secondary e†ect coupling to the
OV density Ðeld. As shown in Figure 7, the contribution to
the bispectrum produced by the hybrid ISW-SZ coupling is
substantially greater than either the ISW-ISW or SZ-SZ
couplings. The same is true for the Doppler couplings :
Doppler-SZ coupling yields a larger e†ect than either
Doppler-Doppler or SZ-SZ coupling. It is however a
smaller contribution than the ISW-SZ coupling.

Except for couplings involving the Doppler e†ect, the
results are fairly insensitive to the reionized optical depth
since the others are weighted toward low redshifts. Increas-
ing the optical depth to 0.3 from 0.1, as shown in Figure 7,
the Doppler-Doppler-OV e†ect is increased by factor of
D10, and when the optical depth is further increased to
D0.5, the Doppler-Doppler-OV contribution becomes
comparable to that of the ISW-ISW-OV bispectrum signal
at of a few thousand. The hybrid Doppler-SZ-OV bispec-l3trum is less sensitive to the reionized optical depth than the
symmetric Doppler-Doppler-OV coupling, and is below the
bispectrum produced by the hybrid ISW-SZ-OV for optical
depths to reionization of current interest.

Nonlinearities in the density Ðeld can enhance couplings
involving the SZ e†ect. Under the simplifying assumption
that the gas density traces the dark matter density, the
enhancement in s2 for these e†ects is within a factor of 100,
at of few thousands, which is consistent with the enhance-l3ment in the SZ and OV power spectra due to nonlinearities
(see Fig. 1), and the behavior of and conÐgurationsl1, l2 l3
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FIG. 8.ÈConÐguration dependence of the SZ-SZ-OV (top) and ISW-SZ-OV (bottom) couplings with This Ðgure is analogous to the one shownl3\ 100.
in Fig. 6 for secondary-lensing coupling. Contributions generally peak toward and low for alll3D l2 l1 l3-values.

in producing the OV bispectrum. The smaller enhancement
factor in the SZ(nl)-lensing bispectrum, when compared to
secondary-SZ(nl)-OV e†ects, comes from the fact that the
secondary-lensing cross-correlation is not enhanced by
nonlinear e†ects out to l of D100 (see, Fig. 5), while the
cross-correlation between SZ and density part of the OV
e†ect is even enhanced at very low l-values, as can be seen
from Figure 1. One should note that the current calculation
using the nonlinear power spectrum should be taken as an
estimate of the upper limit of the e†ects since on the smallest
scales gas pressure will make its distribution smoother than
that of the dark matter (see discussion in Hu 2000).

In general, Limber approximation when applied to coup-
ling between OV e†ect and linear sources of anisotropies
suggests that coupling only exists for e†ects with strong
temporal overlap in the weight functions W S and W OV. This
suggests that OV coupling with all primary e†ects, which
contribute at zD 1000 are heavily suppressed. We tested
this by numerically integrating the coupling to the SW
e†ect. As shown in Figure 7, the mismatch in redshift
between the OV e†ect and the SW leads to a large suppress-
ion of bispectrum signal and the contribution is generally
the lowest of all secondary-secondary-OV couplings con-
sidered here.

In Figure 9 we study the possible detection of OV-
secondary couplings by future satellite CMB missions. Here
we have only focussed on the hybrid coupling of ISW and
SZ e†ects to OV e†ect (ISW-SZ-OV), and its nonlinear ana-
logue ISW-SZ(nl)-OV, as they have the largest bispectrum
signal of all secondary anisotropies that couple to OV e†ect.
The signal-to-noise ratio generated by such e†ects is,
however, small and their detection is marginal at best even
with Planck. The ISW-SZ(nl)-OV e†ect has the largest s2
with a total value of D 2.8 for our Ðducial "CDM cosmo-
logical model. In a Ñat universe with a cosmological con-
stant, for reasonable variations in from 0.2 to 0.7, more)

mor less consistent with current observational constraints on
this parameter, the total s2 does not vary signiÐcantly to
make this e†ect certainly detectable with Planck. The varia-
tion in s2 with is such that the largest s2vvalue is D3.1)

mwhen and falls below 1 when and tends)
m

D 0.3 )
m

Z 0.7
to zero with the fall-o† is primarily due to the)

m
] 1 ;

decrease in ISW e†ect with increasing and the ISW)
me†ect is zero in an EinsteinÈde Sitter universe with)

m
\ 1.

Beyond MAP and Planck, the largest contribution to the
signal-to-noise for a perfect experiment comes from l3-corresponding to arcminute scales and are at a levelvalues
that eventual detection may be possible. Even with such a
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FIG. 9.ÈContributions to the s2 as a function of for our Ðduciall3"CDM model for ISW-SZ-OV and its nonlinear analogue ISW-SZ(nl)-OV
with MAP and Planck noise included in the variance. As shown, the signal-
to-noise ratios are generally below the detection level for MAP and near or
below the threshold for Planck (s2D 0.3,3 for the linear and nonlinear
e†ects). These e†ects are the largest of the secondary-OV couplings con-
sidered.

high-resolution experiment, one should bear in mind that
their detection requires conÐgurations in l-space with one
short side that picks up contributions from the ISW e†ect.
Its detection perhaps might involve a combination of a
small angular scale experiment such as the planned ground-
based interferometers and satellite missions that have larger
angular coverage. The tight localization of the bispectrum
contributions of modulated Doppler e†ects such as the OV
e†ect is also a useful property from the perspective of their
role as a contamination for the secondary-lensing measure-
ments or intrinsic nongaussianity limits. Even if the ampli-
tude is enhanced, say by contributions from the analogous
patchy-reionization e†ect (see ° 2.5), a large part of the con-
tamination may be removed by eliminating only a small
range in the bispectrum terms.

7. DISCUSSION

Let us summarize the results of this study. Gravitational
lensing angular excursions couple with Ðrst-order second-
ary anisotropies generated at reionization to produce a
bispectrum in the CMB. Here we have consider the coup-
ling between lensing and the Doppler e†ect and have shown
this to be a signiÐcantly smaller e†ect on the bispectrum
than that between lensing and SZ and ISW e†ects for the
low optical depths expected in adiabatic CDM(q[ 0.3)
models. For the currently favored "CDM model, under the
assumptions made here on the physical state of baryonic
gas distribution, the bispectrum produced by SZ-

gravitational lensing angular deÑections is generally higher
than that produced by ISW-lensing (Goldberg & Spergel
1999). Results from higher resolution hydrodynamic simu-
lations and constraints from observations are clearly
needed to improve the calculation associated with SZ e†ect.

The OV e†ect couples with two secondary sources of
anisotropies to produce a bispectrum. Given that OV e†ect
is due to a product of density and velocity Ðelds, the bispec-
trum contributions are maximized when one of the second-
aries peaks at large angular scales and the other at small
angular scales. Such hybrid couplings produce relatively
large signals in particular the ISW-SZ-OV e†ect if the
assumptions involved in estimating the SZ contribution
prove to be correct. For reasonable models of reionization
and currently favored cosmological models, however, the
contribution to bispectrum by secondary-secondary-OV
coupling is below the level that can be expected to be
detected by MAP and is marginal at best for Planck.
Although these signals are unlikely then to be detected in
Planck, they do serve as a source of residual systematic
errors for other measurements of the bispectrum that can
grow to be comparable to the cosmic variance term around
the arcminute scale. Removal of these contributions is facili-
tated by the strong localization of these e†ects at l3D l2,Removal of a broader range of is undesirablel1[ 10. l1since many of the interesting bispectrum e†ects are also
maximized for l3D l2.In general, bispectrum contributions from the coupling of
secondary anisotropies depends not only on the intrinsic
amplitude of the secondary e†ects but also their overlap in
redshift. In the small-scale Limber approximation, only
equal time correlations contribute. Many of the e†ects con-
sidered here are substantially smaller than one would
naively guess, owing to mismatch in the epochs at which the
e†ects contribute their signal.

We have considered contributions to the CMB bispec-
trum from reionization to leading order in the density Ñuc-
tuations. This is appropriate for the angular scales probed
by the upcoming satellite missions. On arcminute scales and
below, CMB anisotropies will be dominated by contribu-
tions from truly nonlinear structures in the gas density,
temperature, and ionization state. The nongaussianity
induced on these quantities by structure formation will be a
rich Ðeld for future studies as experiments begin to probe
the subarcminute regime of CMB anisotropies.
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APPENDIX A

USEFUL PROPERTIES OF THE WIGNER-3j SYMBOL

Here we review the properties of the Wigner-3j symbol that are useful for the derivations in the text. It is deÐned by its
relation to the Clebsch-Gordan coefficient,

(
t
:

l1 l2 l3
m1 m2 m3

)
t
;

\ ([1)l1~l2~m3
Sl1m2, l2m2 o l3[ m3T

(2l3] 1)1@2
. (A1)



No. 2, 2000 REIONIZATION ON THE CMB BISPECTRUM 549

As a consequence it obeys the orthonormality relation

;
m1m2

(

t

:

l1 l2 l3
m1 m2 m3

)
t
;

(
t
:

l1 l2 l4
m1 m2 m4

)
t
;

\
d
l3l4
D d

m3m4
D

2l3] 1
, (A2)

the even permutation relation

(
t
:

l1 l2 l3
m1 m2 m3

)
t
;

\(
t
:

l2 l3 l1
m2 m3 m1

)
t
;

\(
t
:

l3 l2 l1
m3 m2 m1

)
t
;
321 , (A3)

and the odd permutation relation

(
t
:

l1 l2 l3
m1 m2 m3

)
t
;

\ ([1)L
(
t
:

l2 l1 l3
m2 m1 m3

)
t
;

, (A4)

where Given symmetry under spatial inversions only bispectrum terms with even L are nonzero. Since parityL \ l1] l2 ] l3.forces L to be even, all permutations and negation of the m-values are equal. Furthermore, the angular momentum selection
rules require for all permutations of the indices, andl

i
¹ o l

j
[ l

k
o m1] m2] m3\ 0.

From the Clebsch-Gordan relation and series one can derive the integral relation to spherical harmonics,

P
dnü Y

l1
m1Y

l2
m2Y

l3
m3 \

S(2l1] 1)(2l2] 1)(2l3] 1)

4n
(
t
:

l1 l2 l3
0 0 0

)
t
;

(
t
:

l1 l2 l3
m1 m2 m3

)
t
;

. (A5)

From conjugation of this relation, one Ðnds that

(
t
:

l1 l2 l3
m1 m2 m3

)
t
;

\ ([1)L
(
t
:

l1 l2 l3[ m1 [ m2 [ m3

)
t
;

. (A6)

For the Wigner-3j symbol can be efficiently evaluatedm
i
\ 0,

(
t
:

l1 l2 l3
0 0 0

)
t
;

\ ([1)L@2
(L2) !

(L2 [ l1) ! (L2 [ l2) ! (L2 [ l3) !
C(L [ 2l1) ! (L [ 2l2) ! (L [ 2l3) !

(L ] 1) !

D1@2
(A7)

FIG. 10.ÈAbsolute value of the Wigner-3j symbol for as a function of and when We plot only evenm
i
\ 0 l1 l2 l3\ 300. l1] l2] l3.
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for even L ; it vanishes for odd L . In Figure 10 we show the absolute value of the Wigner 3-j symbol when as givenm
i
\ 0

above. This expression is encountered in all our calculations on the bispectra produced by secondary e†ects. Note that other
Wigner 3j terms, especially when is not equal to zero may be efficiently evaluated through recursion relations and the WKBm

iapproximation at high multipole argument (Schulten & Gordon 1975).
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