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ABSTRACT

Weak gravitational lensing observations probe the spectrum and evolution of density fluctuations and the
cosmological parameters that govern them, but they are currently limited to small fields and subject to selection
biases. We show how the expected signal from large-scale structure arises from the contributions from and
correlations between individual halos. We determine the convergence power spectrum as a function of the
maximum halo mass and so provide the means to interpret results from surveys that lack high-mass halos either
through selection criteria or small fields. Since shot noise from rare massive halos is mainly responsible for the
sample variance below 109, our method should aid our ability to extract cosmological information from small
fields.

Subject headings: cosmology: theory — gravitational lensing — large-scale structure of universe

1. INTRODUCTION

Weak gravitational lensing of faint galaxies probes the dis-
tribution of matter along the line of sight. Lensing by large-
scale structure (LSS) induces correlations in the galaxy ellip-
ticities at the percent level (e.g., Blandford et al. 1991;
Miralda-Escudé 1991; Kaiser 1992). Although challenging to
measure, these correlations provide important cosmological in-
formation that is complementary to that supplied by the cosmic
microwave background and potentially as precise (e.g., Jain &
Seljak 1997; Bernardeau, van Waerbeke, & Mellier 1997; Kai-
ser 1998; Schneider et al. 1998; Hu & Tegmark 1999; Cooray
1999; van Waerbeke, Bernardeau, & Mellier 1999; see Bar-
telmann & Schneider 2000 for a recent review). Indeed, several
recent studies have provided the first clear evidence for weak
lensing in so-called blank fields (van Waerbeke et al. 2000;
Bacon, Refregier, & Ellis 2000; Wittman et al. 2000).

Weak lensing surveys are currently limited to small fields
that may not be representative of the universe as a whole, owing
to sample variance. In particular, rare massive objects can con-
tribute strongly to the mean power in the shear or convergence
but are not present in the observed fields. The problem is com-
pounded if one chooses blank fields subject to the condition
that they do not contain known clusters of galaxies. Our ob-
jective in this Letter is to quantify these effects and to under-
stand what fraction of the total convergence power spectrum
should arise from lensing by individual massive clusters as a
function of scale.

In the context of standard cold dark matter (CDM) models
for structure formation, the dark matter halos that are respon-
sible for lensing have properties that have been intensely stud-
ied by numerical simulations. In particular, analytic scalings
and fits now exist for the abundance, profile, and correlations
of halos of a given mass. We show how the convergence power
spectrum predicted in these models can be constructed from
these halo properties. The critical ingredients are the Press-
Schechter (1974, hereafter PS) formalism for the mass function,
the Navarro, Frenk, & White (1996, hereafter NFW) profile,
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and the halo bias model of Mo & White (1996). Following
Seljak (2000), we modify the halo profile parameters, specif-
ically the concentration, so that halos account for the full non-
linear dark matter power spectrum, and we generalize his treat-
ment so as to be applicable through all redshifts relevant to
current galaxy ellipticity measurements of LSS lensing. This
calculational method allows us to determine the contributions
to the convergence power spectrum of halos of a given mass.

Throughout this Letter, we will take LCDM as our fiducial
cosmology, with parameters for the CDM density,Q = 0.30c

for the baryon density, for the cosmolog-Q = 0.05 Q = 0.65b L

ical constant, for the dimensionless Hubble constant,h = 0.65
and a scale-invariant spectrum of primordial fluctuations, nor-
malized to galaxy cluster abundances ( ; see Viana &j = 0.98

Liddle 1999) and consistent with COBE (Bunn & White 1997).
For the linear power spectrum, we take the fitting formula for
the transfer function given in Eisenstein & Hu (1999).

2. LENSING BY HALOS

2.1. Halo Profile

We model dark matter halos as NFW profiles with a density
distribution

rs
r(r) = . (1)2(r/r )(1 1 r/r )s s

The density profile can be integrated and related to the total
dark matter mass of the halo within :rv

c3M = 4pr r log (1 1 c) 2 , (2)s s [ ]1 1 c

where the concentration c is defined as . Choosing as ther /r rsv v

virial radius of the halo, spherical collapse tells us that M =
, where is the overdensity of collapse (see,34pr D(z)r /3 D(z)bv

e.g., Henry 2000) and is the background matter densityrb

today. We use comoving coordinates throughout. By equating
these two expressions, one can eliminate and describe thers

halo by its mass M and concentration c. Finally, we can de-
termine a relation between M and c such that halo distribution
produces the same power as the nonlinear dark matter power
spectrum, as outlined in Seljak (2000).
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Fig. 1.—Halo model power spectra. (a) Dark matter power spectrum at redshift of 0.5. (b) Convergence power spectrum with . The sum of the Poissonz = 1s

(dotted line) and correlation (dashed line) contribution (solid line) compares well with that predicted by the nonlinear power spectrum based on the PD fitting
function (long-dashed line). In (a), the linear matter density power spectrum is shown with a dot-dashed line.

2.2. Convergence Power Spectrum

For lensing convergence, we need the projected surface mass
density, which is the line-of-sight integral of the profile

1rv

S(r ) = r(r , r )dr , (3)⊥ E ⊥ k k
2rv

where is the line-of-sight distance and is the perpendicularr rk ⊥
distance. As in equation (2), the cutoff here at the virial radius
reflects the fact that we only account for mass contributions
out to (see Bartelmann 1996 for an analytical descriptionrv

when ). The convergence on the sky is related tor r ` k(v)v

surface mass density through

4pG d dl ls
k(v) = (1 1 z )S(d v), (4)l l( )2c ds

where the extra factor of from the familiar expression(1 1 z )l

comes from the use of comoving coordinates to define densities
and distances; e.g., , , and are the comoving angulard d dl s ls

diameter distances from the observer to lens, from the observer
to source, and from the lens to source, respectively.

The total convergence power spectrum due to halos cantotCk

be split into two parts: a Poisson term and a term involvingPCk

correlations between individual halos . This split was intro-CCk

duced by Cole & Kaiser (1988) to examine the power spectrum
of the Sunyaev & Zeldovich (1980, hereafter SZ) effect due
to galaxy clusters (see Komatsu & Kitayama 1999 and refer-
ences therein for more recent applications).

The Poisson term due to individual halo contributions can
be written as

z Ms max2d V dn(M, z)P 2C (l) = dz dM [k (M, z)] . (5)k E E ldz dQ dM0 Mmin

where is the redshift of background sources, is the2z d V/dzdQs

comoving differential volume, and

vv
1

k = 2p vdv k(v)J l 1 v (6)l E 0 ( )[ ]20

is the two-dimensional Fourier transform of the halo profile in
the flat-sky approximation. The halo mass distribution as a
function of redshift [ ] is determined through thedn(M, z)/dM
PS formalism.

Here we have assumed that all sources are at a single redshift;
for a distribution of sources, one integrates over the normalized
background source redshift distribution. The minimum Mmin

and maximum masses can be varied to study the effectsMmax

of rare and excluded high-mass halos.
The clustering term arises from correlations between halos

of different masses. By assuming that the linear matter density
power spectrum is related to the power spectrum ofP(k, z)
halos over the whole mass range via a redshift-dependent linear
bias term , we can write the correlation term asb(M, z)

zs 2d V lCC (l) = dz P , zk E ( )dz dQ d0 l

M 2max
dn(M, z)

# dM b(M, z)k (M, z) . (7)[ ]E ldMMmin

Here we have utilized the Limber approximation (Limber 1954)
by setting . Mo & White (1996) find that the halo biask = l/dl

can be described by , where2b(M, z) = 1 1 [n (M, z) 2 1]/dc

is the peak-height threshold, isn(M, z) = d /j(M, z) j(M, z)c

the rms fluctuation within a top-hat filter at the virial radius
corresponding to mass M, and is the threshold overdensitydc

of spherical collapse (see Henry 2000 for useful fitting func-
tions).

3. RESULTS

Following the approach given in Seljak (2000), we first test
the halo prescription against the full nonlinear density power
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Fig. 2.—Lensing convergence as a function of maximum halo mass. In increasing order, for both Poisson (dotted lines) and total contributions (solid lines),
the maximum mass is 1011, 1012, 1013, 1014, and 1015 . The sources are at (a) , (b) , and (c) , with mass cutoff applied only out to .M z = 0.4 z = 1 z = 1 z = 0.3, s s s

Fig. 3.—(a) Total lensing convergence as a function of maximum masstotCk

for several l-values and sources at . As shown, contributions from halosz = 1s

with masses greater than 1015 are negligible. (b) Surface density of haloM,

masses as a function of minimum mass using PS formalism out to z =max

and . This determines the survey area needed to ensure a fair sample0.3 z = 1max

of halos greater than a given mass.

spectrum found in simulations and fitted by Peacock & Dodds
(1996, hereafter PD). In Figure 1a, as an example, we show
the comparison at . A good match between the twoz = 0.5
power spectra was achieved by slightly modifying the concen-
tration relation of Seljak (2000) as

2b(z)M
c(M, z) = a(z) . (8)[ ]M (z)?

Here is the nonlinear mass scale at which ,M (z) n(M, z) = 1?

while and can be considered as adjustable parameters.a(z) b(z)
The dark matter power spectrum is well reproduced, to within
20% for Mpc , out to a redshift of 1 with210.0001 ! k ! 500
the parameters and20.3a(z) = 10.3(1 1 z) b(z) = 0.24(1 1

, which agree with the values given by Seljak (2000) for20.3z)
the NFW profile at . The two power spectra differ in-z = 0
creasingly with scale at Mpc , but the PD power21k 1 500
spectrum is not reliable there because of the resolution limit
of the simulations from which the nonlinear power spectrum
was derived. Note that the above relation is only validc(M, z)
for the cosmology used here and for the NFW profile; changing
the inner slope of the profile requires a compensating change
in the concentration (Seljak 2000). Moreover, the adopted halo
profile should not necessarily be interpreted as the true mean
profile since other effects not considered in our prescription,
such as halo substructure, would affect the relation between
the dark matter power spectrum and the spatial distribution and
mean density profiles of halos. A detailed study of asc(M, z)
generally applied to all cosmologies, profile shapes, and power
spectra is currently in progress (U. Seljak 2000, private com-
munication). These uncertainties, however, do not change our
main conclusions on the halo mass dependence of the con-
vergence in the LCDM model.

In general, the behavior of a dark matter power spectrum
that is due to halos can be understood in the following way.
The linear portion of the dark matter power spectrum, k !

Mpc , results from the correlation between individual dark210.1
matter halos and reflects the bias prescription. The fitting for-
mulae of Mo & White (1996) adequately describe this regime
for all redshifts. The midportion of the power spectrum, around

Mpc , corresponds to the nonlinear scale21k ∼ 0.1–1 M ∼
, where the Poisson and correlated terms contribute com-M (z)?

parably. At higher k, the power arises mainly from the contri-
butions of individual halos (see Seljak 2000 for a discussion

of the detailed properties of the density and galaxy power spec-
tra due to halos).

In Figure 1b, we show the same comparison for the con-
vergence power spectrum. The LSS power spectrum was cal-
culated following Hu & Tegmark (1999) using the PD power
spectrum for the underlying mass distribution and using the
same Limber approximation as the correlation calculation pre-
sented here. The lensing power spectrum that is due to halos
has the same behavior as the dark matter power spectrum. At
large angles ( ), the correlations between halos domi-l & 100
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nate. The transition from linear to nonlinear is at , wherel ∼ 500
halos of mass similar to contribute. The Poisson con-M (z)?

tributions start dominating at .l 1 1000
In order to establish the extent to which massive halos con-

tribute, we varied the maximum mass of halos in theMmax

convergence calculation. The results are shown in Figure 2.
We use background source redshifts of 1 and 0.4, corresponding
to deep lensing surveys and to a shallower survey such as the
ongoing Sloan Digital Sky Survey.5 In Figures 2a and 2b, we
exclude masses above a certain threshold at all redshifts, and
in Figure 2c, we exclude masses only for halos below redshift

, reflecting the fact that current observations of galaxyz = 0.3
clusters are likely to be complete only out to such a low redshift.
Assuming the latter, we find that a significant contribution
comes from massive clusters at low redshifts (see Figs. 2b and
2c). Ignoring such masses, say above ∼1014 M , can lead to,

a convergence power spectrum that is a factor of ∼2 lower than
the total. Note that such a high-mass cutoff affects the Poisson
contribution of halos more than the correlated contributions
and can bias the shape, not just the amplitude, of the power
spectrum.

In Figure 3a, we show the dependence of for several l-totCk

values. If halos less than 1015 are well represented in aM,

survey, then the power spectrum will track the LSS conver-
gence power spectrum for all l-values of interest. The surface
number density of halos determines how large a survey should
be to possess a fair sample of halos of a given mass. We show
this in Figure 3b, as predicted by the PS formalism, for our
fiducial cosmological model for halos out to andz = 0.3 z =

. Since the surface number density of halos above 1015 M,1.0
out to a redshift of 0.3 and 1.0 is ∼0.03 and 0.08 deg , re-22

spectively, a survey of order ∼30 deg2 should be sufficient to
contain a fair sample of the universe for recovery of the full
LSS convergence power spectrum.

One caveat is that mass cuts may affect the higher moments
of the convergence differently so that a fair sample for a quan-
tity such as skewness will require a different survey strategy.
From numerical simulations (White & Hu 2000), we know that

5 Available at http://www.sdss.org.

shows substantial sample variance, implying3 2 2S { Ak S/Ak S3

that it may be dominated by rare massive halos. A detailed
account of this work shows that even M halos are15M 1 10 ,

important for skewness (Cooray & Hu 2000).
While upcoming wide-field weak lensing surveys, such as

the MEGACAM experiment at the Canada-France-Hawaii
Telescope (Boulade et al. 1998) and the proposed wide-field
survey by J. A. Tyson et al. (2000, private communication),
will cover areas up to ∼30 deg2 or more, the surveys that have
so far been published, e.g., Wittman et al. (2000), only cover
at most 4 deg2 in areas without known clusters. The observed
convergence in these fields should be biased low compared
with the mean, and they should vary widely from field to field
because of the sample variance from the Poisson contribution
of the largest mass halos in the fields, which are mainly re-
sponsible for the sample variance below 109 (see White & Hu
2000).

Our results can also be used proactively. If properties of the
mass distribution such as the maximum-mass halo in the ob-
served lensing fields are known, say through prior optical, X-
ray, SZ, or even internally in the lensing observations (see
Kruse & Schneider 1999), one can make a fair comparison of
the observations with theoretical model predictions with a mass
cutoff in our formalism. Even for larger surveys, the identifi-
cation of massive halos can be beneficial: most of the sample
variance in the fields will be due to rare massive halos. Sim-
ulations indicate that they increase the errors on the power
spectrum by ∼2 at (White & Hu 2000). Once iden-l ∼ 2000
tified, massive halos may be eliminated in order to reduce
sampling errors. Developing techniques to do so optimally and
quantifying the residual sampling errors are interesting topics
for further study. The benefits could be substantial: a reduction
in the sample errors increases the precision with which the
power spectrum can be measured and hence the cosmological
parameters upon which it depends.

We acknowledge useful discussions with Uros Seljak and
our referee Max Tegmark. W. H. is supported by the Keck
Foundation and NSF-9513835.
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