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ABSTRACT
We study the ability of future cosmic microwave background anisotropy experiments and redshift

surveys to constrain a 13-dimensional parameterization of the adiabatic cold dark matter model. Each
alone is unable to determine all parameters to high accuracy. However, considered together, one data set
resolves the difficulties of the other, allowing certain degenerate parameters to be determined with far
greater precision. We treat in detail the degeneracies involving the classical cosmological parameters,
massive neutrinos, tensor-scalar ratio, bias, and reionization optical depth as well as how redshift surveys
can resolve them. We discuss the opportunities for internal and external consistency checks on these
measurements. Previous papers on parameter estimation have generally treated smaller parameter
spaces ; in direct comparisons to these works, we tend to Ðnd weaker constraints and suggest numerical
explanations for the discrepancies.
Subject headings : cosmic microwave background È cosmology : theory È dark matter È

large-scale structure of universe È methods : numerical

1. INTRODUCTION

Current cosmological data have led astrophysicists to
explore a structure formation paradigm in which cold dark
matter driven by adiabatic Ñuctuations leads to the forma-
tion of galaxies and cosmic microwave background (CMB)
anisotropies (see Blumenthal et al. 1984 ; Dodelson, Gates,
& Turner 1996b for reviews). Experiments planned for the
next decade will be able to test this paradigm more strin-
gently by searching for distinctive features in the power
spectra of CMB anisotropies and polarization (see Hu,
Sugiyama, & Silk 1997 and Hu & White 1997b for reviews).
If this framework is conÐrmed, then upcoming measure-
ments, notably from the MAP3 and Planck4 satellites, will
enable precision measurements of cosmological parameters
such as the baryon fraction and matter-radiation ratio
(Jungman et al. 1996a, 1996b ; Zaldarriaga, Spergel, &
Seljak 1997 ; Bond, Efstathiou, & Tegmark 1997 ; Copeland,
Grivell, & Liddle 1998 ; Stompor & Efstathiou 1999).

As discussed by a number of authors, the details of the
CMB power spectra contain a considerable amount of
cosmological information. However, this leverage is not
complete ; altering the model parameters in particular com-
binations can yield power spectra that are observationally
indistinguishable from a reference model (Bond et al. 1994,
1997 ; Zaldarriaga et al. 1997). The presence of these so-
called degenerate directions means that a CMB data set will
restrict the allowed models to a curve or surface in param-
eter space rather a point.

The galaxy power spectrum of large redshift surveys such
as the 2dF survey5 and the Sloan Digital Sky Survey
(SDSS)6 provide a di†erent window on the cosmological
parameter space. Taken alone, the results are again plagued
by degeneracies (Tegmark 1997a ; Goldberg & Strauss
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3 http ://map.gsfc.nasa.gov.
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5 http ://meteor.anu.edu.au/Dcolless/2dF.
6 http ://www.astro.princeton.edu/BBOOK/.

1998 ; Hu, Eisentein, & Tegmark 1998a, hereafter HET).
However, when combined with CMB data, the constraints
can be highly complementary in that the degenerate direc-
tions of one lie along well-constrained directions for the
other. A striking example involves the Hubble constant. By
combining the data sets, features in the power spectrum can
be measured in both real and redshift space, which allows
the Hubble constant to be identiÐed even though neither
data set alone provides a good constraint (Eisenstein, Hu, &
Tegmark 1998, hereafter EHT).

In this paper, we explore the details of how these data sets
complement each other. In particular, we consider the con-
straints on cosmological parameters attainable by the sta-
tistical errors of this next generation of CMB experiments
and redshift surveys. We identify physical mechanisms by
which the data sets resolve degeneracies and explore them
through progressions of cosmological models in the baryon
fraction, neutrino mass, and tensor contribution. The com-
bination of CMB data and large-scale structure has been
studied with current data (Scott, Silk, & White 1995 ; Bond
& Ja†e 1997 ; Lineweaver 1998 ; Gawiser & Silk 1998 ;
Webster et al. 1998) as well as with future data in a smaller
space of cosmological parameters but with more general
initial conditions (Wang, Spergel, & Strauss 1999). We
study how reducing the cosmological parameter space
a†ects the degeneracies.

In addition to incorporating large-scale structure data,
our treatment of parameter estimation in the case of CMB
data alone uses the most general cosmology yet studied
with both temperature and polarization information.
Taking account of di†erences in cosmological param-
eterizations, Ðducial models, and experimental speciÐ-
cations, we compare our results with past work in a series of
tables. We generally Ðnd stronger degeneracies and hence
weaker constraints than previous papers and propose
numerical explanations for the discrepancies.

We review parameter estimation methods in ° 2 and
describe our parameterization of cosmology in ° 3. We
present a way of interpreting parameter covariance in
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Appendix A and discuss the need for careful numerical
treatments in Appendix B. In ° 4, we compute the precision
with which upcoming CMB experiments can potentially
measure cosmological parameters. We compare our results
to previous studies in Appendix C. In ° 5, we add redshift
survey information and conduct several parameter studies.
We explore the dependence of our results on our assump-
tions in ° 6. In ° 7, we discuss the necessity of cosmological
consistency checks and highlight a number of possibilities.
We conclude in ° 8.

2. FISHER MATRIX METHODS

The Fisher information matrix encodes the manner in
which experimental data depends upon a set of underlying
theoretical parameters that one wishes to measure (see
Tegmark, Taylor, & Heavens 1997 for a review). Within this
set of parameters, the Fisher matrix yields a lower limit to
error bars and hence an upper limit on the information that
can be extracted from such a data set. With the further
assumptions of Gaussian-distributed signal and noise,
Fisher matrices can be constructed from the speciÐcations
of both CMB experiments (Jungman et al. 1996b ; Seljak
1996b ; Zaldarriaga & Seljak 1997 ; Kamionkowski,
Kosowsky, & Stebbins 1997) and redshift surveys (Tegmark
1997a). To the extent that the data sets are independentÈa
very good approximation for the cosmologies of interestÈ
we can combine their constraints simply by summing their
Fisher matrices.

Suppose that the observed data are written as x1, x2,
arranged as a vector x. Then suppose that the model. . . , x

n
,

parameters are arranged as a vector p. Letp1, p2, . . . , p
m
,

the probability of observing a set of data x given the true
parameters p (the ““ Ðducial model ÏÏ) be L (x ; p). The Fisher
matrix is then deÐned as

F
ij
\ [

TL2 ln L
Lp

i
Lp

j

U
x

. (1)

The inequality says that the variance of anCrame� r-Rao
unbiased estimator of a parameter from a data set cannotp

ibe less than In this sense, the Fisher matrix reveals(F~1)
ii
.

the best possible statistical error bars achievable from an
experiment.

Since the error bars on our independent variables p will
in general be correlated, they do not contain sufficient infor-
mation to calculate the errors on constructed quantities. A
change of variables shows that the smallest possible
variance on an unbiased estimator of some quantity g(p)
when marginalizing over the other directions that span the
parameter space is

Var (g)\ ;
i,j

ALg
Lp

i

B
(F~1)

ij

A Lg
Lp

j

B
. (2)

More generally, the Fisher matrix transforms as a tensor
under a change of variables in parameter space. We will use
equation (2) to quote errors for a number of these con-
structed quantities, such as the rms mass Ñuctuations inp

R
,

a sphere of R h~1 Mpc radius.
It is at times convenient to think of the inverse of the

Fisher matrix as a covariance matrix with an associated
error ellipsoid. This view can be misleading. First, it rep-
resents a degeneracy as a straight line rather than the true
curve. For example, a CMB experiment might determine

well but neither nor h well. The proper error)
m

h2 )
m

contour in the plane would be a banana-shaped)
m
-h

region along a curve of constant however, it will)
m

h2 ;
instead be represented as a long ellipse with the slope of the

curve at the location of the Ðducial model.)
m

h2
Second, the error contours from the Fisher matrix are not

necessarily those that would be obtained from a likelihood
or goodness-of-Ðt analysis of a particular data set. If the
Fisher matrix errors are roughly constant across the error
region itself (i.e., if the likelihood function is nearly
Gaussian), then these various error bars will be comparable.
This generally occurs when the error estimates are small
compared to characteristic range over which a given cosmo-
logical parameter a†ects model predictions (Zaldarriaga et
al. 1997). As we will see, this is usually the case when CMB
and redshift surveys are combined, but CMB data alone are
subject to degenerate directions that surely violate the
approximation. In these cases, the question of what con-
Ðdence region to use descends into the murky debate
between frequentists and Bayesians. If a strong degeneracy
is present, the Fisher matrix method is guaranteed to Ðnd it,
but di†erent methods may disagree on the size and shape of
the error region. After this paper was submitted, a paper
investigating this issue with Monte Carlo methods was sub-
mitted by Efstathiou & Bond (1999).

2.1. CMB Anisotropies
Under the assumption of Gaussian perturbations and

Gaussian noise, the Fisher matrix for CMB anisotropies
and polarization is (Seljak 1996b ; Zaldarriaga & Seljak
1997 ; Kamionkowski et al. 1997)

F
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\;

l
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j
, (3)

where is the power in the lth multipole for X \ T , E, B,C
Xland CÈthe temperature, E-channel polarization, B-channel

polarization, and temperature-polarization cross-
correlation, respectively. We will use at times to refer toC

lall the CMB power spectra together. The elements of the
(symmetric) covariance matrix between the variousCov

lpower spectra are
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Here is the beam window function, assumed GaussianB
l
2

with where is theB
l
2\ exp [[l(l] 1)hbeam2 /8 ln 2], hbeamfull width, half-maximum (FWHM) of the beam in radians.

and are the inverse square of the detector noise levelw
T

w
Pon a steradian patch for temperature and polarization,

respectively. A fully polarized detector has Forw
P
\ 2w

T
.

multiple frequency channels, is replaced by the sum ofwB
l
2

this quantity for each channel. These formulae are derived
in the case ; the approximation for includingfsky\ 1 fsky\ 1
sample variance (Scott, Srednicki, & White 1994) only gives
the correct Fisher matrix provided that the power spectra
have no sharp spectral features on scales where*l[ *h~1,
*h is the angular extent of the map in the narrowest direc-
tion (Tegmark 1997b). Within the class of models we are
considering, this should be an excellent approximation for
MAP and Planck except at where sample variance isl[10
large anyway.

We normalize the CMB power spectra to COBE when
using equation (3) (Bunn & White 1997).

In Table 1, we list the experimental speciÐcations for the
MAP and Planck satellites used in this paper. We use fsky \
0.65 in all cases. We are not using the 22 GHz or 30 GHz
channels of MAP and are using only two of the 10 channels
of Planck. The rationale is that the statistical power of these
channels will be used for multifrequency subtraction of fore-
grounds, leaving the full power of the remaining channels
for cosmological use. We will discuss this further in ° 6.1.

2.2. Redshift Surveys
For the power spectrum derived from galaxy redshift

surveys, the Fisher matrix may be approximated as
(Tegmark 1997a)

F
ij
\
P
kmin

kmax L ln P(k)
Lp

i

L ln P(k)
Lp

j
Veff(k)

k2dk
(2n)2 , (12)

Veff(k)\
P C n6 (r)P(k)

1 ] n6 (r)P(k)
D2

d3r , (13)

where is the survey selection function, i.e., the expectedn6 (r)
number density of galaxies at the location r. P(k) is the
model galaxy power spectrum. is the e†ective volumeVeff(k)
of the survey, properly weighing the e†ects of shot noise in
undersampled regions. is the minimum wavenumber tokminwhich the survey is sensitive, but in practice the numerical
results are virtually unchanged by taking sincekmin\ 0
both and the phase-space factor k2 vanish as k ] 0.Veff kmaxis the maximum wavenumber used for parameter estima-
tion ; we use 0.1 h Mpc~1 as a default but will discuss this at
length.

TABLE 1

CMB EXPERIMENTAL SPECIFICATIONS

Experiment Frequency hbeam p
T

p
P

MAP . . . . . . . 40 28.2 17.2 24.4
60 21.0 30.0 42.6
90 12.6 49.9 70.7

Planck . . . . . . 143 8.0 5.2 10.8
217 5.5 11.7 24.3

NOTES.ÈFrequencies in GHz. Beam size is thehbeamFWHM in arcminutes. Sensitivities and are in kKp
T

p
Pper FWHM beam (and hence must be in kK2). w\C

lis the weight given to that channel.(hbeam p)~2

Equation (12) was derived under the approximation that
the galaxy distribution is that of a Gaussian random Ðeld
and that the power spectrum has no features narrower than
the inverse scale of the survey. It also neglects edge e†ects
and redshift distortions. Fortunately, the SDSS is both wide
angle (n steradians) and deep, so power spectrum features
(e.g., baryonic oscillations) should be well resolved and edge
e†ects manageable (Heavens & Taylor 1997 ; Tegmark et al.
1998b ; cf. Kaiser & Peacock 1991). The 2dF survey,
however, has a more complicated geometry and will require
a more careful analysis.

We will quote our results for the Bright Red Galaxy
(BRG) portion of the SDSS. This subsample will be intrinsi-
cally red galaxies ; such galaxies tend to be bright cluster
galaxies, and so the sample will reach signiÐcantly deeper
than the primary survey. We assume the sample to be
volume-limited with 105 galaxies to a depth of 1 Gpc and to
have a bias such that We will also consider thep8,gal\ 2.
results for the main SDSS, which includes 106 galaxies with
a more complicated radial selection function ; we assume
this sample to have The value of a†ects thep8,gal \ 1. p8,galnormalization of P(k) in equation (13) ; together with the
assumed CMB normalization and spectral tilt, it implies
that the Ðducial model may have galaxy bias b D 1.

We will focus entirely on the power spectrum at large
scales, where linear theory is expected to be a good approx-
imation. We do this by choosing to be roughly thekmaxscale at which nonlinear clustering becomes important
(Tegmark 1997a). While data on smaller scales will yield
very accurate measures of the power spectrum and higher
order correlation functions, their interpretation in terms of
cosmological parameters is much more complicated (Fry &

1993 ; Peacock 1997 ; Mann, Peacock, &Gaztan8 aga
Heavens 1998). To be conservative, we are neglecting the
cosmological information on nonlinear scales. SDSS should
also reveal a wealth of information about redshift distor-
tions (see, e.g., Hamilton 1997 ; Hatton & Cole 1998) on
both linear and nonlinear scales ; we will return to this in ° 7.

We assume that the galaxy bias is linear on these large
scales. This has some theoretical justiÐcation (Coles 1993 ;
Fry & 1993 ; Weinberg 1995 ; Scherrer & Wein-Gaztan8 aga
berg 1998 ; Mann et al. 1998). More important, this assump-
tion will be stringently tested by the SDSS and other large
surveys. Galaxies of di†erent morphologies or type will
have di†erent levels of bias, but linear bias predicts that the
ratios of the various power spectra should be constant on
large scales. Scale-dependent bias has been detected on
small scales (Peacock 1997), but this does not test the linear
bias assumption we are making here. In addition, redshift
distortions may be able to probe any scale dependence of
bias on large scales.

3. PARAMETERIZED COSMOLOGY

We adopt a 13-dimensional parameterization of the adia-
batic CDM model. Our independent variables include the
matter density the baryon density the massive)

m
h2, )

B
h2,

neutrino density the cosmological constant and a)l h2, )",
curvature contribution Here, the Hubble constant is)

K
.

written as h km s~1 Mpc~1. These deÐnitionsH04 100
imply that the total matter density in units of the critical
density that the Hubble constant h 4)

m
4 1 [ )" [ )

K
,

and that the CDM density[()
m

h2)/)
m
]1@2, )CDM h24)

m
h2

We use a single species of massive neu-[ )
B
h2[ )l h2.

trinos, so the neutrino mass is eV (we takeml B 94)l h2
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units in which the speed of light is unity).
We include an unknown optical depth q to reionization,

implemented as a rapid and complete ionization event at
the appropriate (small) redshift. We also allow the primor-
dial helium fraction to vary but assume that the information
from direct abundance measurements can be represented by
a Gaussian prior (1 p) (Bond et al. 1997 ;Y

p
\ 0.24 ^ 0.02

Schramm & Turner 1998).
We use an initial power spectrum of the form

P' \ A
S
2(k/kfid)nS(k)~4 (14)

with

n
S
(k) \ n

S
(kfid)] a ln (k/kfid) (15)

for the Ñuctuations in the gravitational potential. Here, a is
a logarithmic running of the tilt around a Ðducial scale

Mpc~1. The density power spectrum is equal tokfid4 0.025
the potential power spectrum times the(k2 ] 3)

K
H02)2 ;

simplest open inÑationary models predict a power law in
the potential, not in the density. In a Ñat universe, the initial
density power spectrum takes on the usual form.A

S
2(k/kfid)nSThe present-day density power spectrum P(k) of course

di†ers by the square of the transfer function.
Note that equivalent parameters for a di†erent choice of

could be mapped into the parameters of equation (14) ;kfidhence the value of is immaterial. However, because ofkfidthe running of the tilt, the value and hence the error bars on
the tilt itself become scale dependent. We will quote values
at both the Hubble wavenumber and at The errors on akfid.are scale independent for the parameterization of equation
(14). As shown in Appendix A, for a given experiment and
Ðducial model, there is a ““ pivot ÏÏ wavenumber forkpivotwhich the errors on and a are uncorrelated and then

S
(kpivot)

errors on are equal to the errors on when a isn
S
(kpivot) n

Sheld Ðxed. As one might expect, falls near the center ofkpivotthe observable range of wavenumbers, generally not too far
from our choice of At other wavenumbers, the uncer-kfid.tainties on are larger and correlated with a.n

S
(k)

We allow tensor perturbations with a normalization T /S
equal to the ratio of the l\ 2 temperature anisotropies of
the tensors and scalars. Note that this is proportional but
not equal to the ratio that enters into the inÑation-A

T
2/A

S
2

ary constraints. In particular, cosmological parameters
enter into T /S owing to the evolution of quadrupole aniso-
tropies (Knox 1995 ; Turner & White 1996). We param-
eterize the power-law exponent of the tensor input spectrum
as this allows us to probe whether these data sets cann

T
;

test the inÑationary consistency relation. However, for Ðdu-
cial models with T /S \ 0, excursions in occur atn

TT /S \ 0, thereby yielding a zero derivative. Hence, in this
limit, is not a physically meaningful parameter and ourn

Tparameter space is e†ectively reduced to 12 dimensions.
Finally, we allow the scalar normalization to vary and

include an unknown linear bias. We describe our normal-
ization choice in ° B2.2 ; this choice can a†ect individual
derivatives but does not a†ect marginalized errors. The
linear bias b is deÐned by We also quotePgal\ b2Pmass.results for to facilitate comparisons to resultsb 4 )

m
0.6/b

from peculiar velocity data (Peebles 1980).
We discuss numerical issues involved with constructing

derivatives with respect to these parameters in Appendix B.
Here we simply note that our results in Table 2 are stable to
10% when step sizes are halved and that we have spot-
checked elsewhere with similar results. Stability improves as
parameter degeneracies are removed, either by the addition
of other data sets or by external priors.

TABLE 2

MARGINALIZED ERRORS FOR "CDM FOR VARIOUS CMB EXPERIMENTS

CMB ALONE CMB]SDSS

MAP Planck MAP Planck

QUANTITY Temp T]P Temp T]P SDSS ALONE Temp T]P Temp T]P

h . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 0.22 1.1 0.13 1.3 0.030 0.029 0.025 0.022
)

m
. . . . . . . . . . . . . . . . . . . . . . . 1.4 0.24 1.2 0.14 0.23 0.042 0.036 0.035 0.027

)
m

h . . . . . . . . . . . . . . . . . . . . . 0.47 0.078 0.40 0.046 0.59 0.024 0.018 0.015 0.010
)" . . . . . . . . . . . . . . . . . . . . . . . 1.1 0.19 0.96 0.11 O 0.056 0.042 0.036 0.024
)

K
. . . . . . . . . . . . . . . . . . . . . . . 0.31 0.055 0.26 0.030 O 0.022 0.015 0.007 0.005

ln ()
m

h2) . . . . . . . . . . . . . . . . 0.20 0.095 0.064 0.018 4.5 0.11 0.077 0.040 0.016
ln ()

B
h2) . . . . . . . . . . . . . . . . 0.13 0.060 0.035 0.010 5.6 0.074 0.050 0.026 0.010

ml (eV )P )l h2 . . . . . . . . 0.89 0.58 0.58 0.26 9.1 0.38 0.33 0.31 0.21
Y
P

. . . . . . . . . . . . . . . . . . . . . . . 0.020 0.020 0.018 0.013 . . . 0.020 0.020 0.017 0.013
n
S
(kfid) . . . . . . . . . . . . . . . . . . . 0.11 0.048 0.041 0.008 1.1 0.064 0.040 0.028 0.008

n
S
(H0) . . . . . . . . . . . . . . . . . . . 0.32 0.17 0.18 0.039 4.1 0.23 0.14 0.13 0.038

a . . . . . . . . . . . . . . . . . . . . . . . . . 0.030 0.018 0.015 0.004 0.42 0.022 0.015 0.011 0.004
ln P'(kfid)4 ln A

S
2 . . . . . . 1.4 0.43 1.1 0.073 O 0.61 0.36 0.36 0.069

ln P'(H0) . . . . . . . . . . . . . . . 1.8 0.71 1.3 0.16 O 0.91 0.61 0.55 0.15
T /S . . . . . . . . . . . . . . . . . . . . . . 0.48 0.18 0.35 0.012 . . . 0.24 0.16 0.15 0.012
q . . . . . . . . . . . . . . . . . . . . . . . . . 0.69 0.022 0.59 0.004 . . . 0.27 0.021 0.21 0.004
ln p8 . . . . . . . . . . . . . . . . . . . . . 0.48 0.14 0.42 0.057 O 0.27 0.070 0.22 0.044
ln (p50/p8) . . . . . . . . . . . . . . . 0.86 0.15 0.75 0.093 0.27 0.029 0.028 0.024 0.020
ln b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 0.27 0.068 0.20 0.027
ln b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O 0.28 0.087 0.23 0.062

h \ 0.65, a \ 0, q\ 0.05, andNOTES.È)
m

\ 0.35, )
B
\ 0.05, )l \ 0.0175 (ml \ 0.7 eV), )" \ 0.65, n

S
\ 1, Y

p
\ 0.24,

T /S \ 0. and cannot vary. All errors are 1 p. Blank entries indicate that the parameter does notn
T

\ 0 kmax \ 0.1 h Mpc~1.
a†ect the observables for the data set. InÐnite entries indicate that the parameter a†ects observables but is not constrained
owing to degeneracies ; in particular, the growth factor, normalization, and bias are all degenerate.
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FIG. 1.ÈOur most used model along with 1 p band-power error bars from MAP and Planck. The model is h \ 0.65,)
m

\ 0.35, )
B
\ 0.05, )" \ 0.65,

q\ 0.05, and T /S \ a \ 0. (a) The temperature power spectrum (b) The E-channel polarization power)l\ 0.0175, n
S
(kfid)\ 1, *T \ [l(l] 1)C

Tl
/2n]1@2.

spectrum the panel shows a blow-up of the large-angle feature caused by reionization. MAP errors are the lighter, larger boxes ;*T \ [l(l] 1)C
El

/2n]1@2 ;
Planck errors are the darker, smaller boxes. The bands reÑect an averaging over many l ; the actual experiments will have Ðner l resolution (and
correspondingly larger errors). MAP will be able to average the polarization bands together to get a marginal detection at lB 150, but Planck can trace out
the full curve. Note that because polarization and temperature are correlated, the signiÐcance of detecting a change in parameters using both data sets is not
simply given by the combination of errors from each.

3.1. Fiducial Models
The Fisher matrix formalism asks how well an experi-

ment can distinguish the true (““ Ðducial ÏÏ) model of the uni-
verse from other models. The results clearly depend upon
the Ðducial model itself. We will quote results for a number
of models, but most of our studies are based around a low-
density, geometrically Ñat "CDM model with )

m
\ 0.35,

h \ 0.65, eV),)
B
\ 0.05, )" \ 0.65, )l \ 0.0175 (ml \ 0.7

q\ 0.05, and T /S \ 0, in the region of param-n
S
(kfid)\ 1,

eter space favored by recent data. We display the CMB and
matter power spectra for this model in Figures 1 and 2.
Note that although our Ðducial model is Ñat, we do not

FIG. 2.ÈPower spectrum for the model of Fig. 1. SDSS BRG 1 p error
bars are superposed. Dashed boxes are for h Mpc~1 ; wek [ kmax \ 0.1
neglect information from these scales unless otherwise noted. Note the
acoustic oscillations in the power spectrum, e.g., the bump at k \ 0.08 h
Mpc~1 ; see ° 5.2 for further discussion.

restrict our excursions to Ñat models : we vary all 12 param-
eters (including simultaneously unless explicitly stating)

K
)

otherwise. Numerical issues are the reason for the small but
nonzero values of and q here (see Appendix B). We will)lalter the Ðducial values of and T /S in various)

B
, )l,parameter studies. In ° 5.3, we will consider an )

m
\ 1

SCDM model, a open CDM model, and a)
m

\ 0.35 )
m

\
0.2 Ñat model. q\ 0.05, a \ 0, and in allY

p
\ 0.24, n

T
\ 0

models.

4. CMB ALONE

We begin by presenting the constraints that could in
principle be achieved by CMB satellites without galaxy
power spectrum information. Table 2 shows the results on a
variety of quantities using a CDM)

m
\ 0.35, )" \ 0.65

model as our Ðducial model. As expected, CMB data alone
provide excellent constraints on and a,)

B
h2, )

m
h2, n

S
(kfid),as well as on a combination of and The last of these)

K
)".

occurs because the angular scale of the acoustic features
requires a particular value of the angular diameter distance
to the last scattering surface. Note that and are)

m
h2 )

B
h2

simply the comoving densities of matter and baryons,
respectively. With polarization information, the CMB also
strongly constrains the reionization optical depth q.

However, the remaining parameters are nowhere near
““ percent level ÏÏ in accuracy, even for Planck. This is because
of various degeneracies, particularly the angular diameter
distance degeneracy and the reionization-normalization
degeneracy. Although these were discussed in previous
papers, none of the tables in Jungman et al. (1996b), Zaldar-
riaga et al. (1997), Bond et al. (1997), or Copeland et al.
(1998) include the case where and are measured)

K
)"simultaneously. As is well known, at Ðxed and)

m
h2 )

B
h2,

the morphology of the acoustic peaks is independent of the
value of and Choosing the combination of changes)" )

K
.

in and that holds constant the angular diameter)" )
K
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distance to the last scattering epoch then keeps the angular
location and shape of the acoustic peaks Ðxed, which
implies that and are strongly degenerate. This ambi-)" )

Kguity causes the value of h, and to be poorly con-)
m
, )

m
h

strained (EHT) ; moreover, these uncertainties propagate
into the rms density Ñuctuations owing to the redshift-p

Rspace deÐnition of the top-hat radius R (h~1 Mpc). Any
additional parameter that a†ects the angular diameter dis-
tance relation, e.g., variations in the equation of state of the
missing energy, creates a similar degeneracy. The severity of
the degeneracy requires a careful numerical treatment,
which we describe in Appendix B2.

Adding polarization information to the CMB helps for
most quantities. Much of the improvement comes from the
ability of polarization information to isolate reionization
and tensor contributions (Zaldarriaga et al. 1997), thereby
separating the large-angle temperature e†ects of and)" )

K
.

Table 2 illustrates that removing this ambiguity substan-
tially reduces errors on other quantities even with the polar-
ization sensitivity of MAP.

Because the temperature-polarization correlation is not
complete, polarization also provides independent informa-
tion on the high-redshift, degree-scale acoustic oscillations
to combat sample variance. This is best illustrated by Ðxing
q, T /S, and thereby eliminating the need to employ the)

K
,

large-angle polarization signal to break degeneracies. For
the model in Table 2, adding polarization information to
the temperature data in this restricted parameter set
improves errors on and by about)

m
h2, )

B
h2, )", n

S
(kfid)40%È70% for Planck. The improvement is only 8% for

MAP, so polarization maps of this sensitivity are useful
only through their constraints on q and T /S as discussed
above.

Parameter estimation with the CMB alone has been dis-
cussed in the past in smaller parameter spaces and/or
without polarization information. As discussed in Appendix
C, our results disagree with several studies in the literature,
generally by giving larger error bars.

5. COMPLEMENTARITY

5.1. Adding Redshift Survey Data
The addition of information on the matter power spec-

trum at the precision available within the SDSS can make a
substantial improvement in the error bars on key cosmo-
logical quantities. As seen in Table 2, one gets large
improvements on h, and the related quantities)

m
, )

m
h, )",

and and moderate improvements in other quantities,)
K
,

particularly Of course, as one improves the quality of)l h2.
the CMB data set, the Ðxed level of SDSS input gets less
and less important.

The most striking improvement allowed by measurement
of the matter power spectrum is the breaking of the angular
diameter distance degeneracy. Since and shift the)" )

Kacoustic peaks in opposite directions, to trade one o† the
other requires substantial changes in )

m
\ 1 [ )" [ )

K
.

Because this variation must be done at Ðxed to main-)
m

h2
tain the peak morphology, h varies strongly in the degener-
ate direction. A measurement of h thereby breaks the
degeneracy.

The combination of CMB and galaxy survey data can do
just that. Once and are well determined by the)

m
h2 )

B
h2

CMB acoustic peak morphology, the real-space power
spectrum is known. Varying h causes this pattern to move

in redshift space. Hence, the more features that are present
in the matter power spectrum, the more accurately one can
measure h and so break the degeneracy.

Within the types of CDM models considered here, the
best source of power spectrum features is the oscillations
impressed by baryonic oscillations. As shown in EHT and
° 5.2, even a 10% baryon fraction causes large enough fea-
tures for SDSS to clamp down on h and Indeed, the)

m
.

resulting error bars are nearly as good as if the universe
were assumed Ñat in many cases, thereby breaking the
degeneracy by Ðat.

In other sectors, the gains are more modest. Improve-
ments approaching a factor of 2 are possible in and)

m
h2

particularly for MAP without polarization. Polar-n
S
(kfid),ization tends to allow the CMB to dominate the con-

straints, but this does depend on the value of and onkmaxbeing able to extract low-l cosmological information. An
important complementary aspect of the data sets enables
the determination of the mass of cosmological neutrinos
(HET). We will discuss this further in ° 5.4.

As shown in Table 2, SDSS power spectrum information
alone Ñounders in this large parameter space. Details of the
shape do depend on cosmology, but the features are not
well enough detected for this low baryon fraction and small

(see Fig. 2).kmaxIn all cases, the improvements depend somewhat on the
value of which we will vary in ° 6.3. Reverting from thekmax,deeper BRG survey to the SDSS main survey degrades the
performance on h and related quantities by about 30%.

5.2. T he Role of Baryons
Table 3 shows the results as a function of the baryon

fraction. As the baryon fraction increases, the addition of
SDSS information becomes more and more helpful. h and
the related quantities and are the most)

m
, )", )

K
, p8a†ected, but even traditional CMB quantities such as )

m
h2

or see marked improvement at high)
B
h2 )

B
/)

m
.

The driving physical e†ect behind these gains is the struc-
ture that develops in the matter power spectrum owing to
the high-redshift acoustic oscillations imprinted by a non-
negligible baryon fraction (Peebles & Yu 1970 ; Sunyaev &
Zeldovich 1970 ; Holtzman 1989 ; Hu & Sugiyama 1996 ;
Eisenstein & Hu 1998). In CDM cosmologies, the baryons
and photons oscillate on subhorizon scales prior to recom-
bination, while the CDM perturbations simply grow. The
event of recombination catches the oscillations at various
phases and creates the acoustic peaks we see in the CMB
spectrum. The perturbations in the baryons also share this
oscillatory history, but in trace-baryon cosmologies, it is
erased as the baryons fall into the more evolved CDM per-
turbations. When the baryon fraction is nonnegligible,
however, the equilibration of the baryon and CDM pertur-
bations is not completely one-sided, and the Ðnal power
spectrum P(k) retains an imprint of the acoustic oscillations.
The resulting morphology consists of a sharp break in the
power spectrum followed by a damped series of wiggles ; the
whole pattern has a characteristic scale, known as the
sound horizon, which is the distance a sound wave could
travel prior to recombination. Figure 2 gives an illustration
of this behavior.

As discussed in EHT, once CMB data yield and)
m

h2
the physical size of the sound horizon is known. Mea-)

B
h2,

suring this scale in a redshift survey thereby allows a com-
parison that gives the Hubble constant. Once the baryon
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TABLE 3

MARGINALIZED ERRORS AS FUNCTION OF )
B

)
B
\ 0.005 )

B
\ 0.02 )

B
\ 0.05 )

B
\ 0.10

QUANTITY MAP ]SDSS MAP ]SDSS MAP ]SDSS MAP ]SDSS

h . . . . . . . . . . . . . . . . . . . . . . . . . 0.34 0.12 0.27 0.091 0.22 0.029 0.23 0.013
)

m
. . . . . . . . . . . . . . . . . . . . . . . 0.36 0.12 0.29 0.086 0.24 0.036 0.25 0.018

)
m

h . . . . . . . . . . . . . . . . . . . . . 0.12 0.039 0.093 0.029 0.078 0.018 0.084 0.009
)" . . . . . . . . . . . . . . . . . . . . . . . 0.28 0.098 0.23 0.070 0.19 0.042 0.20 0.022
)

K
. . . . . . . . . . . . . . . . . . . . . . . 0.082 0.029 0.065 0.027 0.055 0.015 0.056 0.008

ln ()
m

h2) . . . . . . . . . . . . . . . . 0.091 0.089 0.11 0.101 0.095 0.077 0.073 0.034
ln ()

B
h2) . . . . . . . . . . . . . . . . 0.068 0.057 0.051 0.046 0.060 0.050 0.062 0.034

ml (eV )P )l h2 . . . . . . . . 0.60 0.55 0.60 0.46 0.58 0.33 0.74 0.23
n
S
(kfid) . . . . . . . . . . . . . . . . . . . 0.046 0.042 0.031 0.030 0.048 0.040 0.055 0.027

a . . . . . . . . . . . . . . . . . . . . . . . . . 0.032 0.020 0.023 0.017 0.018 0.015 0.026 0.015
ln P'(kfid)4 ln A

S
2 . . . . . . 0.39 0.35 0.30 0.28 0.43 0.36 0.47 0.23

T /S . . . . . . . . . . . . . . . . . . . . . . 0.11 0.11 0.15 0.14 0.18 0.16 0.17 0.13
q . . . . . . . . . . . . . . . . . . . . . . . . . 0.036 0.033 0.026 0.024 0.022 0.021 0.022 0.020
ln p8 . . . . . . . . . . . . . . . . . . . . . 0.19 0.17 0.20 0.14 0.14 0.070 0.14 0.046
ln (p50/p8) . . . . . . . . . . . . . . . 0.27 0.031 0.19 0.026 0.15 0.028 0.13 0.026
ln b . . . . . . . . . . . . . . . . . . . . . . . . . 0.074 . . . 0.069 . . . 0.068 . . . 0.050
ln b . . . . . . . . . . . . . . . . . . . . . . . . . 0.31 . . . 0.23 . . . 0.087 . . . 0.046

NOTES.ÈSame "CDM model as Table 2, save for variations in Recall that and cannot vary.)
B
. )

m
\ 0.35. n

T
\ 0

All errors are 1 p. CMB data are for MAP with temperature and polarization information. SDSS column uses
information up to as well as CMB data.kmax \ 0.1 h Mpc~1

fraction is about 10% or greater, SDSS can detect the bary-
onic features and thereby collapse the error bars on h and
related quantities.

In Table 3, the case of negligible baryons )
B
\ 0.005

allows SDSS to make modest improvements over MAP
alone. The factor of 3 improvement on h and comes)

mfrom the two scales that remain as becomes small : the)
Bscale of the horizon at matter-radiation equality, which is

proportional to and the scale of the horizon when the)
m

h,
massive neutrinos become nonrelativistic. The latter is a
result of using a 5% neutrino fraction ; the former is always
present but is imprecisely measured due to confusion with
spectral tilt.

Baryon fractions exceeding 10% are strongly favored by
observations of cluster X-ray gas (White, Efstathiou, &
Frenk 1993a ; David, Jones, & Forman 1995 ; White &
Fabian 1995 ; Evrard 1997). Lya forest theories also favor
high baryon densities (Weinberg et al. 1997) ; when com-
bined with the general observational preference for low
matter densities (see, e.g., Bahcall, Fan, & Cen 1997 ; Carl-
berg et al. 1997a ; Carlberg, Yee, & Ellingson 1997b), this
yields a high baryon fraction. Hence, it seems likely that
baryonic features will be prominent enough in the matter
power spectrum that SDSS, and perhaps 2dF will be able to
detect them (Tegmark 1997a ; Goldberg & Strauss 1998).

If the baryon fraction is yet higher, perhaps 20%, then the
detailed morphology of the baryon features can be studied
well enough to tighten constraints on other, nonÈh-related,
parameters. The Ðnal columns in Table 3 show that a
baryon fraction of 28% could allow SDSS to make a factor
of 2 improvement in and over MAP)

m
h2, )

B
h2, n

S
(kfid)with polarization.

5.3. V ariations in and)
m

)
K

We show the marginalized errors for three other choices
of and in Table 4. The results are similar to those of)

m
)

Kthe previous sections, with some expected variations. Per-
formance with SDSS on h and is worse (better) in the)

m

SCDM "CDM) model because the bary-)
m

\ 1 ()
m

\ 0.2
onic oscillations in the matter power spectrum get horizon-
tally shifted to less (more) favorable locations relative to the
Ðxed cuto† scale of h Mpc~1. On the other hand,kmax \ 0.1
the degree of nonlinearity at that scale is not Ðxed. Abun-
dances of rich clusters require that cosmologieslow-)

mhave a higher than cosmologies (White et al.p8 high-)
m1993b ; Viana & Liddle 1996 ; Eke, Cole, & Frenk 1996 ; Pen

1998) ; this suggests that a given level of nonlinearity should
occur at high values of k in higher cases. In other words,)

mhad we Ðxed by requiring that cluster-normalized Ñuc-kmaxtuations reach a particular amplitude on that scale, the
number of baryon oscillations in the linear regime, and
hence the performance of SDSS, would have remained more
constant.

As expected, the open cosmology does show)
m

\ 0.35
somewhat worse performance than its Ñat cousin for MAP
data, presumably because the acoustic peaks have been
shifted to smaller scales, leaving less structure to be resolved
by the beam. This e†ect is smaller for PlanckÈwhile fewer
peaks are detected, the sample-variance errors on scales
around the sound horizon are improved.

5.4. Massive Neutrinos
Massive neutrinos present particular problems for Fisher

matrix analyses of these data sets. Varying the neutrino
mass changes the free-streaming scale, below which their
rms velocity prevents them from clustering. As (or equiv-)lalently approaches zero, the neutrinos become fullyml)relativistic and the free-streaming scale of the neutrinos
approaches the horizon scale (Bond & Szalay 1983 ; Holtz-
man 1989 ; Ma & Bertschinger 1995 ; Dodelson, Gates, &
Stebbin 1996a ; Hu & Eisenstein 1998). This means that at
large scales, it takes only a small upward variation of the
neutrino mass from zero to bring the neutrinos out of the
free-streaming regime. As the power spectra phenomen-
ology di†ers between these two physical regimes, we expect
that the derivative of P(k) or with respect to will beC

l
)l h2
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TABLE 4

MARGINALIZED ERRORS FOR VARIOUS COSMOLOGICAL MODELS

SCDM ()
B
\ 0.1) OCDM ()

m
\ 0.35) "CDM ()

m
\ 0.2)

CMB alone CMB]SDSS CMB alone CMB]SDSS CMB alone CMB]SDSS

QUANTITY MAP Planck MAP Planck MAP Planck MAP Planck MAP Planck MAP Planck

h . . . . . . . . . . . . . . . . . . . . . . . . . 0.39 0.16 0.054 0.036 0.34 0.12 0.038 0.021 0.30 0.14 0.028 0.023
)

m
. . . . . . . . . . . . . . . . . . . . . . . 1.5 0.64 0.20 0.15 0.36 0.13 0.039 0.023 0.15 0.074 0.015 0.012

)
m

h . . . . . . . . . . . . . . . . . . . . . 0.38 0.16 0.055 0.038 0.12 0.042 0.021 0.008 0.062 0.030 0.011 0.005
)" . . . . . . . . . . . . . . . . . . . . . . . 1.3 0.55 0.18 0.13 0.75 0.27 0.11 0.052 0.12 0.055 0.021 0.010
)

K
. . . . . . . . . . . . . . . . . . . . . . . 0.22 0.090 0.046 0.020 0.39 0.14 0.075 0.029 0.039 0.019 0.010 0.003

ln ()
m

h2) . . . . . . . . . . . . . . . . 0.082 0.014 0.076 0.013 0.14 0.011 0.103 0.010 0.097 0.020 0.078 0.015
ln ()

B
h2) . . . . . . . . . . . . . . . . 0.044 0.009 0.043 0.008 0.099 0.008 0.055 0.008 0.062 0.011 0.050 0.011

ml (eV )P )l h2 . . . . . . . . 1.4 0.35 0.68 0.31 0.86 0.15 0.38 0.14 0.59 0.25 0.22 0.15
n
S
(kfid) . . . . . . . . . . . . . . . . . . . 0.042 0.008 0.037 0.007 0.075 0.007 0.040 0.006 0.047 0.009 0.038 0.008

a . . . . . . . . . . . . . . . . . . . . . . . . . 0.016 0.004 0.015 0.004 0.047 0.004 0.023 0.003 0.027 0.004 0.016 0.004
ln P'(kfid)4 ln A

S
2 . . . . . . 0.38 0.067 0.34 0.066 0.59 0.062 0.35 0.050 0.42 0.077 0.34 0.067

T /S . . . . . . . . . . . . . . . . . . . . . . 0.24 0.019 0.22 0.019 0.28 0.016 0.24 0.016 0.13 0.009 0.12 0.009
q . . . . . . . . . . . . . . . . . . . . . . . . . 0.020 0.004 0.020 0.004 0.042 0.005 0.041 0.005 0.025 0.005 0.022 0.004
ln p8 . . . . . . . . . . . . . . . . . . . . . 0.34 0.14 0.101 0.050 0.34 0.056 0.091 0.034 0.17 0.061 0.052 0.036
ln (p50/p8) . . . . . . . . . . . . . . . 0.42 0.17 0.042 0.034 0.27 0.077 0.038 0.016 0.13 0.076 0.027 0.021
ln b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.051 0.031 . . . . . . 0.075 0.025 . . . . . . 0.076 0.034
ln b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.18 0.12 . . . . . . 0.11 0.053 . . . . . . 0.063 0.047

NOTES.ÈSCDM model has h \ 0.5, and OCDM model has)
m

\ 1, )
B
\ 0.10, )l\ 0.05, )" \ 0, n

S
\ 1. )

m
\ 0.35, )

B
\ 0.05, )l\ 0.0175, )" \ 0,

h \ 0.65, and "CDM model has h \ 0.8, and All models have T /S \ 0, q\ 0.05, a \ 0, andn
S
\ 1.25. )

m
\ 0.2, )

B
\ 0.03, )l \ 0.01, )" \ 0.8, n

S
\ 1.

and cannot vary. All errors are 1 p. CMB experiments include temperature and polarization information.Y
p
\ 0.24. n

T
\ 0 kmax \ 0.1 h Mpc~1.

sharply di†erent above and below this small mass thresh-
old, which is itself a function of scale.

This raises both a practical and a theoretical concern.
First, given numerical noise, is it possible to calculate the
derivative as goes to zero, or must one always di†erence)lpairs of models that bracket the mass transition for some
scale of interest ? Second, since the derivative is changing
signiÐcantly even for small values of how should we)l h2,
interpret the resulting error bars on The difficulty is)l h2?
that the log-likelihood function is not well approximated by
a quadratic expansion around relative to the quality)l \ 0
of the constraints.

This situation is shown in Figure 3. The temperature C
lderivative with respect to the massive neutrino density is a

strong function of the Ðducial value of For small the)l. )l,derivative has a large peak at lB 150, but for larger the)l,

FIG. 3.ÈDerivative as a function of neutrino fractiond(ln C
Tl

)/d)l h2
T op to bottom (for the Ðrst peak) : 0.5%, 1%, 2%, 5%, and 20%. The)l/)m

.
cosmology is the "CDM model, but with q\ 0.1, for a variety)

m
\ 0.35

of )l.

feature goes away entirely. This means that if one began at
and increased the neutrino mass, the power at)l \ 0

l\ 150 would change rapidly at Ðrst and then saturate. A
Fisher matrix analysis around would show strong)l B 0
limits on while an analysis around would)l, )l/)m

B 0.2
show weak limits.

The derivative of the matter power spectrum with respect
to the neutrino mass shows a similar behavior : it is nonzero
only below a break scale that shifts to small k as gets)l h2
smaller. Because of degeneracies, the break itself needs to be
detected. Redshift survey data are less restrictive at small k.
Hence, whereas CMB data are more restrictive at low )l,redshift survey data are more restrictive at high )l.We are interested in which neutrino masses can be distin-
guished from zero. Because of the above trend, even if a data
set preferred the upper limit on the neutrino mass)l \ 0,
would be underestimated. To be conservative, we use )lD0 instead ; the signiÐcance at which can be excluded)l \ 0
by the data set is then underestimated.

In Table 5, we present marginalized errors as a function
of within a CDM model. MAP data alone do not)l )

m
\ 1

detect the mass of the neutrino in any of the cases. In partic-
ular, as increases, the angular scale at which the neu-)ltrinos have an observable signature drops below the
resolution of the experiment. Planck can continue to track
the e†ect and therefore can detect the neutrino mass. In
both data sets, as increases, errors tend to)l )

m
h2

decrease, and errors on the tilt sector remain unchanged.
With SDSS data added to MAP, neutrino masses exceed-

ing D1 eV would be detectable (HET). SDSS also improves
the limits of Planck by up to a factor of 2. Sensitivity to
lower masses is possible for Unlike the situation)

m
\ 1.

with the "CDM models presented elsewhere in this paper,
h Mpc~1 may be appropriate for the neutrinokmaxB 0.2

signatures of SCDM: these models have lower normal-
ization (e.g., cluster abundances suggest not 1.0)p8B 0.5,
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TABLE 5

MARGINALIZED ERRORS AS A FUNCTION OF )l

)l \ 0.01 )l\ 0.05 )l\ 0.10 )l \ 0.20
(ml \ 0.24 eV) (ml\ 1.2 eV) (ml\ 2.4 eV) (ml \ 4.7 eV)

CMB ]SDSS CMB ]SDSS CMB ]SDSS CMB ]SDSS

QUANTITY T]P 0.1 0.2 T]P 0.1 0.2 T]P 0.1 0.2 T]P 0.1 0.2

MAP :
ml (eV )P )l h2 . . . . . . 1.1 0.81 0.42 1.4 0.68 0.30 5.5 0.84 0.31 6.8 1.7 0.38
ln ()

m
h2) . . . . . . . . . . . . . 0.11 0.101 0.082 0.082 0.076 0.063 0.067 0.065 0.053 0.084 0.059 0.044

h . . . . . . . . . . . . . . . . . . . . . . 0.38 0.065 0.020 0.39 0.054 0.018 0.39 0.046 0.017 0.38 0.039 0.015
)

m
. . . . . . . . . . . . . . . . . . . . 1.5 0.28 0.092 1.5 0.20 0.068 1.5 0.16 0.055 1.5 0.12 0.039

Planck : . . . . . . . . . . . . . . . . .
ml (eV )P )l h2 . . . . . . 0.53 0.47 0.29 0.35 0.31 0.19 0.30 0.28 0.17 0.31 0.31 0.17
ln ()

m
h2) . . . . . . . . . . . . . 0.028 0.025 0.018 0.014 0.013 0.011 0.010 0.010 0.010 0.009 0.009 0.009

h . . . . . . . . . . . . . . . . . . . . . . 0.16 0.048 0.016 0.16 0.036 0.014 0.16 0.028 0.012 0.16 0.021 0.009
)

m
. . . . . . . . . . . . . . . . . . . . 0.64 0.21 0.075 0.64 0.15 0.058 0.64 0.11 0.048 0.64 0.081 0.034

NOTES.ÈSame "CDM model as Table 2, save for variations in We assume one species of massive neutrino. and does not vary. All)l. n
T

\ 0
errors are 1 p. All columns include CMB information on temperature and polarization ; the top four rows are for MAP, and the bottom four for
Planck. SDSS columns include information to or as noted.kmax \ 0.1 h Mpc~1 kmax \ 0.2 h Mpc~1,

and thus less nonlinear contamination. Also, because the
neutrino signature is not oscillatory, it may be harder for
nonlinear dynamics to wash it out.

As increases, performance on and h from the com-)l )
mbination of SDSS and CMB also improves. Like the

baryons, massive neutrinos impress a scale on the matter
power spectrum: there is a break in the spectral index
around the scale of the horizon at the epoch when the neu-
trinos become nonrelativistic. This physical scale depends
upon and once these two are determined, one)

m
h2 )l/)m

;
gains leverage on h and by detecting the scale in redshift)

mspace.
We have used unless otherwise speciÐed.)l/)m

\ 0.05
With CMB and redshift survey data, this model is distin-
guished from at 2È4 p. Larger neutrino fractions rely)l\ 0
more and more on the matter power spectrum data to
provide constraints.

5.5. T ensors
Interpreting the errors on the tensor-to-scalar ratio T /S

requires special care since we have at present no guide as to
its value in the real universe. Although in power-law inÑa-
tion (Davis et al. 1992), many inÑationaryT /S B 7(1[ n

S
)

models predict T /S B 0 (Lyth 1997) and in general slow-roll
inÑationary models obey (see, e.g., Liddle &T /S B[7n

TLyth 1993). For this reason, we conduct a parameter study
of T /S here.

T /S sequence.ÈAs T /S increases in the Ðducial model,
the errors on most quantities degrade slightly owing to the
reduction of small-angle anisotropy signal at Ðxed COBE
normalization. With information from SDSS, the degrada-
tion is smaller yet. However, the errors on T /S and aren

Tstrong functions of T /S. Errors on and fractional errorsn
Ton T /S decrease as T /S increases, the latter of course

becoming inÐnite as T /S ] 0. Including SDSS information
signiÐcantly reduces the error bars even in the case of
Planck ; for example, better controlling the value of and)"substantially helps Planck to sort out the various large-)

Kangle signals and approach the Ðxed cosmology limit of
Knox (1995) (see also Kinney 1998). We show results for
T /S \ 1, 0.3, and 0.1 in Table 6. Remember, however, that
each of these assumes in the Ðducial model ; then

T
\ 0

inÑationary consistency relation predicts forn
T

\ 0 T /S D
0, in which case the signal would be slightly overestimated.

plane.ÈIn the presence of a varying the valueT /S-n
T

n
T
,

and hence the error bars on the tensor-to-scalar ratio
become scale dependent. The ratio of quadrupole power
T /S is a pessimistic choice because the ability of the data
sets to constrain tensor contributions comes at somewhat
smaller angles (lB 50 ; see also White 1996). Hence, varia-
tions in and T /S are highly anticorrelated, and the errorn

Tbars on T /S do not properly reÑect the ability of the experi-
ments to detect the tensor signal. Other choices of param-
eters, e.g., the ratio of tensor power to scalar power at
l\ 50, should yield smaller errors. Appendix A discusses
this situation. One can write the general combination of n

Tand T /S as One then varies x to minimizeX 4 T /S] xn
T
.

the errors on X. At this minimum, the uncertainties on X
are uncorrelated with those on moreover, the margin-n

T
;

alized errors on X (with varying) are identical to thosen
Ton T /S in the case in which is held Ðxed. The errors onn

Tthe best choice of X are shown in Table 6 and better reÑect
the constraint on the tensor signal.

Detection threshold.ÈFor this set of "CDM models, the
tensor signal could be detectable with Planck at high signiÐ-
cance for T /S as low as D0.1 (see Table 6). Only strong
tensor signals can be isolated by MAP. Redshift(T /S Z 1)
survey information can help, especially in case the tensor
polarization signal is obscured by foregrounds. Achieving
the best performance depends on being able to separate the
E and B channels of polarization (Zaldarriaga et al. 1997 ;
Kamionkowski & Kosowsky 1998) ; for example, if the B
channel is completely ignored, then the X errors on the
T /S \ 0.1 model in Table 6 increase by 50%. However,
much of the leverage comes from temperature data ; if the
uncertainty from other large-angle contributors can be
removed, the tensor plateau at lB 50 can be detected. For
example, as the optical depth in the Ðducial model
increases, the detection threshold for T /S drops because q
can be better constrained from the temperature data itself
(Zaldarriaga et al. 1997).

Consistency relation.ÈIf the tensor-to-scalar ratio
approaches unity, the tensor tilt can be measured as well
(Knox 1995 ; Zaldarriaga et al. 1997). This could allow a test
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TABLE 6

MARGINALIZED ERRORS AS A FUNCTION OF TENSOR-TO-SCALAR RATIO

T /S \ 1.0

MAP Planck T /S \ 0.3 T /S \ 0.1
Planck Planck

QUANTITY T]P SDSS No B T]P SDSS SDSS SDSS

T /S . . . . . . . . . . . . . . . . . . . . . . 2.0 0.79 0.45 0.42 0.28 0.13 0.064
X \ T /S ] xn

T
. . . . . . . . 0.65 0.54 0.20 0.16 0.14 0.055 0.032

n
T

. . . . . . . . . . . . . . . . . . . . . . . 0.40 0.16 0.12 0.100 0.080 0.14 0.24
n
S
(kfid) . . . . . . . . . . . . . . . . . . . 0.065 0.047 0.012 0.012 0.011 0.009 0.008

n
S
(H0) . . . . . . . . . . . . . . . . . . . 0.45 0.21 0.059 0.055 0.051 0.043 0.040

a . . . . . . . . . . . . . . . . . . . . . . . . . 0.048 0.022 0.005 0.005 0.005 0.004 0.004
ln P'(kfid)4 ln A

S
2 . . . . . . 0.59 0.43 0.11 0.103 0.095 0.080 0.074

ln P'(H0) . . . . . . . . . . . . . . . 1.4 0.81 0.27 0.25 0.23 0.18 0.17
Value of x . . . . . . . . . . . . . . 4.9 3.6 3.4 3.7 3.1 0.85 0.23

NOTES.ÈSame "CDM model as Table 2, save for variations in T /S. but can vary. All errors are 1 p.n
T

\ 0
SDSS columns include CMB data with polarization including B channel. The ““No B ÏÏkmax \ 0.1 h Mpc~1.

column presents results in which B-channel polarization has been ignored. The B channel is of negligible
importance for MAP. x has been chosen so as to minimize the error on the quantity X ; for this choice, X is
uncorrelated with and the error is equal to the error on T /S if were held Ðxed. Without CMB polarizationn

T
n
Tinformation, errors on T /S from the MAP or Planck are much larger, but errors when combined with SDSS are

similar to those in the MAP]SDSS column.

of the inÑationary prediction In attemptingT /S B[7n
T
.

to test speciÐc inÑationary models, e.g., the T /S B 7(1 [ n
S
)

relation of power-law inÑation, one should estimate T /S
and at the same scale. If the scalar tilt at scalesn

S
a D 0,

somewhat larger than will be more uncertain thatkfidleading to weaker constraints on inÑation.n
S
(kfid),

6. ASSUMPTIONS

6.1. CMB Foregrounds
We have assumed that a number of the frequency chan-

nels measured by the CMB experiments will be used for
foreground removal (e.g., Brandt et al. 1994 ; Tegmark &
Efstathiou 1996 ; Bersanelli et al. 1996 ; Tegmark 1998 ;
Hobson et al. 1998), leaving only the subset listed in Table 1
available for cosmology. Assuming that foregrounds can be
eliminated to this level may be optimistic, especially for the
polarization at the largest angular scales and for small
angular scales in general. For the former, the cosmic signal
is small (see Fig. 1 [inset]) and must be detected against
potentially larger Galactic foregrounds (Keating et al.
1997). Large-angle temperature signals are also useful for
distinguishing curvature e†ects but will in any case be
severely limited by cosmic variance. On the smallest
angular scales, point-source subtraction may be insufficient
especially where the cosmic signal is falling owing to the
Ðnite duration of last scattering (To†olatti et al. 1998 ;
Guiderdoni et al. 1998 ; Tegmark & de Oliveira-Costa 1998 ;
Refregier, Spergel, & Herbig 1998).

If we eliminate even more frequency channels from the
Fisher matrix, the errors on cosmological parameters for
the model in Table 2 increase only slightly. Restricting
MAP to use only the 90 GHz channel for temperature data
increases errors bars by less than 10%. Using only the 90
GHz channel for both the temperature and the polarization
data is a more serious loss : 50% on most parameters and
150% on q. Essentially, the 90 GHz channel is nearly
sample-variance limited for the temperature anisotropies,
so little is added by the lower frequencies, while the chan-
nels are all roughly equally important for the noise-
dominated large-angle polarization signal.

For Planck, retaining only the 143 GHz channel for cos-
mology increases the error bars by D10% for temperature
only and by D15% for temperature and polarization (but
25% on T /S). Retaining only the 217 GHz channel does a
little better (D7%) on temperature and somewhat worse
(D25%) on polarization (and a factor of 3 on T /S). PlanckÏs
expected polarization performance does not quite reach the
sample-variance limit, but a single channel of temperature
data saturates the limit down to a beam scale that varies
only slightly between the prime channels.

Conversely, if one adds the channels reserved for fore-
ground subtraction back into the cosmological Fisher
matrix, the cosmological error bars do not improve signiÐ-
cantly. Even if the remaining eight channels on Planck were
assumed to give cosmological signal, including them would
reduce the temperature-only error bars in Table 2 by only
D1%! With polarization, errors would decrease by D10%,
except that T /S errors would shrink by 1.55 because of the
artiÐcial assumption that there is no B-polarization sky
signal owing to foregrounds, meaning that detector noise
always sets the upper limit on that power, no matter how
small. MAP temperature results are similarly insensitive to
the 20 and 30 GHz channels, although the polarization
signal can be helped (40% improvement on q, less on other
quantities). Reserving these channels for foreground sub-
tractions thus comes at little cost for cosmology.

6.2. Gravitational L ensing
In this paper, we ignore the e†ects of gravitational lensing

on the CMB power spectrum. Gravitational lensing from
large-scale structure smooths out the high multipoles of the
CMB (Blanchard & Schneider 1987 ; Cole & Efstathiou
1989 ; Seljak 1996a) in a way that is dependent on the ampli-
tude of the matter power spectrum at low redshift. Adjust-
ing and to keep a constant angular diameter distance)" )

Kallows large changes in this amplitude thereby breaking the
angular diameter distance degeneracy (Metcalf & Silk
1997). However, the e†ect is small, and even Planck cannot
use it to attain good estimates on and h (Stompor &)

mEfstathiou 1999). We neglect it here since the degeneracy is
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broken much more e†ectively by additional information
from redshift surveys or other sources.

6.3. Varying kmax
We have assumed that the galaxy power spectrum

follows linear theory on scales longward of a wavenumber
Nonlinear evolution on smaller scales may obscure thekmax.cosmological information in the linear power spectrum. To

be conservative, we have neglected all cosmological infor-
mation on smaller scales.

Baryonic features in the linear power spectrum are of
particular importance for cosmological parameter estima-
tion, yet they are washed out at second order in pertur-
bation theory (see, e.g., Jain & Bertschinger 1994). EHT
found that Ñuctuation levels up to k3P(k)/2n2B 0.5 pre-
served the features for the model of Table 2. Simulations
give similar results (Meiksin, Peacock, & White 1998).
Hence, for this model, with either CMB or cluster abun-
dance normalization, one may expect linear theory to apply
to h Mpc~1 but not much beyond. This iskmax \ 0.1
enough to see the Ðrst acoustic oscillation.

Because the appropriate value of depends on nor-kmaxmalization, we show the results for our Ðducial "CDM
model as a function of in Table 7. As expected, thekmaxresults do depend strongly on In particular, askmax. kmaxincreases from 0.05 h Mpc~1 to 0.2 h Mpc~1, the errors on h
and related quantities drop sharply. In this model, the break
in the power spectrum occurs at about 0.03 h Mpc~1, and
the Ðrst peak is at 0.08 h Mpc~1 (Fig. 2). Little information
is added between h Mpc~1 and hkmax\ 0.2 kmax \ 0.4
Mpc~1 here. On these small scales, the acoustic oscillations
have been damped away even in linear theory.

While our choice of may be appropriate for baryonickmaxfeatures, other aspects of cosmology may not be so fragile.
For example, the broadband level of the linear power spec-
trum, a†ected by and a, could potentially be recon-n

Sstructed from the quasi-linear regime (Peacock & Dodds
1994). As a means of exploring this, we consider an alter-

ation to our treatment of the matter power spectrum, repla-
cing the true linear power spectrum by a smoothed
spectrum based on the Ðtting formula of Eisenstein & Hu
(1999). This formula preserves the sharp break at the sound
horizon (k B 0.03 h Mpc~1 here) but ignores all the smaller
scale oscillations. The resulting marginalized errors are con-
siderably worse, typically equivalent to using the true power
spectrum out to h Mpc~1. Moreover, the resultskmax B 0.05
show little improvement as increases from 0.1 h Mpc~1kmaxto 0.4 h Mpc~1. In other words, within the constraints
available through CMB satellites, little additional cosmo-
logical information is gained by detection of a featureless
matter power spectrum. Only detection of the acoustic
oscillations or spectral breaks (e.g., massive neutrinos) pro-
duces signiÐcant improvements. An exception to this con-
clusion is the error bar on a, the running of the scalar tilt,
which continues to improve as increases.kmax

6.4. Smaller Parameter Spaces
We next consider the e†ects of removing parameters from

our model space. Removing parameters in the face of degen-
eracies is often motivated by OccamÏs razor or on the
grounds that external information will eliminate some of
the options available. In addition, doing so allows us to
explore the extent of the degeneracies and facilitates com-
parison to previous works.

Removing parameters does not require recalculation of
models ; rather, it means that we hold their value Ðxed at the
Ðducial value (by a prior) while the errors on other quan-
tities are computed. In Table 8, we show several di†erent
cases, where parameters held Ðxed are denoted by blank
entries, both with and without redshift survey information.
The error bars necessarily decrease as degrees of freedom
are removed. It is important to remember that improve-
ments found by removing a parameter depend on which the
remaining parameters are ; in other words, statements such
as ““ removing a is negligible ÏÏ apply only to the particular
context of our 12-dimensional parameter space.

TABLE 7

MARGINALIZED ERRORS AS FUNCTION OF kmax
LINEAR P(k) SMOOTH P(k)

QUANTITY MAP 0.05 0.1 0.2 0.4 0.1 0.2 0.4

h . . . . . . . . . . . . . . . . . . . . . . . . . 0.22 0.096 0.029 0.012 0.009 0.100 0.089 0.085
)

m
. . . . . . . . . . . . . . . . . . . . . . . 0.24 0.098 0.036 0.016 0.014 0.105 0.100 0.099

)
m

h . . . . . . . . . . . . . . . . . . . . . 0.078 0.033 0.018 0.011 0.009 0.036 0.036 0.036
)" . . . . . . . . . . . . . . . . . . . . . . . 0.19 0.081 0.042 0.024 0.021 0.088 0.087 0.086
)

K
. . . . . . . . . . . . . . . . . . . . . . . 0.055 0.030 0.015 0.010 0.009 0.029 0.022 0.020

ln ()
m

h2) . . . . . . . . . . . . . . . . 0.095 0.094 0.077 0.054 0.049 0.088 0.071 0.065
ln ()

B
h2) . . . . . . . . . . . . . . . . 0.060 0.058 0.050 0.038 0.035 0.058 0.049 0.044

ml (eV )P )l h2 . . . . . . . . 0.58 0.55 0.33 0.17 0.17 0.43 0.43 0.42
n
S
(kfid) . . . . . . . . . . . . . . . . . . . 0.048 0.048 0.040 0.029 0.027 0.045 0.039 0.037

a . . . . . . . . . . . . . . . . . . . . . . . . . 0.018 0.018 0.015 0.012 0.007 0.018 0.013 0.008
ln P'(kfid)4 ln A

S
2 . . . . . . 0.43 0.43 0.36 0.26 0.24 0.41 0.35 0.33

T /S . . . . . . . . . . . . . . . . . . . . . . 0.18 0.18 0.16 0.14 0.14 0.17 0.17 0.17
q . . . . . . . . . . . . . . . . . . . . . . . . . 0.022 0.022 0.021 0.021 0.021 0.022 0.021 0.021
ln p8 . . . . . . . . . . . . . . . . . . . . . 0.14 0.12 0.070 0.038 0.034 0.12 0.11 0.102
ln (p50/p8) . . . . . . . . . . . . . . . 0.15 0.066 0.028 0.011 0.010 0.030 0.012 0.011
ln b . . . . . . . . . . . . . . . . . . . . . . . . . 0.090 0.068 0.053 0.045 0.094 0.093 0.091
ln b . . . . . . . . . . . . . . . . . . . . . . . . . 0.22 0.087 0.041 0.035 0.24 0.22 0.21

NOTES.ÈSame "CDM model as Table 2. and cannot vary. All errors are 1 p. CMB data forn
T

\ 0
MAP with temperature and polarization information included on all columns. Linear P(k) means using
actual linear power spectrum. Smooth P(k) columns use a Ðtting formula that captures the break at the
sound horizon but eliminates the baryon oscillations in P(k).
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TABLE 8

MARGINALIZED ERRORS AS FUNCTION OF PARAMETER SPACE

Quantity MAP (TP) MAP ] SDSS

h . . . . . . . . . . . . . . . . . . . . . . . . . 0.22 0.22 0.064 0.052 0.063 0.048 0.022 0.029 0.029 0.024 0.014 0.024 0.014 0.012
)

m
. . . . . . . . . . . . . . . . . . . . . . . 0.24 0.23 0.098 0.081 0.097 0.074 0.034 0.036 0.034 0.036 0.020 0.036 0.019 0.016

)
m

h . . . . . . . . . . . . . . . . . . . . . 0.078 0.076 0.042 0.035 0.041 0.031 0.015 0.018 0.015 0.015 0.008 0.015 0.008 0.007
)" . . . . . . . . . . . . . . . . . . . . . . . 0.19 0.18 0.098 0.081 0.097 0.074 0.034 0.042 0.035 0.036 0.020 0.036 0.019 0.016
)

K
. . . . . . . . . . . . . . . . . . . . . . 0.055 0.054 . . . . . . . . . . . . . . . 0.015 0.012 . . . . . . . . . . . . . . .

ln ()
m

h2) . . . . . . . . . . . . . . . . 0.095 0.069 0.086 0.073 0.084 0.065 0.035 0.077 0.059 0.033 0.020 0.033 0.018 0.018
ln ()

B
h2) . . . . . . . . . . . . . . . . 0.060 0.042 0.055 0.054 0.053 0.050 0.025 0.050 0.035 0.028 0.028 0.028 0.028 0.023

ml (eV )P )l h2 . . . . . . . . 0.58 0.53 0.58 . . . 0.56 . . . . . . 0.33 0.30 0.31 . . . 0.31 . . . . . .
Y
P

. . . . . . . . . . . . . . . . . . . . . . . 0.020 0.020 0.020 . . . 0.020 . . . . . . 0.020 0.020 0.020 . . . 0.020 . . . . . .
n
S
(kfid) . . . . . . . . . . . . . . . . . . 0.048 0.028 0.045 0.039 0.045 0.037 0.014 0.040 0.024 0.021 0.018 0.021 0.018 0.012

n
S
(H0) . . . . . . . . . . . . . . . . . . . 0.17 0.15 0.16 0.14 0.045 0.037 0.014 0.14 0.12 0.14 0.14 0.021 0.018 0.012

a . . . . . . . . . . . . . . . . . . . . . . . . . 0.018 0.018 0.016 0.016 . . . . . . . . . 0.015 0.014 0.014 0.014 . . . . . . . . .
ln P'(kfid)4 ln A

S
2 . . . . . . 0.43 0.25 0.40 0.35 0.40 0.34 0.12 0.36 0.21 0.18 0.15 0.18 0.15 0.101

ln P'(H0) . . . . . . . . . . . . . . . 0.71 0.29 0.71 0.57 0.61 0.51 0.18 0.61 0.23 0.49 0.46 0.27 0.24 0.15
T /S . . . . . . . . . . . . . . . . . . . . . 0.18 . . . 0.17 0.16 0.16 0.15 . . . 0.16 . . . 0.12 0.12 0.087 0.085 . . .
q . . . . . . . . . . . . . . . . . . . . . . . . . 0.022 0.021 0.022 0.021 0.021 0.020 0.020 0.021 0.020 0.021 0.021 0.020 0.020 0.020
ln p8 . . . . . . . . . . . . . . . . . . . . . 0.14 0.14 0.13 0.056 0.12 0.052 0.035 0.070 0.069 0.062 0.027 0.062 0.027 0.027
ln (p50/p8) . . . . . . . . . . . . . . 0.15 0.15 0.074 0.059 0.069 0.057 0.033 0.028 0.028 0.027 0.017 0.027 0.015 0.015
ln b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.068 0.058 0.047 0.046 0.045 0.043 0.038
ln b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.087 0.087 0.082 0.031 0.080 0.031 0.029

NOTES.ÈSame "CDM model as Table 2. and cannot vary. All errors are 1 p. CMB data for MAP with temperature and polarization informationn
T

\ 0
included on all columns. SDSS columns use CMB data and Blank entries indicate that the parameter has been held Ðxed.kmax \ 0.1 h Mpc~1.

T ensors.ÈEliminating tensors from the model (i.e.,
assuming T /S \ 0) allows and to be deter-n

S
, )

m
h2, )

B
h2

mined better by MAP. PlanckÏs longer lever arm allows it to
constrain regardless of tensors.n

SCurvature.ÈFixing the curvature of course breaks the
angular diameter distance degeneracy by assumption.
Therefore, CMB data alone can turn the location of the
acoustic peaks into a measure of h, and other quantities.)

m
,

It is interesting to note, however, that MAP does not get
enough accuracy on, e.g., to keep uncertainties in the)

m
h2

sound horizon from propagating into the measure of the
angular diameter distance. Planck without polarization
does only slightly better in this regard.

If SDSS information is included, assuming makes)
K

\ 0
very little di†erence to errors on h and since the angular)

m
,

distance degeneracy is already broken. It does, however,
a†ect other parameters that determine the peak locations
such as and To see why this is so,)

B
h2, )

m
h2, n

S
(kfid).consider the general case in which is allowed to vary.)

KOne has two uncertain quantities, and to map a)" )
K
,

fairly well-constrained quantity, the sound horizon, to the
location of the peaks in and P(k). This yields good con-C

lstraints on and Now, with assumed, these)" )
K
. )

K
\ 0

two observations can both constrain and reduce the)"remaining uncertainties on the sound horizon. Hence, we
see that assuming reduces error bars on)

K
\ 0 )

m
h2,

and)
B
h2, n

S
(kfid).Neutrinos and helium.ÈRemoving and from the)l h2 Y

Pcase makes further small improvements. a†ects)
K

\ 0 Y
Pthe ionization history and free electron density so as to

change the sound horizon and damping length. is)l h2
partially degenerate with )

m
h2.

Running of the tilt.ÈRemoving a makes very little di†er-
ence except on quantities that depend on extrapolating the
initial power spectrum beyond the well-observed range, e.g.,

and (see also Copeland et al. 1998). As discussedn
S
(H0) A

S
2

in ° 3, with a free, the spectral tilt becomes scale dependent,

but there exists a scale at which the error on the tilt is
unchanged by the removal of a. From the fact that the
errors in Table 8 on change very little as a isn

S
(kfid)removed, one can infer that Mpc~1 is close tokfid \ 0.025

this ““ pivot point. ÏÏ With SDSS information, removing a
helps to better determine T /S.

Combined.ÈFor MAP alone, removing tensors on top of
removing and a makes a signiÐcant di†erence)

K
, )l h2, Y

P
,

(compare the last two columns of the MAP-only section of
Table 8). Apparently, combinations of parameters were con-
spiring to hide their e†ects at l\ 100.

In short, stripping the parameter space down to a
minimum of baryons, CDM, cosmological constant, and tilt
(with q and controlling the normalization) makes aA

S
2

factor of 3 di†erence in the error bars from MAP even for
parameters that are not associated with strong degener-
acies. Including SDSS reduces this dependence ; in fact,
MAP plus SDSS in the general parameter space with only
curvature Ðxed performs as well as MAP alone in this
minimal parameter space ! Degenerate parameters are of
course a†ected much more strongly.

7. CONSISTENCY

Even if the CMB does end up spinning a seamless tale of
structure formation and cosmological parameters, it will
not spell the end of cosmology. Only with stringent consis-
tency checks from other types of cosmological data can we
be conÐdent that we have eliminated systematic e†ects in
the data and its analysis. Moreover, parameter estimation is
only as good as its underlying parameter space ; testing
CMB conclusions against other cosmological probes is an
important way to search for unrecognized physical e†ects.

One of the most important data sets for this task is the
galaxy power spectrum from redshift surveys. While we
have focused in this paper on the ways in which such
surveys can complement CMB data to improve parameter
estimation, this has assumed that the measured power spec-
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trum is consistent with the locus of allowed models from the
CMB. In fact, with the precision of upcoming surveys, this is
not guaranteed : there are many possible spectra that will
simply be inconsistent with our understanding of cosmol-
ogy from the CMB. Attributing the discrepancy to nonlin-
ear clustering or galaxy bias has consequences that are
testable within the survey data ; it is not clear that the dis-
crepancy will be resolved in favor of the CMB. Explana-
tions involving alterations to the dark matter sector (see,
e.g., Turner & White 1997 ; Caldwell, Dave, & Steinhardt
1998 ; Hu 1998 for recent suggestions) could severely modify
the implications of the CMB for both low-redshift cosmol-
ogy and particle physics.

It is also possible that CMB data and the matter power
spectrum will tell a consistent story, while the true nature of
the universe is subtly otherwise, which causes other cosmo-
logical measurements to di†er from predictions. Exotic late-
time equations of state for smooth components are an
example of this situation (Huey et al. 1999). Therefore, in the
following, we consider consistency checks with other
cosmological data sets.

and Acceleration7.1. H0, )m
,

A rich area for consistency checks is the sector of classical
cosmology : (and implicitlyH0, )

m
, )" )

K
\ 1 [ )

m
[ )").

As explained above, CMB anisotropies su†er from a severe
degeneracy here, but a large variety of other precision mea-
surements are available to clarify the ambiguity and provide
consistency checks. There are a number of candidates : the
matter power spectrum, Type Ia supernovae (Perlmutter et
al. 1998 ; Riess et al. 1998), and direct measures of (see,H0e.g., Freedman et al. 1998 ; Blandford & Kundic 1996 ;
Cooray et al. 1998) seem particularly promising. Figures 4
and 5 show how the combination of each of these with
CMB data yields a small region in parameter space. The

FIG. 4.ÈConstraint regions in the plane from various com-)
m
-h

binations of data sets. MAP data with polarization yield the ellipse from
upper left to lower right, assuming the universe Ñat yields a small region
(short-dashed line). SDSS h Mpc~1) gives the vertical shaded(kmax \ 0.1
region ; SDSS combined with MAP gives the small Ðlled ellipse. A projec-
tion of future Type Ia supernova results (Tegmark et al. 1998a, middle
prediction) gives the solid vertical lines as bounds ; combining this with
MAP yields the solid ellipse. A direct 10% measurement of gives theH0long-dashed lines and ellipse. All regions are 68% conÐdence. For a two-
dimensional elliptical Gaussian, this contour is at 1.52 p. For a one-
dimensional Gaussian, the contour is the usual 1 p ; the curves for H0alone, SDSS alone, and supernovae alone are treated as one-dimensional.
The Ðducial model is the "CDM model from Table 2.)

m
\ 0.35

FIG. 5.ÈAs Fig. 4, but for constraints in the plane. Lines and)
m
-)"shadings are unchanged in meaning. In this projection, the assumption

that the universe is Ñat (short-dashed line) yields a line, not an ellipse (cf.
Fig. 4). We therefore calculate this 68% conÐdence region as if it were
one-dimensional. SDSS-only constraints are not shown.

overlap of these three regions would be a highly nontrivial
test of cosmology. Direct measurements of for example)

m
,

from M/L (see, e.g., Carlberg et al. 1997b) or cluster evolu-
tion (see, e.g., Carlberg et al. 1997a ; Bahcall et al. 1997),
would also be powerful, and constraints on from gravi-)"tational lensing (see, e.g., Kochanek 1996) provide a consis-
tency test. In viewing the two-dimensional projections in
Figures 4 and 5, one should remember that error region
from a combination of data sets is not simply the intersec-
tion of the individual two-dimensional error regions. These
Ðgures are projections of the 12-dimensional parameter
space, and complementary information in the hidden
dimensions can cause the combined error regions to be sub-
stantially smaller than would be suggested by the two-
dimensional intersection.

If the smooth component of missing energy is more com-
plicated than a cosmological constant or curvature, then
the constraints from CMB plus the galaxy power spectrum
can still be compared to results from classical programs.H0However, the supernovae then yield a measurement of this
exotic equation of state (Garnavich et al. 1998 ; Hu et al.
1999) !

7.2. Normalization, Reionization, and Bias
Another fruitful area for consistency checks involve

parameters associated with the amplitude of Ñuctuations in
the CMB and galaxy power spectrum.

Several sources of ambiguity in the interpretation of the
relative amplitudes today should be resolved with the larger
dynamic range of upcoming CMB and galaxy data sets.
Tensors a†ect the COBE normalization and the spectral tilt
adjusts its extrapolation to smaller scales, but the new satel-
lites will focus on smaller angular scales for a direct com-
parison to the scales probed in redshift surveys. Massive
neutrinos a†ect the matter power spectrum far greater than
the CMB and hence change the relative normalization
between these two. Fortunately, they should also have
detectable signatures (see ° 5.4).

Within our parameter space, there are three remaining
factors that alter the observed relative amplitude of the
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CMB anisotropies and the galaxy power spectrum. First,
the growth factor between recombination and the present
day depends upon and Second, galaxy bias alters)" )

K
.

the normalization of the galaxy power spectrum relative to
that of the matter (and CMB). Third, reionization sup-
presses CMB anisotropies for a given level of potential Ñuc-
tuations.

Because the addition of redshift survey information
breaks the angular distance degeneracy, the growth factor
will be accurately known. As discussed in the previous
section, there are many consistency checks to ensure the
validity of this statement.

This leaves the bias and reionization optical depth
strongly covariant, as shown in Figure 6. Without polariza-
tion information to determine q and other dynamical mea-
surements to determine b, neither will be well determined.

With a polarization detection of the large-angle reioniza-
tion signal, however, the error bars on q plummet, yielding b
and to D5% fractionally. Because polarization measure-p8ments are subject to many systematic e†ects, consistency
checks here are particularly important. With measured)

mprecisely, any means of constraining b or will provide ap8consistency check on this measurement, e.g. redshift distor-
tions (see Hamilton 1997 for a review), peculiar velocity
catalogs (Strauss & Willick 1995 and references within), and
cluster abundances (White et al. 1993a ; Viana & Liddle
1996 ; Eke et al. 1996 ; Pen 1998). Additionally, if these mea-
surements can produce limits on b or below the values given
in the tables then this extra information can provide([5%),
leverage on other parameters such as h and once q has)

m
h2

been Ðxed by the polarization detection. On the other hand,
if large-angle CMB foregrounds prevent us from extracting
the reionization signal, precision measures of b or wouldp8sharply constrain q.

A measurement of the optical depth to last scattering
may yield an additional consistency test, in that it requires

FIG. 6.ÈAllowed region in the b-q plane for the "CDM model from
Table 2. The 68% conÐdence region is shown for MAP]SDSS, with and
without polarization, and Planck]SDSS, with polarization. hkmax \ 0.1
Mpc~1.

the cosmological model to ionize the universe at some par-
ticular redshift. If this redshift is uncomfortably high or low,
it may challenge our cosmological assumptions, for
example, the extrapolation of to yet smaller scales.P'(k)

8. CONCLUSION

We have presented Fisher matrix calculations of the
cosmological information obtainable with upcoming CMB
satellite missions and large redshift surveys. We have used a
considerably larger parameterization of adiabatic CDM
than previous works involving polarization data or redshift
surveys. Within this space, we have conducted several
parameter studies, including variations in and T /S.)

B
, )l,In a number of cases, we Ðnd stronger degeneracies and

hence larger errors bars than prior work. We attribute these
discrepancies to artiÐcially broken degeneracies caused by
numerical subtleties such as use of one-sided derivatives
and overly large step sizes.

The primary purpose of this paper has been to explore
the ways in which galaxy power spectrum data can provide
complementary information to the CMB, thereby signiÐ-
cantly reducing error bars. In the language of degeneracies,
we seek places in which large-scale structure o†ers the
means to break CMB degeneracies and vice versa. The most
important example of this is the angular-diameter distance
degeneracy of the CMB, which causes uncertainty on h, )

m
,

and even The presence of baryonic oscillations in)", p8.matter power spectrum o†ers a robust way to break this
degeneracy. Redshift survey data also help determine the
mass of the heaviest neutrino, especially if it exceeds 1 eV.
Although the projections of the Planck satellite with polar-
ization suffice to do most everything else, less sensitive
CMB experiments can beneÐt from redshift surveys even on
measuring quantities such as and)

m
h2 )

B
h2.

While CMB and galaxy power spectra themselves o†er a
myriad of consistency tests, they also provide a baseline for
tests against other cosmological measurements. With the
detection of the large-angle polarization signal due to reion-
ization, the two data sets together yield a D5% measure of
linear galaxy bias, to be compared to that obtained from
peculiar-velocity and redshift-distortion methods. Similarly,
supernovae distance measurements and Hubble constant
measurements provide a fertile set of cross-checks on the
breaking of the angular diameter distance degeneracy.

It is important to remember that the error estimates pre-
sented here reÑect the statistical leverage available within
these data sets. We have not attempted to produce a data
analysis pipeline that would address the horde of obstacles
that stand between the raw data and these cosmological
inferences. Considerable e†ort has been channeled toward
the development of such methods. Foreground removal was
mentioned in ° 6.1. Pipeline methods have been developed
and implemented for CMB mapmaking (Wright 1996 ;
Wright, Hinshaw, & Bennett 1996 ; Tegmark 1997b), CMB
power spectrum extraction (Tegmark 1997c ; Bond, Ja†e, &
Knox 1998 ; Oh, Spergel, & Hinshaw 1999) and galaxy
power spectrum estimation (Tegmark et al. 1998b). All of
these are lossless in the sense that they retain all the cosmo-
logical information quantiÐed by the Fisher information
matrix, but it is likely that many aspects of the problem will
only be revealed once the data are in hand. Approaching
the performance described by analyses such as those in this
paper will be one of the primary goals (and motivations for)
of all this hard work!
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In summary, while CMB satellite missions can provide
marvelous cosmological information, they do not make
other methods obsolete. Additional precision measure-
ments will be needed both to break the parameter degener-
acies of the CMB and to test for consistency in the face of
systematic errors and additional physical e†ects. Only with
these precise comparisons can one build a secure cosmo-
logical model.
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APPENDIX A

MINIMIZING ERRORS BY REDUCING COVARIANCE

At several points in the paper, we are concerned with how the uncertainties on a particular quantity depend upon the
uncertainties on other related quantities with which it is correlated. Here we show that a particular linear combination of the
correlated quantities has the minimum variance and is uncorrelated with the other parameters. This variance is furthermore
equal to that of the original quantity under the assumption that the correlated parameters have been Ðxed by priors. We
examine optimal combinations of the scalar tilt and running of the tilt a as examples. The case of the tensor-scalar ration

ST /S and tensor tilt was discussed in ° 5.5.n
T

A1. PROOF

We assume an n-dimensional parameter space with independent variables Let the primary quantity be andp1, . . . , p
n
. p1the m[ 1 quantities (m¹ n) that we want to combine be . . . , We seek a new quantity . . . , that hasp2, p

m
. X \ f (p1, p2 , p

m
)

and minimum errors. The former requirement is to prevent simple rescalings of the variable X and will inLf/Lp1\ 1 p1 ; p1this sense have the same scale.
In the Fisher matrix formalism, all that matters is the gradient of X with respect to the independent variables. We write

and arrange them as a vector w ; by construction, and for m\ j ¹ n. Then the smallest attainablew
j
\ Lf/Lp

j
w1\ 1 w

j
\ 0

variance of X will be

p
X
2 \ wTCw , (A1)

where C is the inverse of the Fisher matrix F. We seek the set of that minimize Clearly only the submatrixw2, . . . , w
m

p
X
2 . C3

involving the Ðrst m rows and columns of C can be involved. Using Lagrange multipliers, one readily shows that the minimum
is achieved at

w
j
\
q

r

s

t

t

(C3 ~1)1j
(C3 ~1)11

j ¹ m ,

0 m\ j ¹ n .
(A2)

The minimum value of is thenp
X
2 (C3 ~1)11~1.

If one replaces the independent variable by X, then the transformed matrix C will have for j \ 2, . . . , m. In otherp1 C1j \ 0
words, X is uncorrelated with the variables . . . , This means that X will have the same errors regardless of whetherp2, p

m
. p2,. . . , vary or are held Ðxed. If they are held Ðxed, then X and are locally identical. Hence, the error on X with . . . ,p

m
p1 p2, p

mvarying is the same as the error of with them held Ðxed.p1Note that in the case of m\ n, Hence, w is just the renormalized Ðrst column of the Fisher matrix, and theC3 ~1 \ F.
minimum variance of X is simply AÐcionados will recognize this as the variance of if all other variables are held1/F11. p1Ðxed.

In the case of m\ 2, where we wish to combine with one other variable we obtain the special case thatp1 p2, X \ p1and X and are uncorrelated.[ p2C12/C22 p
X
2 \ C11 [ C122 /C22. p2

A2. A TILT EXAMPLE

An interesting example of this concerns and a. We deÐne our independent variable to be and a. For most values ofn
S

n
S
(kfid)these two will be correlated. What is special in this case is that the minimum-error combination X is a physicallykfid,motivated quantity, namely the tilt at some new scale (see eq. [15]). As shown above,n

S
kpivot\ kfid exp ([C

nS a/Caa) n
S
(kpivot)is uncorrelated with a and has the same error with a varying as on any scale would have if a were held Ðxed.n

S
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The pivot scale at which the error on is minimized depends on the experiment and on the Ðducial model. Forkpivot n
S
(kpivot)our "CDM model and SDSS alone, is 0.024 Mpc~1 (0.088 Mpc~1) for h Mpc~1 (0.2 h Mpc~1). For CMBkpivot kmax\ 0.1

data (with SDSS to 0.1 h Mpc~1 in parentheses), the scales in Mpc~1 are 0.034 (0.036) for MAP(T), 0.018 (0.020) for MAP(TP),
0.084 (0.070) for Planck(T), and 0.029 (0.027) for Planck(TP). As expected, Planck adds more small-scale sensitivity, while
polarization adds more large-scale sensitivity by resolving the low-l degeneracies. Our choice of Mpc~1 is closekfid \ 0.025
to the desired spot, and the errors grow only to second order in ln (k) away from the minimum:

p
nS(k)2 \ p

nS(kpivot)2 ] ln2(k/kpivot)pa2 . (A3)

APPENDIX B

NUMERICAL METHODS

B1. DERIVATIVE METHODOLOGY

As described in ° 2, the calculation of the Fisher matrix reduces to manipulation of derivatives of the various power spectra
with respect to cosmological parameters. However, the near cancellation of certain linear combinations of derivatives leaves
the Fisher matrix nearly singular. As the larger error bars are themselves inverses of the smaller eigenvalues, it is critical to
prevent numerical e†ects from perturbing these small eigenvalues. Hence, constructing and manipulating the derivatives
requires care, lest a parameter degeneracy be broken by numerical e†ects and yield an overestimate of the experimentÏs ability
to measure the associated parameters. We Ðnd that our treatment of certain derivatives reveals signiÐcantly softer directions
in parameter space than found by previous works (see Appendix C). Therefore, we will describe our methods in some detail.

B1.1. T wo-sided Derivatives
Wherever possible, we take two-sided derivatives. Writing f (p) for the dependence of either or lnP(k) on someln C

lparameter p with all others Ðxed, this means that we approximate f @(p) by

f 8@(p) 4
f (p ] *p) [ f (p [ *p)

2*p
(B1)

for some small step size *p. This is exact to second order in *p, whereas approximating f @(p) with the one-sided di†erence
[ f (p ] *p)[ f (p)]/*p B f @(p ] *p/2) is only good to Ðrst order ; moreover, the latter corresponds to an accurate estimate of
the derivative at a slightly shifted parameter value p ] *p/2. This is critical when perturbing parameters that change the
locations of the Doppler peaks because the various derivatives will no longer be in phase ! If the step size is sufficiently large,
these phase shifts will break the parameter degeneracies.

One also should avoid di†erencing models that are calculated with di†erent numerical techniques, as these can cause
discontinuous results as one adjusts the independent variable. With CMBfast v2.3.2, this situation occurs for geometrically
Ñat versus open models and for models with di†ering numbers of species of massive neutrinos.

Because of the desire to use two-sided derivatives, we take nonzero Ðducial values for nonnegative quantities such as
q\ 0.05 and unless otherwise noted. Perturbing around also allows us to use one species of massive)l/)m

\ 0.05 )l D 0
neutrinos in all cases.

TABLE 9

LIST OF INDEPENDENT PARAMETERS

Quantity Step Size Notes

)
m

h2 . . . . . . . ^5%
)

B
h2 . . . . . . . ^5%

)l h2 . . . . . . . ^10% Equivalent to ml)" . . . . . . . . . . ^0.05)
m)

K
. . . . . . . . . . *)

m
\ [0.1)

m
See ° B2.1

q . . . . . . . . . . . . ^0.02
Y
p

. . . . . . . . . . ^0.02 Prior of ^0.02
n
S
(kfid) . . . . . . ^0.005 See eq. (14)

a . . . . . . . . . . . . ^0.005 See eq. (14)
T /S . . . . . . . . . Exact
n
T

. . . . . . . . . . ^0.01 Only if T /S D 0.
A

S
2 . . . . . . . . . . Exact

b . . . . . . . . . . . . Exact 4)
m
0.6/b

NOTES.ÈStep sizes are for our "CDM model ; those
listed as percentages are fractions of the Ðducial value.
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B1.2. Derivative Step Sizes
What is the best choice of the step size *p for constructing the derivative in equation (B1)? We use CMBfast v2.3.2

(including the bug Ðxes of v2.4.1 ; Seljak & Zaldarriaga 1996 ; Zaldarriaga & Seljak 1997) for our numerical derivatives and
Ðnd that this version of CMBfast has random numerical noise at a level of for geometrically Ñat modelsp 4 dC

l
/C

l
D 10~4

and 10~3 for open models.8 As described by Press et al. (1992), the optimal compromise between numerical noise and higher
order Taylor series terms occurs for where indicates the characteristic scale on which p varies. Hence, if*p D p1@3p

c
, p

c
p
c
D p,

we should use fractional steps of roughly 5%, yielding an accuracy of D0.2%. Note that a one-sided derivative with a 5% step
would yield a truncation-dominated accuracy of D5%, which is considerably worse.

Since this estimate is quite crude, we performed a series of numerical experiments with di†erent step sizes before arriving at
the choices in listed in Table 9. We have tested that our answers change by less than 10% when using half the listed steps.
Convergence is better as degeneracies are lifted by complementary information or by reducing the parameter space via priors.
Only for the open Ðducial model do we see some lack of convergence owing mainly to the larger noise associated with open
models. The step sizes on and a could easily have been signiÐcantly smaller, although reducing them to 10~4 changesn

S
, n

T
,

the marginalized errors by less than 1%.

B2. CURVATURE

Curvature is known to be strongly degenerate with other e†ects, such as a cosmological constant, that alter the late-time
evolution of the universe (Hu & Sugiyama 1995, ° VI.B2 ; Bond et al. 1997 ; Zaldarriaga et al. 1997). Combinations of changes
in these parameters that hold the angular diameter distance to last scattering Ðxed will leave the acoustic peaks unchanged
(given a proper choice of normalization). Di†erences in the decay of potentials at late times will alter the large-angle
anisotropy ; this alteration of the ISW e†ect is the primary way to break this degeneracy in the absence of lensing e†ects (Hu et
al. 1997 ; Stompor & Efstathiou 1999).

When faced with a strong degeneracy, it is numerically desirable to change variables in parameter space by introducing a
parameter in the degenerate direction. This has the advantage of containing all numerical problems in a single (very small)
derivative, where the physical e†ects can be easily understood and distinguished from numerical errors making the derivative
artiÐcially large. We adopt this approach for the angular distance degeneracy, as detailed in the following three subsections.

B2.1. Di†erentiating with Fixedd
A

Including variations in curvature around a Ñat model presents a particular concern because no closed version of CMBfast
is available. Hence, the derivative with respect to curvature is necessarily a one-sided derivative. Moreover, the open version
of the code is noisier than the Ñat, which forces one to take larger step sizes for the derivatives. Since adding curvature causes a
signiÐcant shift in the location of the CMB peaks, large step sizes cause the curvature derivative to be out of phase with the)"derivative. This is displayed in Figure 7 ; the dashed line in the bottom panel shows that the two derivatives in the top panel
cannot be exactly cancelled.

We work around this problem by altering our coordinate basis so that the only derivative in a direction with nonzero
curvature has a convenient physical property. The derivative of at constant may be done in the usual manner. But for)" )

Kthe derivative of at constant we transform to the basis of and angular diameter distance The latter is deÐned as)
K

)", )
K

d
A
.

d
A

\ 1

J)
K

H02
sinh

C
J)

K

P
0

z* dz

JE(z)

D

E(z)\ )" ] )
K
(1] z)2] )

m
(1] z)3] )

R
(1] z)4 , (B2)

where is the density of radiation and is the redshift of recombination (Hu & White 1997a). We treat massive neutrinos)
R

z
*according to the approximation of Appendix A of Hu & Eisenstein (1998). The desired curvature derivative is then

A L
L)

K

B
)"

\
A L
L)

K

B
dA

] (L d
A
/L)

K
))"

(L d
A
/L)"))K

A L
L)"

B
)K

. (B3)

In Ñat models, the Ðrst term is constructed by a one-sided Ðnite di†erence in curvature corresponding to The*)
m

\ [0.1)
m
.

second term consists of a numerical prefactor times the derivative that we have already calculated. The Ðrst term is special
because with the proper choice of normalization it is a derivative in the direction of constant Doppler peak location, shape,
and height. This means that aside from an ISW signal at low l and lensing e†ects at high l, the derivative vanishes, which
allows one to isolate the numerical noise. Also, since the peak structure of both derivatives enters through the same atL/L)"constant term, the two derivatives are guaranteed to cancel up to the treatment of the Ðrst term of equation (B3).)

K

B2.2. Di†erentiating with Fixed High-z Normalization
To properly implement the technique of the last section, one must choose a normalization convention that is independent

of and This condition is satisÐed by keeping unchanged the physical situation at high redshift. It is implemented by)" )
K
.

8 This does not apply to variations in the initial power spectrum, as the anisotropies generated by di†erent wavenumbers are weighted and combined at
double precision. The quoted levels are for and may increase beyond that.l[ 100
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FIG. 7.È(a) Derivatives of with respect to at constant (solid line) and with respect to at constant (dashed line). The former is a one-sidedC
Tl

)
K

)" )" )
Kderivative formed by di†erencing models with and (b) Derivative of with respect to at constant constructed in two di†erent)

K
\ 0.01 )

K
\ 0.003. C

Tl
)

K
d
A
,

ways. Solid line : result from di†erencing two models with and altered so as to keep Ðxed. Dashed line : the appropriate linear combination of the)" )
K

d
Acurves in (a) ; the poor cancellation is due to the curvature derivative being one-sided and therefore out of phase. The glitch at lB 500 in the solid curve is

numerical noise and the reason we need to truncate this derivative.

holding Ðxed the amplitude of the scalar gravitational potential at high redshift on some comoving reference scale inknormMpc~1 that is outside the horizon at the redshift in question. We use the low-redshift growth function to shift the scalar
potential back to the pure-matterÈdomination phase (ignoring radiation). This produces the normalization

P(knorm, z\ 0)\ A
S
2
Aknorm

kfid

BA
1 ] 3)

K
H02

knorm2
B2

H0~4 c4Dgr2 ; (B4)

in other words, we choose as an independent variable and therefore renormalize the calculated (COBE(n
S
\ 1) A

S
2

normalized) P(k) and by equation (B4) to hold constant when taking all other derivatives. Here is the growthC
l

A
S
2 Dgrfunction integral (Peebles 1980)

Dgr\
5
2
P
0

1 a3@2 da
()

m
] )

K
a ] )" a3)3@2 . (B5)

Note that in the Harrison-Zeldovich case, the normalization is independent of in the large-scale limit ; we choose aknormnormalization scale of Mpc. If it is important to pick to be independent of h. Since the high-redshiftknorm~1 \ 3000 n
S
D 1, knormratios of the various types of matter and radiation are held Ðxed when perturbing and it does not matter whether we)" )

K
,

normalize to the matter-domination or radiation-domination potential.

B2.3. Noise Clipping
Even with the derivative technique of the last two sections, the numerical noise of CMBfast v2.3.2 breaks the angular

diameter distance degeneracy. Fortunately, with this choice of derivatives, the true signal is well localized in l. Neglecting
gravitational lensing (see ° 6.2), the only signal in the curvature derivative at constant is the low-l ISW e†ect. This e†ectd

Ascales as asymptotically (Hu & White 1996).C
l
D lnS~4

Since the goal of our analysis is to make robust and conservative estimates for how accurately cosmological parameters can
be measured, we assume that no useful cosmological information can be extracted from lensing e†ects or from ISW
contributions at large l. For we therefore set for this particular derivative, therebyl[ lclip\ 30, C

l
@ \ (lclip/l)4~nSC

lclip
@

throwing away all of the high-l numerical noise that would otherwise artiÐcially break the degeneracy above some l-cuto†
This numerical noise is displayed as the solid line in Figure 7 ; the glitches at lB 500 dominate the breaking of thelclip.degeneracy for either satellite.

Hence, while our error bars on and for Planck alone (especially with polarization) are overestimated owing to the)" )
Kneglect of lensing, we protect the small eigenvalue of this degeneracy against the numerical problems that would otherwise

dominate.
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B2.4. E†ects of and on P(k))
K

)"
and have degenerate e†ects on P(k) as well, and so we must take care in constructing these derivatives. Fortunately,)

K
)"there is an analytic solution. The matter power spectrum can be decomposed into an initial power spectrum whose time

dependence reÑects only the physics on the largest scales times a transfer function that incorporates the e†ects of causal
physics (see, e.g., Eisenstein & Hu 1998, 1999). and shift the z\ 0 normalization of the initial power spectrum relative)

K
)"to the level of CMB anisotropies by altering the growth function (eq. [B5]). Meanwhile, the transfer function is indepen-Dgrdent of and if it is measured in real space instead of redshift space. Hence, and enter this piece only through their)

K
)" )

K
)"e†ect on h. We can rewrite this as a derivative with respect to k :

d ln P
d)

K
\ 2

d ln Dgr
d)

K
[ 1.2

)
m

] 1
2)

m

Ad ln P
d ln k

[ 1
B

. (B6)

This avoids having to di†erence two di†erent Boltzmann code outputs and allows us to track the oscillations in the power
spectrum and its derivative more accurately. The middle term in equation (B6) comes from the derivative of ln b, since b is
our independent variable. The derivative with respect to has an equivalent formula. The assumption that the transfer)"function in real space is independent of and is actually violated slightly at small scales if massive neutrinos are)

K
)"important due to di†erences in the infall of the neutrinos (Hu & Eisenstein 1998) ; we ignore this e†ect as it is tiny and

primarily beyond the linear regime.

B3. q AND NORMALIZATION

Reionization mimics a suppression of the amplitude of the primary CMB anisotropies on all but the largest scales. For
small optical depths, the secondary Ñuctuations generated by these late-time scatterings are small because only a small
fraction of photons are a†ected and because the scattering occurs over a sufficient range of distances along the line of sight
that small-scale perturbations are averaged out (Kaiser 1984). Hence, for q> 1, the main e†ect is a suppression of byC

lexp ([2q) for all but the lowest l. If the normalization of the primary Ñuctuations is unknown, then we can hide the
reionization simply by increasing their normalization by a corresponding amount. The resulting degeneracy is difficult to
break in the temperature anisotropy data because the rise at low l up to the original Ñuctuation level is hidden by cosmic
variance. With polarization data, reionization can be more easily separated because it produces a bump at large angles
whereas Ñuctuations at high redshift cannot produce much large-angle polarization due to causality (Kaiser 1983).

With this level of degeneracy, one should worry about artiÐcially breaking the cancellation between the q and deriv-A
S
2

atives. However, we Ðnd that CMBfast is sufficiently accurate to track this degeneracy without invoking tricks similar to those
used for the curvature, e.g., di†erentiating with held Ðxed.A

S
e~q

Note that if our chosen normalization were the COBE normalization, we would also have to worry about degeneracies
between the tensor-to-scalar ratio T /S and the scalar normalization. By normalizing to the scalar potential Ñuctuations,
however, we avoid this problem.

APPENDIX C

COMPARISON TO PREVIOUS WORK

The results in the main part of this paper are not directly comparable to those of previous papers owing to di†erences in
parameter spaces or Ðducial models. In this Appendix, we attempt to provide as direct a comparison as we can for some of the
results presented in these papers. We have in all cases matched the quoted parameter spaces and experimental speciÐcations.
Except in the case of White (1999), we have not taken care to provide an exact match to the normalization in these
comparisons. All groups are normalizing to the COBE value for the signal-to-noise ratio in equation (11). While normal-
ization di†erences of a few percent are possible, these would not a†ect the parameter results beyond this small level.

In Table 10, we compare marginalized errors with Bond et al. (1997) for their standard CDM model. We use their
experimental speciÐcations for MAP and the Planck High-Frequency Instrument HFI (temperature only) and restrict
ourselves to their parameter space Note that we have by necessity used one-sided derivatives for q and()

K
\ a \ 0). )ldi†erencing models with 0.01 and 0.001 in each parameter. Because the curvature is not varied, the tricks of ° B2 are not

needed. We Ðnd signiÐcantly (up to a factor of 3) larger errors on some parameters.
Zaldarriaga et al. (1997) analyzed a standard CDM model with a smaller parameter space. Restricting to this space

and adopting their speciÐcations for MAP yields the results in Table 11. Because and massive()
K

\)l\ a \ *Y
P
\ 0) qD 0

neutrinos are excluded, no one-sided derivatives are required. The results agree well with temperature and polarization data
(except for but can be up to a factor of 2 di†erent with temperature data alone.n

S
)

We suspect that the numerical issues addressed in Appendix B1 are responsible for discrepancies described above. Unfor-
tunately, based on the published information, we cannot conÐrm in the above cases that this is the source of the discrepancies.

Our comparison with Wang et al. (1999) demonstrates the situation. We compared two Ðducial models, adopting their
parameter space and speciÐcations for MAP (with At Ðrst, agreement was poor,()

K
\ a \ )l \ T /S \*Y

P
\ 0) fsky\ 0.8).

with their errors being as much as a factor of 5 smaller on one model. One-sided derivatives had been used ; when Wang et al.
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TABLE 10

COMPARISON TO BOND ET AL. (1997)

MAP Planck (HFI)

QUANTITY BET EHT BET EHT

2h . . . . . . . . . . . . 0.19 0.40 0.02 0.08
4)" h2 . . . . . . . 0.49 1.2 0.05 0.20
ln )

B
h2 . . . . . . 0.09 0.14 0.006 0.018

4)
m

h2 . . . . . . . 0.18 0.38 0.02 0.04
4)l h2 . . . . . . . 0.07 0.09 0.02 0.03
n
S

. . . . . . . . . . . . 0.06 0.10 0.006 0.015
T /S . . . . . . . . . . 0.38 0.69 0.09 0.11
q . . . . . . . . . . . . . 0.22 0.34 0.16 0.30
ln p8 . . . . . . . . . 0.28 0.57 0.18 0.33

NOTES.ÈFiducial model has h \ 0.5,)
m

\ 1, )
B
\

q\ 0, T /S \ 0, and0.05, )l\ 0, )" \ 0, n
S
\ 1,

(with a prior of All errors are 1Y
P
\ 0.23 *Y

P
\ 0.02.

p. BET columns contain the errors quoted in Bond et
al. 1997 ; EHT columns contain the errors we Ðnd
using their experimental speciÐcations for MAP and
the High-Frequency Instrument (HFI) of Planck. All
columns are temperature data only.

(1999) kindly recomputed their results using two-sided derivatives and smaller steps on certain parameters, the agreement
became quite good as shown in Table 12. We did not compare results for SDSS and CMB together because the([20%),
treatments are quite di†erent : they remove baryon oscillations from P(k) and apply a nonlinear evolution correction.

In another situation in which we could conÐrm that two-sided derivatives were used, we have attained even better
agreement. We have compared a "CDM model with the preliminary results of White (1999), who uses a hierarchy Boltzmann
code rather than CMBfast. Under a parameter space of q, and the marginalized error bars agree to)

B
h2, )

m
h2, )", n

S
, A

S
2,

3% with and without polarization for MAP and Planck. Adding causes larger discrepancies, mostly along the direction of)
Kthe angular diameter distance degeneracy ; we suspect the hierarchy code is more stable for but the di†erences should)

K
D 0,

disappear once the degeneracy is broken by outside information.
Degeneracies are quite important even in these smaller parameter spaces. As an example, consider the SCDM model from

Zaldarriaga et al. (1997). Holding q Ðxed removes the reionization-normalization degeneracy and leaves )
m

h2, )
B
h2, )", n

S
,

T /S, and to vary. This set of parameters in this Ðducial model can be combined to cancel the normalization temperatureA
S
2

derivative to better than 1 part in 100 over the l-range 100È800, mostly through a combination of tilt, tensors, and )
m

h2.

TABLE 11

COMPARISON TO ZALDARRIAGA ET AL. (1997)

MAP(T) MAP(TP)

QUANTITY ZSS EHT ZSS EHT

T /S Variable :
h . . . . . . . . . . . . 0.092 0.17 0.051 0.040
)" . . . . . . . . . 0.53 1.1 0.29 0.25
)

B
h2 . . . . . . . 0.0010 0.0019 0.00061 0.00055

q . . . . . . . . . . . . 0.13 0.21 0.021 0.022
n
S

. . . . . . . . . . 0.059 0.12 0.031 0.028
T/S . . . . . . . . . 0.39 0.77 0.22 0.19

T /S Fixed :
h . . . . . . . . . . . . 0.017 0.025 0.016 0.017
)" . . . . . . . . . 0.098 0.15 0.093 0.103
)

B
h2 . . . . . . . 0.00030 0.00043 0.00028 0.00035

q . . . . . . . . . . . . 0.12 0.15 0.021 0.021
n
S

. . . . . . . . . . 0.0098 0.021 0.0048 0.010
T/S . . . . . . . . . . . . . . . . . . . . .

NOTES.ÈFiducial model has h \ 0.5,)
m

\ 1, )
B
\ 0.05,

q\ 0.05, and T /S \ 0. and a are held Ðxed.n
S
\ 1, )

K
, )l, Y

P
,

The top set of numbers is with T /S allowed to vary ; the bottom
set is with T /S Ðxed. All errors are 1 p. ZSS columns contain the
errors quoted in Zaldarriaga et al. 1997 ; EHT columns contain
the errors we Ðnd using their experimental speciÐcations for
MAP with and without polarization.
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TABLE 12

COMPARISON TO WANG ET AL. (1999)

MAP(T) MAP(TP)

MODEL QUANTITY WSS EHT WSS EHT

SCDM . . . . . . ln h 0.052 0.051 0.033 0.033
)" 0.15 0.15 0.091 0.097
ln )

B
h2 0.028 0.031 0.020 0.024

ln q 2.4 2.9 0.39 0.38
n
S

0.017 0.020 0.0085 0.0090
"CDM . . . . . . ln h 0.066 0.077 0.032 0.035

ln )" 0.076 0.089 0.037 0.043
ln )

B
h2 0.044 0.052 0.021 0.023

ln q 1.3 1.6 0.18 0.18
n
S

0.035 0.041 0.014 0.014

NOTES.ÈTop set of numbers are for a standard CDM Ðducial model
with h \ 0.5, q\ 0.05, and Bottom set are for)

m
\ 1, )

B
\ 0.05, n

S
\ 1.

a "CDM model with h \ 0.65, q\ 0.1,)
m

\ 0.3, )
B
\ 0.06, )" \ 0.7,

and T /S, and a are held Ðxed. All errors are 1 p. WSSn
S
\ 1. )

K
, )l, YP

,
columns contain the errors quoted in the revised version of Wang et al.
(1999 ; private communication). EHT columns contain the errors we Ðnd
using their experimental speciÐcations for MAP with and without polar-
ization.

Hence, even in this small space, one needs to control the derivatives to high numerical accuracy. For example, a 0.05 one-sided
step in tilt pivoting around the Hubble distance produces a 16% derivative error at lB 600 owing to second-order terms.
These considerations and the comparison with Wang et al. (1999) and White (1999) lead us to conclude that two-sided
derivatives are crucial for achieving accurate answers with present-day codes.
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