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ABSTRACT

The lensing of cosmic microwave background (CMB) photons by intervening large-scale structure leaves a
characteristic imprint on its arcminute-scale anisotropy that can be used to map the dark matter distribution in
projection on degree scales or∼100 h�1 Mpc comoving. We introduce a new algorithm for mass reconstruction
that optimally utilizes information from the weak lensing of CMB anisotropies in the damping tail. Individual
degree-scale mass structures can be recovered with a high signal-to-noise ratio from a foreground-free CMB
map of arcminute-scale resolution, specifically with an FWHM beam less than 5� and a noise level less than
15 (10�6 arcmin) or 41 (mK arcmin).

Subject headings: cosmic microwave background — dark matter — large-scale structure of universe

1. INTRODUCTION

It is well known from the study of the weak gravitational
lensing of faint galaxies that the distortion of background im-
ages can be used to map the intervening mass distribution in
projection (Tyson, Wenk, & Valdes 1990; Kaiser & Squires
1993). As the most distant background image available, maps
of the cosmic microwave background (CMB) temperature dis-
tribution provide a unique opportunity to map the distribution
of dark matter. They provide information about structures on
the largest linear scales in the high-redshift universe (Zaldar-
riaga & Seljak 1999) and hence complement information from
weak-lensing surveys. The main difficulty is that, unlike an
image of background galaxies, the temperature distribution of
the CMB is to good approximation a Gaussian random field
with no characteristic shape.

Algorithms in the literature for extracting the intervening
mass distribution from lensed CMB maps have shown the po-
tential for statistical detections by thePlanck satellite.1 Ber-
nardeau (1998) considered the distortion to the Hessian of the
temperature field. Zaldarriaga & Seljak (1999) considered dis-
tortions to the product of gradients of the temperature field. In
neither case is it possible to extract high signal-to-noise ratio
maps of the dark matter.

Recently, Zaldarriaga (2000) showed that the damping tail
of CMB anisotropies (see, e.g., Hu & White 1997) exhibits
enhanced lensing effects in the four-point function. Indeed,
even the two-point function or power spectrum shows enhanced
effects in this region due to the multitude of acoustic peaks
and the sharp decline in intrinsic power associated with damp-
ing (Metcalf & Silk 1997).

Hu (2001) showed that there is a quadratic estimator that
recovers all of the information in the four-point function about
the mass distribution on large scales. Even for experiments like
Planck that only partially resolve the damping tail, this esti-
mator reduces the noise variance of the recovered projected
mass power spectrum by over an order of magnitude. Planned
experiments to measure arcminute-scale secondary CMB an-
isotropies can potentially use this statistic to map the dark
matter at a high signal-to-noise ratio.

We begin in § 2 by reviewing the effect of lensing on CMB
temperature maps. In § 3, we describe the reconstruction al-
gorithm and test it with realizations of the CMB temperature

1 See http://astro.estec.esa.nl/SA-general/Projects/Planck.

field and instrumental noise. We discuss observational strate-
gies for optimizing the reconstruction in § 4. For illustration
purposes, we use a flatLCDM cosmology throughout with
parameters , , , ,Q p 0.3 Q p 0.05 Q p 0.65 h p 0.65 n pc b L

, and .�51 d p 4.2# 10H

2. LENSING

Weak lensing of the CMB photons by the intervening mass
distribution remaps the primary temperature field as a˜ ˆV(n)
function of the directional vector on the sky as (e.g., Seljakn̂
1996; Goldberg & Spergel 1999)

˜ˆ ˆV(n) p V(n � �f), (1)

where is the deflection angle, which is related to the grav-�f
itational potential asW(x, D)

D (D � D)A sˆ ˆf(n) p �2 dD W(Dn, D), (2)� D (D)D (D )A A s

whereD is the comoving coordinate distance along the line of
sight and is the comoving angular diameter distance asso-DA

ciated withD; is the coordinate distance to the last scatteringDs

surface. In a flat universe, . The projected potentialD p DA

has a power spectrum , which is itself a projection offfˆf(n) CL

the gravitational potential power spectrum (see, e.g., Hu 2000,
eq. [28]). For the scales of interest here, the gravitational po-
tential power spectrum is in the linear regime, and hence

is a Gaussian random field. The power spectrum of theˆf(n)
deflection angles is given by (see Fig. 1 forffL(L � 1)CL

LCDM). For reference, the convergence power spectrum, or
projected mass, is given by . The rms deflec-2 ff[L(L � 1)] C /4L

tion angle

� 2L � 12 ffv p L(L � 1)C (3)�rms L4pLp1

is 2�.6 for this model, but its coherence scale corresponds to
the peak of the log power spectrum at or a few degrees.L ∼ 60
Counterintuitively then, the arcminute-scale structure of the
CMB temperature field yields information about the mass dis-
tribution on much larger linear scales. The deflection power
comes mainly from structures at redshifts and scalesz ∼ 1–2
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Fig. 1.—Lensing deflection power spectrum for theLCDM model. Error
bars represent the total (sample plus noise) variance and sample variance from
recovery from an area of and an experiment with a beam off p 0.1 j psky

and noise (10�6 arcmin). Note that the errors for are�1/21�.5 w p 10 L � 200
dominated by sample variance, implying that the recovered map has a high
signal-to-noise ratio.

Fig. 2.—Left: realization of the CMB temperature field.Right: Toy example of the lensing effect: circularly symmetric projected mass with deflection32� # 32�
angles comparable to the size of the structure. The distortion of the fine-scale anisotropy of the CMB traces the lensing structure on much larger scales.

of k approximately a few times 10�2 Mpc�1 (see Zaldarriaga
& Seljak 1999, Fig. 7).

To simulate a lensed CMB map, one makes a Gaussian ran-
dom realization of the unlensed CMB power spectrum andC̃l

remaps the temperature field according to a random realization
of the projected potential . Detector noise and residual fore-ffCL

grounds are then added as a realization of . For detectornoiseCl

noise and a finite beam ofj (FWHM; Knox 1995),

2noise �1 l(l�1)j /8 ln 2C p w e , (4)l

where is the noise in units of ( radian)2.�1w DT/T

Because the deflection angles are small compared with the
scale of the structures, the lensing effect is difficult to see
directly in a map. To gain a better intuition for the nature of
the effect, let us first consider lensing by a circularly symmetric
Gaussian profile in projected mass with a scale of 5� and an
amplitude corresponding to a 3� maximum deflection. As in
the case of the weak lensing of faint galaxies, the distortion
represents a tangential shearing of the image. Unlike the faint
galaxy case, the source image is a Gaussian random field. Al-
though the temperature map itself clearly shows evidence for
lensing, the two-point statistics of the CMB temperature field
do not suffice to reconstruct the mass distribution of the lens.

3. RECONSTRUCTION

The case of the symmetric lens in Figure 2 suggests that a
statistic related to the Laplacian of the temperature field would
trace the underlying mass distribution. The fact that both hot
and cold spots are lensed alike washes out the signal in the
Laplacian itself. Hu (2001) showed that a related statistic, the
divergence of the temperature-weighted gradient of the map,
retains all of the information inherent in the four-point function
(Zaldarriaga 2000). Here we consider its use in mapping the
dark matter.

We describe the technique for reconstructing the dark matter
field on small sections of the sky for which sphericalv ! 60�map

harmonic analysis can be replaced by Fourier techniques. For
the generalization to the curved sky, see Hu (2001).

The first step is to take the gradient of the temperature map
by filtering in the Fourier domain,

2 ˜d l Cl ˆil · nˆG(n) p il V(l)e , (5)� 2 tot(2p) Cl

where and ( ) is the lensed (unlensed)tot noise ˜C p C � C C Cl l l l l

power spectrum. Note that taking the gradient effectively high-
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Fig. 3.—Left: realization of the deflection field in theLCDM model. Right: Recovery of the deflection field with a beam (FWHM) and32� # 32� j p 1�.5
detector noise of (10�6 arcmin).�1/2w p 10

pass filters the map. Next, construct an explicitly high-pass
filtered temperature map,

2d l 1 ˆil · nˆW(n) p V(l)e , (6)� 2 tot(2p) Cl

to weight the gradient

˜ ˆ ˆ ˆG(n) p W(n)G(n). (7)

Finally, take a filtered divergence of this field in the Fourier
domain,

2d L NL ˆiL · n˜ˆD(n) p � iL · G(L)e . (8)� 2(2p) L

The normalization factor may be chosen so that̂N /L D(n)L

averaged over an ensemble of CMB realizations recovers the
deflection field

2d L ˆiL · nˆd(n) { Lf(L)e . (9)� 2(2p)

To determine , consider the operations directly in the FourierNL

domain,

2N d l V VL 1 l l1 2˜ ˜D(L) p (L · l C � L · l C ) , (10)� 1 l 2 l2 tot tot1 2L (2p) 2C Cl l1 2

where . Taylor-expanding equation (1) for the lens-l p L � l2 1

ing, one obtains (Hu 2000)

2d l1˜V(l) p V(l) � V(l )f(l � l )(l � l ) · l , (11)� 1 1 1 12(2p)

so that

AD(L)S p d(L) p Lf(L) (12)CMB

if

2 2˜ ˜1 d l (L · l C � L · l C )1 1 l 2 l�1 1 2N p . (13)L �2 2 tot totL (2p) 2C Cl l1 2

Notice that the filters are designed so that the lensing effects
in the Fourier domain add coherently such that the dot product
above comes in as the square. This is a reflection of the
optimization.

We show an example of this reconstruction on a 32� #
field in Figure 3 with detector noise added as appropriate32�

for a beam of and noise of (10�6 arcmin)�1/2j p 1�.5 w p 10
or (27 mK arcmin) additionally low-pass filtered to showL ≤

, where the signal-to-noise ratio is the highest. Alternately,150
Weiner filtering can be used to get a better visual impression
of the fidelity of the map. In any case, the degree-scale features
in the map are recovered at a good signal-to-noise ratio.

In the idealization of an ensemble of CMB maps lensed by
the same structure, returns an unbiased estimate of theD(L)
deflection map. However, given that we have only one reali-
zation of the lensing per lens, it is important to understand the
properties of the noise introduced by the Gaussian primary
anisotropies themselves and the instrumental and/or foreground
noise. Following Hu (2001),

∗ ′ 2 ′ 2 ffAD (L)D(L )S p (2p) d(L � L )(L C � N ), (14)L L
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Fig. 4.—Signal-to-noise ratio as a function of detector noise, beam, and sky
fraction . Solid lines include both sample and Gaussian noise (primary CMBfsky

and instrumental) variance; dashed lines include only Gaussian noise variance.
The signal-to-noise ratio drops off rapidly for (10�6 arcmin) and�1/2w 1 15
FWHM beams .′j 1 5

so that also plays the role of the noise power spectrum. ANL

deflection power spectrum extracted from this statistic must
remove this noise bias. As discussed in Hu (2001), the noise
bias may alternately be eliminated by cross-correlating maps
reconstructed from independentl bands in the original lensed
map.

Under the assumption of Gaussian statistics, the signal-to-
noise ratio perL in the deflection power spectrum is given by

2 2 ff 2S 2L � 1 L CLp f , (15)sky( ) ( )2 ffN 2 L C � NL LL

and the precision with which the binned deflection power spec-
trum can be recovered by an experiment with a sky fraction
of (∼4000 deg2) and , (10�6 arc-1/2f p 0.1 j p 1�.5 w p 10sky

min) is shown in Figure 1. Also shown are the errors provided
by sample variance alone. Since sampling errors dominate at

, the recovered map has a good signal-to-noise ratioL � 150
on those characteristic structures. This is independent of the
actual sky fraction covered by the experiment.

4. DISCUSSION

The statistic introduced here utilizes CMB structures in the
arcminute regime of the damping tail to map the dark matter
on degree scales. As with the weak lensing of faint galaxies,
image distortions manifest on small angular scales are used to
reconstruct the mass on a much larger scale. Mapping the dark
matter distribution therefore requires high-resolution, high
signal-to-noise ratio maps of the CMB anisotropies themselves.
Conversely, although a wide field of at least several degrees
on the side is required to map the full extent of the structures
expected, the statistic essentially high-pass filters the input
CMB maps. A true map that retains correlations across these
scales is not necessary.

To see how an observing strategy might be optimized for
mapping the dark matter, let us consider the trade-offs between
sky coverage, instrumental noise, and beam. Because this sta-
tistic is a quadratic function of the temperature fluctuation data,
the balance differs from the usual case. In Figure 4, we show
the total signal-to-noise ratio in the measurement of the de-
flection power spectrum (summed in quadrature overL) of an
experiment as a function of these parameters. We consider sep-
arately the case of noise variance from the Gaussian random
primary anisotropies and detector noise alone and combined
with the sample variance of the lensing fields. When the former
exceeds the latter, a high signal-to-noise ratio map of the struc-
tures results. Because this is an integrated statistic, the char-
acteristic signal-to-noise ratio for large-scale features is much
higher (see Fig. 1).

Compare the steep increase in the signal-to-noise ratio as the
detector noise is reduced with the shallow increase with sky
coverage of . Up until (10�6 arcmin), observing1/2 �1/2f w ∼ 10sky

time is best spent going deep rather than wide. Beyond this
point, the intrinsic noise variance provided by the primary
CMB anisotropies themselves begins to dominate and saturate
the signal-to-noise ratio. If the goal is to produce a high signal-
to-noise ratio map of structures, then going down to�1/2w ∼

(10�6 arcmin) can achieve substantially improved maps of1
the finer scale structures in the map. Another crucial factor is
the beam size. To resolve the structures that best trace the
lensing, a beam of is required, and it is not until′j ! 5 j ∼

that the gains saturate. If foregrounds are not removed′ ′1 –2
from the map through their spatial coherence and/or frequency

dependence, then this balance can shift to larger angular scales
and more sky coverage. For the 1�.5, 10 (10�6 arcmin) baseline
experiment, inclusion of Gaussian random noise from the
Sunyaev-Zeldovich and Vishniac effects in imply a relativetotCl

degradation in the signal-to-noise ratio of∼10% and∼1% (for
), respectively, and so do not require substantialt p 0.1

reoptimization.
A high signal-to-noise ratio map of the dark matter in pro-

jection can also be used to pull out tracers of the large-scale
structure of the universe in other maps through cross-correlation.
Examples include secondary anisotropies such as the integrated
Sachs-Wolfe and Sunyaev-Zeldovich effects (Goldberg & Sper-
gel 1999; Seljak & Zaldarriaga 1999; Cooray & Hu 2000). One
can show that the statistic employed here retains all of the in-
formation in the full bispectrum of the secondary-lensing-
primary correlation and so is the optimal statistic to measure
these correlations.

The filters used to reconstruct the dark matter map formally
require as input the power spectrum of the CMBbefore lensing.
The lensed CMB power spectrum will, of course, be measured
to exquisite precision by CMB satellites and by the input tem-
perature map themselves. Employing the lensed CMB power
spectrum in the filter or an otherwise slightly incorrect as-
sumption simply degrades the signal-to-noise ratio by a cor-
respondingly small amount but does not introduce spurious
structures in the ensemble-averaged recovery. They appear as
a calibration error for the mass map. Indeed, in the context of
a parameterized cosmology, the unlensed CMB power spectrum
may itself be reconstructed from the observed spectrum. For
a nonuniform survey geometry, with perhaps foreground-
contaminated regions removed, more sophisticated techniques
than the Fourier transform filtering scheme employed here will
have to be developed. These complications should not present
an insurmountable obstacle to the goal of mapping the dark
matter in projection at intermediate redshifts.
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