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ABSTRACT
The next generation of cosmic microwave background (CMB) experiments, galaxy surveys, and high-

redshift observations can potentially determine the nature of the dark matter observationally. With this
in mind, we introduce a phenomenological model for a generalized dark matter (GDM) component and
discuss its e†ect on large-scale structure and CMB anisotropies. Specifying the gravitational inÑuence of
the otherwise noninteracting GDM requires not merely a model for its equation of state but one for its
full stress tensor. From consideration of symmetries, conservation laws, and gauge invariance, we con-
struct a simple but powerful three-component parameterization of these stresses that exposes the new
phenomena produced by GDM. Limiting cases include : a particle component (e.g., weakly interacting
massive particles, radiation, or massive neutrinos), a cosmological constant, and a scalar Ðeld com-
ponent. Intermediate cases illustrate how the clustering properties of the dark matter can be speciÐed
independently of its equation of state. This freedom allows one to alter the amplitude and features in the
matter-power spectrum relative to those of the CMB anisotropies while leaving the background cosmol-
ogy Ðxed. Conversely, observational constraints on such phenomena can help determine the nature of
the dark matter.
Subject headings : cosmic microwave background È cosmology : theory È dark matter È

large-scale structure of the universe

1. INTRODUCTION

Upcoming cosmic microwave background (CMB) mis-
sions, galaxy redshift surveys, and high-redshift obser-
vations will produce such a wealth of high-quality data that
even the extended cold dark matter (CDM) model with 11
free parameters (e.g., et al. may fail to ÐtJungman 1996)
them. One must face the very real possibility that none of
our current ab initio models will survive the upcoming con-
frontation with the data.

How might one generalize the CDM model? The corner-
stone of all modern cosmologies is, and will likely remain,
gravitational instability in a world model that is homoge-
neous and isotropic on the large scale (e.g., et al.Peebles

Models for the dark matter sector, on the other hand,1991).
are presently limited by the number of candidates that are
considered well-motivated from the particle physics stand-
point, e.g., weakly interacting massive particles (CDM),
massive neutrinos, scalar Ðelds (see Dodelson, &Coble,
Frieman & Joyce Dave &1996 ; Ferreira 1997 ; Caldwell,
Steinhardt for recent assessments), and topological1998,
defects & Pen If none of these candidates(Spergel 1997).
survive the confrontation with high-precision cosmological
measurements, we will be forced to solve the inverse
problem: can one determine the nature of the dark matter
and reconstruct the model for structure formation directly
from the observations?

Explorations of the dark matter sector have been under-
taken recently by & White and et al.Turner (1997) Caldwell

who considered dark matter with an arbitrary equa-(1998),
tion of state that possesses no Ñuctuations and scalar-Ðeld
type Ñuctuations, respectively. The former case does not
present a complete theory of structure formation, as it can
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only apply below the horizon at any given time for adia-
batic models. The latter case provides an interesting
example of an exotic dark matter component but does not
exhaust the possibilities for its gravitational properties. For
example, a hot dark matter component has an equation of
state like matter today but clusters only up to a Ðnite scale.
This scale is substantially below the current horizon scale,
where it would be for the analogous scalar Ðeld model

& Joyce(Ferreira 1997).
Starting from the general principles of symmetry, energy-

momentum conservation and gauge invariance, we build in
a phenomenological parameterization of the dark matter° 2

that includes all of the currently popular dark matter theo-
ries as special cases. The main result is the link established
between the clustering properties of the dark matter and the
model for its underlying stresses. Importantly, these proper-
ties are not determined by the background equation of state
in the general case. Through their e†ect on the growth rate
of perturbations, discussed in these clustering properties° 3,
manifest themselves as independent features in the power
spectra of large-scale structure and CMB anisotropies as
discussed in and We summarize the main results in° 4 ° 5.

and present a short Appendix that highlights the scalar° 6
Ðeld case.

2. DARK MATTER PROPERTIES

2.1. General Principles
The gravitational inÑuence of an arbitrary dark matter

component is controlled by its stress-energy tensor g),Tkl(x,
where g \ / dt/a is the conformal time with a(t) as the scale
factor normalized to unity today. In general, the symmetric
four-tensor has ten components that can be divided intoTklfour classes : the energy density (1), the isotropic stress oro

gpressure (2), the momentum density (3), andp
g
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g
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g
)v
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the anisotropic stress (4). The Ðve components of thep
g
n
g
ij
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anisotropic stress can be further separated by their trans-
formation properties under rotations into a scalar com-
ponent (1), vector components (2), and tensor components
(2). Since only scalar components exhibit gravitational
instability, we hereafter neglect the vector and tensor

Energy-momentum conservationcontributions.2 T kl‰l \ 0
introduces four constraints, leaving only two independent
parameters for the dark matter. One can choose these to be
the pressure and scalar anisotropic stress amplitudep

g
n
g(see eq. [2.18]) without loss of generality.Bardeen 1980,

The isotropy of the background implies that the aniso-
tropic stress and momentum density can only be present as
a perturbation. The conservation laws then reduce to a
single relation,
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where overdots represent conformal time derivatives and
Likewise the Einstein equationsw
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where the sum is over the density contributions of all
matter species and the background curvature is K \

with As usual, the expansion[H0(1 [ )tot) )tot\ ;
i
)

i
.

rate today is given by the Hubble constant H04
h km s~1 Mpc~1, to which each species(a5 /a)

a/1\ 100
contributes according to its fraction of the critical density
)

i
\ 8nGo

i
/3H02.The background evolution is thus completely speciÐed by

the equation of state This is not true of the pertur-w
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bations, where we are left with the freedom to specify dp
gand It is convenient to separate out the nonadiabaticn
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where the adiabatic sound speed is
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pressure Ñuctuation.
In the following, we adopt the notation of et al.Hu

For brevity, we present only the aspects of pertur-(1998b).
bation theory that are altered by the presence of generalized
dark matter (GDM). Energy-momentum conservation
yields the continuity equation for the density Ñuctuation
d
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g
/o

g
,

A d
g

1 ] w
g

B~ \ [(kv
g
] 3h5 d) [ 3

a5
a

w
g

1 ] w
g

!
g

, (5)

2 Vector and tensor contributions do, however, a†ect CMB aniso-
tropies and can act as additional degrees of freedom when normalizing
large-scale structure to CMB measurements (e.g., & SteinhardtCaldwell
1998).

and the Euler equation
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The metric sources and depend on the choice of gaugehd h
vand are

hd\
Gh

L
'

Synchronous ,
Newtonian ,

h
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(

Synchronous ,
Newtonian .

(7)

Note that in the notation of & Bertschingerh
L
\ h/6 Ma

Seed perturbations (e.g., defects) whose total contri-(1995).
bution is Ðrst order in the perturbations can also be
modeled in this manner by rewriting equations and(1), (5),

in terms of and instead of the relative(6) do
g

(p
g
] o

g
)v

gperturbations (see eq. [A9]).

2.2. Stress Model
Up to this point, we have made no assumptions what-

soever about the nature of the dark matter, since andw
g
, !

g
,

have been left as free functions. We now need to param-n
geterize these functions. Dark matter with is favoredw

g
\ 0

by current observational constraints, such as the com-
bination of the ages of globular clusters and the high
Hubble constant measurements Sugiyama, &(Chiba,
Nakamura et al. as well as supernova1997 ; Caldwell 1998),
luminosity distance measures et al.(Perlmutter 1998 ; Riess
et al. If and is slowly varying compared with1998). w

g
\ 0

the expansion rate such that the adiabatic pres-(a5 /a) c
g
2\ 0,

sure Ñuctuation produces accelerated collapse rather than
support for the density perturbation. In a GDM-dominated
universe, perturbations would rapidly go nonlinear once the
sound horizon has been crossed, o k / This situ-c

g
dg o[ 1.

ation is unacceptable for a model of structure formation.
In this regime, it is interesting to consider whetherw

g
\ 0

nonadiabatic pressure can act to stabilize the perturbation.
This requires a relation of the type One is not,w

g
!

g
P d

g
.

however, allowed complete freedom in establishing this
relation. Adiabatic pressure, density, and velocity pertur-
bations are gauge dependent, whereas nonadiabatic pres-
sure perturbations are not. Therefore, stabilization in one
frame of reference does not equate to stabilization in
another. One should avoid having the properties of the
GDM depend on an arbitrary choice of frame and hence
unphysically on the perturbations in the other species. This
requirement can be achieved by deÐning the relation in the
rest frame of the GDM where T

i
0\ 0,

w
g
!
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\ (ceff2 [ c

g
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g
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We further assume the e†ective sound speed is only aceff2
function of time. If pressure support is obtained.ceff2 [ 0,
The gauge transformation into an arbitrary frame gives

d
g
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yielding a manifestly gauge-invariant form for the non-
adiabatic stress (see & SasakiBardeen 1980 ; Kodama



No. 2, 1998 STRUCTURE FORMATION WITH GENERALIZED DARK MATTER 487

Here B represents the time-space component of1984).
metric Ñuctuations and vanishes in both the synchronous
and Newtonian gauges. The Euler equation can then be
rewritten as
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Thus may be thought of as a rest frame sound speed. Byceff2
inspection of equations and we determine that the(10) (5),
critical scale for stabilization is the e†ective sound horizon,

seff \
P

dgceff . (11)

This assumes is not varying at a rate much greater thanw
gthe expansion rate (see the Appendix).

The anisotropic stress can also a†ect the density pertur-
bations. A familiar example is that of Ñuid, where it rep-
resents viscosity and damps density perturbations. More
generally, the anisotropic stress component is the amplitude
of a three tensor that is linear in the perturbation. A natural
choice for its source is the amplitude of the velocitykv

g
,

shear tensor However, it must also be gauge invariantLiv
g
j .

and generated by the corresponding shear term in the
metric Ñuctuation The relationship between velocity/H

T
.

metric shear and anisotropic stress may be parameterized
with a ““ viscosity parameter ÏÏ cvis2 ,
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where in the Newtonian gauge and in the synchro-H
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nous gauge & BertschingerH
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The speciÐc form of this equation is designed to1995).
recover the free-streaming equations of motion for radi-
ation with an approximate closing of the angular moment
hierarchy at the quadrupole et al. The physical(Hu 1995).
interpretation of is that the anisotropic stressequation (12)
will act to damp out velocity Ñuctuations on shear-free
frames if We call the viscous(H

T
\ 0) cvis2 [ 0. svis\ / cvis dg

scale.
We shall see in the following sections that this param-

eterization captures many of the essential features of GDM
as it corresponds to a means of altering its clustering
properties. In the limit that 1, 0), scalar-(w

g
, ceff2 , cvis2 ) ] (w

g
,

Ðeld dark matter is recovered exactly (see the Appendix).
CDM is similarly recovered with (0, 0, 0), radiation can be
modeled as and hot dark matter (HDM) or(13, 13, 13),
warm dark matter is modeled in a similar matter described
in ° 4.3.

Cases that this Ansatz does not cover involve mainly
models in which stress Ñuctuations are not derived from
density and velocity perturbations and so act as external
sources for the perturbations. This situation occurs in the
case of nonlinear seed perturbations (see Spergel, &Hu,
White for a parallel treatment). Note that in such1997
models both vector and tensor stresses must also be
modeled to yield a complete theory for structure formation
(see & White Pen, & SeljakHu 1997b ; Turok, 1997).

Equations and can now be introduced into(5), (8), (10)
any of the standard codes that solve the Einstein-
Boltzmann equations. We employ the code of et al.Hu

for the examples below. We furthermore show adia-(1995)
batic models for illustrative purposes, but of course iso-
curvature models can be similarly obtained through a
change in the initial conditions.

3. PERTURBATION GROWTH

By introducing a means by which Ñuctuations in the
GDM are stabilized, we change the growth rate of Ñuctua-
tions in the baryons and any CDM that may be present.
The clustering properties of the GDM thus have conse-
quences for both large-scale structure and CMB aniso-
tropies, as we shall see in °° and Here we summarize4 5.
results for the growth rate of perturbations proved in Hu &
Eisenstein (1998).

3.1. Above the Sound Horizon
Above the stabilization scale of all species and in the

absence of background curvature (K \ 0), perturbations
evolve so as to keep the Newtonian curvature ' and poten-
tial ( constant
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except during periods when the dominant equation of state
w changes. Here the potentials vary mildly such that
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The result is that, during periods when the equation of state
is slowly varying, the total density Ñuctuation d(rest)\

grows as; d
i
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i
/; o

i
d(rest) P a1`3w . (16)

We display an example of this large-scale evolution in
Figure 1.

Since CMB anisotropies are only dependent on the time
evolution of the potentials, the e†ect of GDM here is very
weak. The exception is the limit, where the poten-w

g
] [1

tials decay to zero and the cosmological constant case is
recovered. Note, however, that a curvature term in the
background and a dark matter component with w

g
\ [13give identical contributions to the expansion rate but are

not similar in their contribution to large-angle CMB aniso-
tropies.

Finally, the division of density Ñuctuations between the
GDM and the matter components, i.e., depends ond

g
/d

m
,

the form of the GDM stress. This is because of the appear-
ance of the nonadiabatic stress term in the continuity

that relates the density and metric Ñuctuations.equation (5)
As increases, decreases. This a†ects the amplitudeceff2 d

g
/d

mof the matter-power spectrum as we shall see (° 4.1).

3.2. Below the Sound Horizon
Below the e†ective sound horizon of the GDM its pertur-

bations stabilize. If GDM dominates the energy density,
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FIG. 1.ÈLarge-scale perturbation evolution with GDM of(kseff ? 1)
(solid line ; scalar Ðelds) and 0 (dashed line ; stress-w

g
\[16, ceff2 \ 1

gradient free). The Newtonian curvature ' is independent of and variesceff2
only when the background equation of state changes at andaeq a

g
.

However, the ratio of density perturbations in the GDM and matter
depends on The cosmological parameters here areceff2 . )tot \ 1, )

g
\ 0.9,

and h \ 0.7.)
b
h2\ 0.0125,

oscillates with a decaying amplitude ofd
g
(rest)

AP a(~1`3wg)@2ceff~1@2 (17)

and rapidly becomes a smooth density component com-
pared with the Ñuctuations in the other species. We display
a case where there is also a non-negligible CDM component
in Once GDM dominates the energy density of theFigure 2.
universe at then the smoothing of the GDM componenta

g
,

will also slow or halt the growth in the matter species. In
particular, the growth will slow to a halt if and scalew

g
\ 0

as ap with if Analytic4p \ (1 ] 24)
m
/)tot)1@2 [ 1 w

g
\ 0.

solutions for how this process occurs are given in &Hu
Eisenstein (1998).

The net e†ect is that if there is enough CDM to ensure
that the universe was matter dominated sometime in the
past, perturbation growth is suppressed by a scale-

FIG. 2.ÈSmall-scale perturbation evolution for the GDM and the
matter density perturbations in the same models as withFig. 1 ceff2 \ 1
(dashed lines) and (solid lines). GDM perturbations stabilize onceceff2 \ 0

and their relative absence then slow the growthkseff [ n (d
g
(rest)/d

m
(rest) > 1)

of matter perturbations once the expansion is also GDM dominated
leaving the potential ' to decay.a [ a

g

independent factor below the e†ective sound horizon atseffGDM domination. This suppression decreases until it dis-
appears above today. For the CMB, the suppression ofseffgrowth in the density perturbations causes the potentials to
decay to zero, leading to a contribution potentially 36 times
larger than the Sachs-Wolfe e†ect in the anisotropy power
spectrum. We shall see in why this limiting value is° 5.2
never reached in practice.

On the other hand, if matter never dominated the expan-
sion, as is the case if CDM is absent, even more dramatic
e†ects occur. In this case, growth even for is highlyceff2 \ 0
suppressed on small scales because of an extended period of
radiation domination (assuming The controllingw

g
\ 0).

scale is therefore the horizon at GDM-radiation equality
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Above this scale, perturbations grow as in equation (16) ;
below this scale, perturbations only experience signiÐcant
growth after GDM domination. Because GDM domination
for is delayed compared with an equivalentw

g
\ 0 w

g
\ 0

universe, the critical scale is larger in such single component
GDM models than in the CDM case.

3.3. V iscosity
Finally, the viscous stresses of can dissipateequation (12)

Ñuctuations in the GDM. In we show an exampleFigure 3
with GDM replacing the three massless neutrinosw

g
\ 13in an otherwise standard CDM universe (sCDM; )tot\h \ 0.5, The real neutrino back-1 B)

m
, )

b
h2\ 0.0125).

ground radiation contains an anisotropic stress due to the
quadrupole moment of its temperature distribution. Model-
ing the neutrinos as GDM allows us to explore the conse-
quences of its anisotropy by varying and also illustratescvis2

FIG. 3.ÈViscous e†ects with GDM replacing the three speciesw
g
\ 13of massless neutrinos in the sCDM model h \ 0.5,()tot \ 1 B )

m
, )

b
h2\

0.0125). With the viscosity parameter set to mimic radiation (solidcvis2 \ 13lines), the perturbations in the GDM decay, whereas with they docvis2 \ 0,
not. This distinction has a negligible e†ect on the behavior of the potentials
' and ( well after sound horizon crossing
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the phenomenological manifestations of the viscosity
parameter.

In the absence of anisotropic stresses (dashed lines ; cvis2 \
0), perturbations in the GDM oscillate. Changing to tocvis2 13approximate the radiative viscosity of the real neutrinos, the
density perturbations damp once Note, however,ksvis Z n.
its e†ect on the gravitational potentials ' and ( well after
crossing the sound horizon when the large-scale structure
observed is negligible. This is because the pressure Ñuctua-
tions are sufficiently e†ective to make the GDM pertur-
bations smooth in comparison with the growing species (see

The extra smoothing due to viscous damping a†ectsFig. 2).
perturbations little.

The anisotropic stress does change the behavior of the
potentials at early times because it enters directly in to the
Poisson equations We shall see in that corre-(13). ° 5.3
spondingly viscous e†ects are more important for the CMB
than large-scale structure so long as o ceff2 o[ o cvis2 o.

4. LARGE-SCALE STRUCTURE

The large-scale structure of the universe depends on the
detailed properties of the GDM. The main result of this is
that the clustering scale becomes independent of the equa-
tion of state of the dark matter. By changing the growth rate
of perturbations, the clustering properties change the ampli-
tude of and features in the matter power spectrum. Here we
present concrete examples of this process that include scalar
Ðelds, radiation, and hot dark matter as special cases.

4.1. Sound Horizon and Scalar Fields
The introduction of a stabilization scale or e†ective

sound horizon for the GDM places a feature in theseffmatter power spectrum between that scale at GDM domin-
ation and today, i.e.,

seff~1(a \ 1)\ k \ seff~1(a \ a
g
) . (20)

The limiting cases are the scalar-Ðeld example, where the
e†ective sound speed is the speed of light and theceff2 \ 1,
pressure-gradient free case with In weceff2 \ 0. Figure 4,
display the e†ect of varying on the power spectrum ofceff2
the matter holding the background cosmology Ðxed. These
models have been consistently normalized to the COBE
CMB anisotropy measurement at large scales via the Ðtting
form of & White their eqs. [17]È[20]).Bunn (1997 ;

The amplitude of Ñuctuations at the Ðducial 8 h~1 Mpc
scale, is a†ected in three ways. The presence of a clus-p8,tering scale reduces the growth rate below it, leading to a
relative suppression of small-scale power. However, the
absolute amplitude of large-scale Ñuctuations also changes
with the clustering scale. As shown in the last section,
decreasing decreases the amplitude of Ñuctuations in theceff2
matter relative to the potential Ñuctuations. On the other
hand, as we shall see in the next section, decreasing alsoceff2
eliminates a source of CMB anisotropies such that the
COBE signal drops relative to the potential Ñuctuations.
These two e†ects compete such that the change in normal-
ization of P(k) at large scales with is nonmonotonic. Theceff2
shape of the power spectrum above and below the tran-
sition region of remains that of a CDM modelequation (20)
with the same and (see in)

m
h )

b
h2 p50/p8 Fig. 4).

4.2. V iscous Scale and Radiation
As discussed in the e†ect of changing the viscous° 3.3,

scale through has little e†ect on the spectrum of mattercvis2

FIG. 4.ÈThe e†ective sound horizon and the COBE normalized
matter power spectrum. Raising from 0 to 1 (solid lines) introduces aceff2
feature between the e†ective sound horizon at GDM domination and that
scale today. Here 0.29, 0.25) and 0.17, 0.16) forp8\ (0.75, p50/p8\ (0.16,

1). These models haveceff2 \ (0, 16, w
g
\[16, cvis2 \ 0, )tot\ 1, )

g
\ 0.65,

h \ 0.7, and tilt n \ 1. For comparison, the corresponding)
b
h2\ 0.0125,

" model same parameters ; dashed(w
g
][1, p8\ 1.1, p50/p8\ 0.16 ;

lines), which Ðts the current large-scale structure data, is also shown.

Ñuctuations as long as We show an exampleo ceff2 o[ o cvis2 o.
in where the neutrinos in sCDM have beenFigure 5a
replaced with GDM as in In the large-scale struc-Figure 3.
ture regime, the di†erence between these models and sCDM
is small and in particular provides an excellentcvis2 \ 13approximation to free-streaming neutrinos.

FIG. 5.È(a) Modeling radiation. Shown here is the power spectrum for
the model of where GDM of replaces the neutrinos of sCDM.Fig. 3 w

g
\ 13Altering the viscosity parameter from to 0 has little e†ect on thecvis2 \ 13power spectrum although is a somewhat better approximation at large13scales. (b) Modeling HDM. The features of the mixed dark matter are well

reproduced by GDM with the same equation of state and cvis2 \
The parameters here are sCDM with replacing part of thew

g
. )l \ 0.2

CDM.
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4.3. T ime-Dependent Stresses and MDM
In general, the stress parameters may all be(w

g
, ceff2 , cvis2 )

time dependent. An interesting concrete example of such a
model is provided by the mixed dark matter (MDM) sce-
nario where a component of HDM (e.g., massive neutrinos)
is added to the CDM. Here the equation of state goes from

to 0 as the neutrinos become nonrelativistic.whdm\ 13Fitting to the numerical integration of the distribution gives

whdm \ 13[1 ] (a/anr)2p]~1@p , (21)

with p \ 0.872 and We can modelanr \ 6.32 ] 10~6/)l h2.
its behavior as a GDM component with w

g
\ whdm, ceff2 \

given by and In wec
g
2 equation (4), cvis2 \ whdm. Figure 5b

show that this model accurately reproduces the features of
the MDM model as calculated by CMBFAST &(Seljak
Zaldarriaga The novelty of this type of model is that1996).
the ratio of the clustering scale to the horizon scale varies, in
this case shrinking with time. This can have the e†ect of
smoothing out the clustering feature in the matter-power
spectrum (see Figs. and4 5b).

An exotic example of this type of model is the self-
interacting dark matter candidate proposed by Carlson,
Machacek, & Hall where the equation of state passes(1992),
through a logarithmically decaying regime

w
g
\ 1

3 ln (a/a6 )
, (22)

between the radiation and matter limits of andw
g
\ 13 w

g
P

Here is a constant.a~2. a6
Other examples include a scalar Ðeld that rolls from a

potential dominated regime with to a kineticw
g
\[1

energy dominated regime with (decaying-" sce-w
g
\ 1

narios, see, e.g., et al. The scalar Ðeld may alsoCoble 1997).
go from a rolling to a rapidly oscillating regime where sub-
horizon clustering can take place. Here one must redeÐne

to be time variable as well. This may occur in certainceff2
two-Ðeld models where the mass term can be time depen-
dent (see the Appendix).

4.4. GDM-Only Models
The freedom to set the clustering scale well below the

horizon raises the possibility that there is only a(ceff2 > 1)
single component of dark matter with i.e., CDM isw

g
\ 0,

absent. Conventional scalar Ðeld models (e.g., etCaldwell
al. do not allow this possibility, since perturbations1998)
could never grow beyond the small amplitude they pos-
sessed at horizon crossing (but see the Appendix).

The lack of a CDM component allows the appearance of
interesting phenomena in the matter-power spectrum. The
main e†ect is that the shape parameter of CDM is rescaled
for a given h, because the relevant scale is the!\ )

ghorizon at GDM-radiation equality given by equation (19),
i.e.,

!eff
!

\
A)

r
)

g

B~3wg@(1~3wg)
, (23)

where with the usual thermal history.)
r
\ 4.17 ] 10~5h~2

Note that appears in the exponent for the shape param-w
geter and hence even a mild departure from zero yields!effdramatic e†ects. In we show an example withFigure 6a
GDM replacing the CDM in a model withw

g
\[0.04

h \ 0.65, and n \ 1 (solid lines).)tot\ 1, )
b
h2\ 0.0125,

This model has and closely resembles a CDM!eff \ 0.24

FIG. 6.ÈGDM-only Models. (a) Here an h \ 0.65 modelw
g
\ [0.04.

with otherwise sCDM parameters is shown (solid line ; p8\ 0.60, p50/p8\
0.17) in comparison with sCDM (long-dashed line) and a CDM model with

(short-dashed line) with a normalization artiÐcially set to!\ )
m

h \ 0.24
match the GDM model. (b) Acoustic features appear evenw

g
\[0.1.

though the model is a critical universe h \ 0.65) with big bang()tot\ 1,
nucleosynthesis baryons The suppression of GDM power()

b
h2\ 0.025).

is counteracted by a strong blue tilt n \ 1.7 (p8\ 0.40, p50/p8\ 0.23).

model with (short-dashed lines). Not only!\ )
m

h \ 0.24
does lowering from zero help the problems of the nor-w

gmalization and shape of the CDM power spectrum, it also
raises the age.

Of course, the small change from to [0.04 in thew
g
\ 0

example above only increases the age from to a negligible
amount from 10 to 10.4 Gyrs (h \ 0.65). If we push tow

g[0.1, the age is 11.1 Gyrs, but is too small to account!efffor large-scale structure with a scale-invariant n \ 1 spec-
trum. This sort of model can be made viable by blue-tilting
the initial spectrum. In we show an example withFigure 6b

h \ 0.65, h2\ 0.025, and n \ 1.7 (with a COBE)tot\ 1, )
bnormalization to a model with reionization at z\ 65 in

order that the large tilt be consistent with degree-scale
anisotropies). It is interesting to note that the GDM power
is so suppressed that even with this big bang nucleo-
synthesis baryon content, acoustic oscillations are visible in
a critical density model. In fact, there is an interesting
feature in this model at the 100 h~1 Mpc scale of k D 0.05È
0.07 h Mpc~1. These models thus escape the constraints
presented in et al. and may help to explainEisenstein (1997)
the observed 100 h~1 Mpc excess should it persist. More
generally, the replacement of CDM with GDM givesw

g
\ 0

one the freedom to increase the prominence of the acoustic
oscillations in the matter-power spectrum.

5. CMB ANISOTROPIES

The presence of GDM a†ects the CMB anisotropies both
by its inÑuence on the background expansion and on(° 5.1)
the gravitational potential perturbations If(° 5.2). w

g
\ 0

and CDM is also present, small-angle anisotropies are
a†ected only by the former since the perturbations that
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generated them entered the horizon when the GDM e†ects
were negligible. We discuss the case where it is absent below
in Large-angle anisotropies depend mainly on gravita-° 5.3.
tional potential variations (the integrated Sachs Wolfe
[ISW] e†ect), since primary anisotropies have few features
that can be shifted by a change in the background
geometry.

5.1. Acoustic Peaks
The acoustic peaks in the CMB depend on the photon to

baryon ratio, the expansion rate at last scattering, and the
gravitational potential, all at last scattering, as well as the
angular diameter distance to last scattering & White(Hu

Provided that GDM contributes negligibly to the1996).
density at last scattering, it can only alter the peaks through
the last e†ect. Here features shift in scale with the angular
diameter distance, which in a Ñat universe is

d
A

\ g0[ g
*

. (24)

Here is the conformal time at last scattering (seeg
*

4 g(a
*
)

& White eqs. [22]È[23]). We display this e†ect inHu 1997a,
where the angular scale of four models withFigure 7,

is rescaled via the of a Ðducial[1 ¹w
g
¹ [16 d

A
w
g
\

[1 model. As decreases, increases such that featuresw
g

d
Aare shifted to smaller angular scales.

5.2. ISW E†ect
A more complicated e†ect arises from the decay in the

gravitational potential induced by the GDM. This is called
the late ISW e†ect and produces a contribution to asC

l

C
l
(ISW)\ 2

n
P dk

k
k3
GP

g*

g0
dg((0 [ '0 ) j

l
[k(g0[ g)]

H2
, (25)

which appears at large angles. On small scales, the photons
can traverse many wavelengths of the Ñuctuation during the
decay time and thus destroy the coherence of the gravita-
tional redshifts. The cancellation is expressed by the integral
over the oscillatory Bessel function.

FIG. 7.ÈAngular diameter distance, the acoustic peaks, and the late
ISW e†ect. Small-angle anisotropies depend on the equation of state w

gthrough the angular diameter distance Once the angular scale is res-d
A
.

caled to the Ðducial of a (") model, the curves are indistin-d
A

w
g
\[1

guishable if normalized to small scales. Large-angle contributions arise
from the ISW e†ect and are maximal in these scalar Ðeld examples.ceff2 \ 1
Here h \ 0.7, and)tot \ 1, )

g
\ 0.65, )

b
h2\ 0.0125.

The e†ect is minimized if A concrete example ofceff > 1.
this is the MDM scenario where the hot component has

and an e†ective sound horizon today well below thew
g
\ 0

particle horizon. Hence there is essentially no ISW contri-
bution in this model (see More generally, there willFig. 9).
be a small e†ect if because of the mild potentialw

g
D 0

variation from the change in the equation of state (see eq.
[14]).

The e†ect is maximized for as is the case forceff \ 1,
scalar Ðeld models shown in Here the potentialFigure 7.
decays due to pressure support of the GDM Ñuctuations
during GDM domination. The crucial aspect is that the
decay occurs as soon as the perturbation crosses the
horizon so that the photons have not had sufficient time to
cross the perturbation. The e†ect thus monotonically
decreases as decreases to zero. In we displayceff2 Figure 8,
this trend in Here we properly normalize the spectrumC

l
.

to the COBE detection, which corresponds roughly to
l\ 10. Thus as increases, the height of the acousticceff2
peaks decreases relative to the ISW-boosted large-scale
anisotropy. This also has the consequence of decreasing the
normalization of the matter-power spectrum as we have
seen in Figure 4.

5.3. Special Cases
It is worthwhile to consider a few special cases to further

illustrate the range of phenomena and show how more con-
ventional candidates are recovered. As we have seen in ° 3.3,
radiation can be modeled through the viscous parameter

Changing has a greater e†ect on the CMB than oncvis2 . cvis2
the matter-power spectrum, since it enters directly into the
evolution of the gravitational potentials (see Ineq. [13]).

we show the model of Figures and where theFigure 9a 3 5a,
neutrinos in sCDM are replaced by GDM of w

g
\ ceff2 \

The model with yields an excellent approx-13. cvis2 \ 13imation to the neutrinos, whereas that with di†erscvis2 \ 0
by D20% from the sCDM results (see also et al.Hu 1995).

Likewise the GDM model for a hot component presented
in accurately reproduces the anisotropies of an MDM° 4.3
model (see Note that this model has essentially noFig. 9b).
late ISW e†ect and di†ers from sCDM (long-dashed lines)

FIG. 8.ÈSound speed e†ects. Decreasing for a Ðxed backgroundceff2 ,
cosmology with and the same cosmological parameters asw

g
\ [16 Fig. 7,

decreases the ISW e†ect at large angles such that COBE normalized
models have lower acoustic peaks.
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FIG. 9.È(a) Modeling radiation. Shown here are the anisotropies for
the model where the neutrinos of sCDM are replaced with GDM asw

g
\ 13in Changing the viscosity parameter alters the anisotropies withFig. 5a.

best approximating the neutrinos. (b) Modeling HDM (samecvis2 \ 13parameters as The GDM model accurately reproduces the fea-Fig. 5b).
tures of MDM that are themselves only slightly di†erent from sCDM.

only through the small change in the expansion rate and
gravitational potentials due to the presence of the hot com-
ponent at last scattering. MDM models have larger small-
scale anisotropies due potential decay from the radiation
pressure of the hot component & Bertschinger(Ma 1995 ;

Gates, & Stebbins These results, in con-Dodelson, 1996).
junction with the analogous ones for the matter-power
spectrum presented in demonstrate that the GDMFigure 5,
Ansatz also allows one to model the full range of leading
particle dark matter candidates.

Finally, we show the CMB anisotropies for the single
dark matter component model of inFigure 6a Figure 10.

FIG. 10.ÈA GDM-only Model. CDM is replaced with GDM of w
g
\

[0.04 as in the model of Compared with the(ceff2 \ cvis2 \ 0) Fig. 6a.
sCDM model, the acoustic peaks are of higher amplitude and larger angle
as discussed in the text.

Models of this type tend to have enhanced degree-scale
anisotropies. Because radiation domination is extended,
there is more decay in the gravitational potentials due to
radiation pressure support. This leads to early ISW contri-
butions around GDM-radiation equality. Furthermore, the
sound horizon at last scattering increases due to the
extended period of radiation domination. This moves
the acoustic peaks to slightly larger angles.

6. CONCLUSIONS

We have introduced a parameterization of a GDM com-
ponent based on three quantities that can vary in time but
not in space. These are the equation of state the e†ectivew

g
,

sound speed and the viscosity parameter Com-ceff2 , cvis2 .
binations of these parameters recover all currently popular
candidates for dark matter either exactly or to high accu-
racy, e.g., CDM, radiation, HDM, and scalar Ðelds. Note
that the computational costs of modeling the HDM is the
same as CDM, which is in sharp contrast to a full solution
to the energy-dependent Boltzmann equation for massive
neutrinos & Bertschinger(Ma 1995).

In this general study, we have shown how the clustering
scale of the GDM is not, in general, speciÐed by its equation
of state. The clustering scale appears as a feature in the
matter-power spectrum but only a weak enhancement of
CMB anisotropies at large angles. In fact, the contribution
is bounded by the scalar Ðeld case of for any givenceff2 \ 1
equation of state. There exists a class of models where
GDM clustering has dramatic e†ects on large-scale struc-
ture but no e†ect on the CMB (within cosmic variance).
Conversely, altering the viscosity parameter of the dark
matter a†ects the CMB anisotropies more strongly than the
matter spectrum. An example of this behavior is provided
by massless neutrinos. The di†erence between massless neu-
trinos and a perfect Ñuid with produces an observ-w

g
\ 13able di†erence in the CMB anisotropy spectrum. Finally,

models exist where only a single species of dark matter is
necessary in contrast to scalar Ðeld and MDM models
where a comparable amount of CDM must also be present
to form structure.

While observations currently do not force one to consider
the exotic types of dark matter studied here, this situation
may soon change with the high-precision measurements
expected from the Microwave Anisotropy Probe on the
CMB side and the 2 Degree Field and Sloan Digital Sky
Survey on the galaxy-survey side et al. The(Hu 1998a).
freedom to alter large-scale structure in relation to the
CMB uncovered here may then be essential in the recon-
struction of the cosmological model. This is especially true
since the ambiguity introduced by the initial spectrum of
Ñuctuations is removed once the CMB and large-scale
structure are measured at the same physical scale. Here we
have exposed the aspects of the dark matter to which the
CMB and large-scale structure are and are not sensitive.
These phenomenological aspects, once observationally
determined, should aid in the isolation of a viable physical
candidate for the dark matter.

I thank M. White for allowing me to modify his Boltz-
mann code for this work as well as D. J. Eisenstein and
D. N. Spergel for useful discussions. This work was sup-
ported by the W. M. Keck Foundation and NSF PHY-
9513835.
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APPENDIX

SCALAR FIELDS AS GDM

In this appendix we demonstrate that scalar Ðelds are recovered exactly as a limiting case of the GDM Ansatz and discuss a
few special cases. A minimally coupled scalar Ðeld r with the Lagrangian

L\ [12J[g [gklLk rLlr] 2V (r)] (A1)

and small perturbations, obeysr\ /0] /1

/� 0] 2
a5
a

/5 0] a2V,r \ 0 (A2)

for the background Ðeld and

/� 1\ [2
a5
a

/5 1 [ (k2] a2V,rr)/1] (h5
v
[ 3h5 d)/

5
0[ 2a2V,r h

v
(A3)

for the perturbations. Recall that the metric perturbations and were deÐned for the synchronous and Newtonian gaugesh
v

hdin equation (7).
From the stress-energy tensor

T lk \ r‰kr
‰l[ 12(r‰ar

‰a] 2V )dlk , (A4)

we can associate

oÕ\ 12a~2/5 02] V , pÕ\ 12a~2/5 02[V (A5)

for the background and

doÕ\ a~2(/5 0 /5 1[ /5 02 h
v
)] V,r /1 ,

dpÕ\ doÕ[ 2V,r /1 ,

(oÕ] pÕ)vÕ\ a~2k/5 0/1 ,

pÕ nÕ\ 0 (A6)

for the perturbations. The equations of motion can now be rewritten as

o5 Õ\ [3(oÕ] pÕ)
a5
a

(A7)

for the background and

d(doÕ)
dg

\ [(oÕ] pÕ)(kvÕ] 3h5 d)[
a5
a
C
6 doÕ] 9

a5
a

(1 [ cÕ2)(oÕ ] pÕ)
vÕ
k
D

,

d[(oÕ] pÕ)(vÕ/k)]
dg

\ [ a5
a

(1 ] 3cÕ2)(oÕ ] pÕ)
vÕ
k

] doÕ] (oÕ] pÕ)hv
. (A8)

One can rewrite the equations and for the GDM as(1), (5), (6)

d(do
g
)

dg
\ [ (o

g
] p

g
)(kv

g
] 3h5 d)[ 3

a5
a

p
g
!
g
[ 3(1 ] c

g
2) a5

a
do

g
,

d[(o
g
] p

g
)(v

g
/k)]

dg
\ [4

a5
a

(o
g
] p

g
)
v
g
k

] c
g
2 do

g
] p

g
!

g
[ 2

3
(1 [ 3K/k2)p

g
n
g
] (oÕ ] pÕ)hv

. (A9)

Employing equations and we Ðnd that GDM with and corresponds to a scalar Ðeld(8) (12), w
g
\ pÕ/oÕ, ceff2 \ 1, cvis2 \ 0

component.
Although exact, there are a few novel aspects concerning scalar Ðelds that are hidden in this representation. The equation of

state encodes the potential V but is not completely speciÐed by it. The equation of state is also dependent on how the Ðeldw
grolls in the potential as a function of time and this is dependent on the expansion rate, which acts a frictional term in equation

This fact allows for novel features such as the attractor solutions investigated by & Joyce(A2). Ferreira (1997).
Furthermore, quadratic potentials such as those found in axion models, cause the Ðeld and so the equation ofV \ 12m2r2,

state to rapidly oscillate. Here acts as a driven oscillator such that the perturbation does not stabilize untilequation (A3)
Malomed, & Zeldovich & Sasaki(Khlopov, 1985 ; Nambu 1990)

k2Z mJGo
g

, (A10)
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despite the fact that Although the GDM description of formally holds, it is impractical to solve becauseceff2 \ 1. equation (A9)
of the widely separated expansion and oscillation timescales. One can, however, model this system by time averaging the
oscillations and setting and as is commonly done for axion models.w

g
\ 0 ceff2 > 1

The Ðeld may be both rapidly oscillating and slowly rolling in certain two-Ðeld models (see, e.g., & Sasaki forKodama 1984
multiÐeld modiÐcations to the equations of motion). Since the Ðeld evolution depends only on potential derivatives, the
axion-type instability exists on short time scales. Nevertheless, on the expansion timescale the rolling contributes to the
background density and pressure. Models of this type can have a net but can cluster well below the horizon scale.w

g
\ 0
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