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MEASURING THE CURVATURE OF THE UNIVERSE†
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We discuss how the curvature of the universe can be robustly measured employing only the gross features of the CMB anisotropy
spectrum. Though the position of the first peak is not robust, uncertainties in the model for structure formation can be removed
by using the spacing of the acoustic peaks and the location of the damping tail. Combined these provide important consistency
tests that can be used to discriminate against a truly exotic model.

If we knew the model of structure formation exactly,
we could determine many cosmological parameters, in-
cluding the curvature of the universe, to several percent
accuracy from features in the CMB anisotropy power
spectrum (for a review see [1] and references therein).
The question arises: how is our ability to measure them
degraded as we relax our assumptions about the underly-
ing model. Once we understand which features are model
independent (and why), we can go on to study the pro-
cess of structure formation from those which are model
dependent. For concreteness, we will focus here on one
step of this program [2]: measuring the spatial curvature
of the universe, i.e. Ωtot = Ω0 +ΩΛ. The complementary
approach of first verifying the model and then measur-
ing the cosmological parameters is taken in a companion
piece [3].

Let us assume that we understand the “big picture”,
i.e. that gravitational instability enhances initially small
fluctuations, and that the CMB is coupled to the baryon-
electron plasma before recombination. Can we build a
measurement of the curvature from such minimal as-
sumptions? Are there sufficient cross checks such that
we can have confidence in the measurement? The an-
swers to these questions lie in the acoustic signature of
the small angle CMB anisotropy spectrum.

Our “big picture” leaves several questions unanswered:

1. What is the fundamental nature of the fluctua-
tions?

– do curvature perturbations exist outside the
horizon as in the inflationary model or are the
perturbations initially isocurvature as in a de-
fect model (see also [2,3]).

2. What is the matter content of the universe?

– does the baryon-photon ratio (Ωbh2) follow
the big bang nucleosynthesis (BBN) predic-
tion?
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– what is the matter-radiation ratio (Ω0h
2 or

more generally, the equality epoch zeq)?

3. Does the thermal history of the universe follow the
prediction of standard recombination at z∗ ∼ 103?

These questions and their consequence for the curvature
measurement can be addressed by examining the gross
properties of the CMB spectrum taken as a whole. The
fine details, so useful for making precision measurements
in a fixed model, are too model-dependent to serve us
here.

Under our minimal assumptions, we have two striking
features (1) the acoustic peaks: their positions, position
ratios, spacings and relative heights; and (2) the damping
tail: its position, position relative to the peaks and shape.
The acoustic peaks probe the sound horizon at last scat-
tering; the damping tail probes the photon diffusion scale
at that epoch. Both reflect the curvature of the universe
in the projection from physical scale at last scattering
to angular scale on the sky. We shall show that these
features have complementary strengths and weaknesses
in guarding against model uncertainties. Combined they
can be proof against any one of a host of exotic possibil-
ities.

To set the stage for this discussion, let us briefly re-
view the angular size distance test for curvature in the
universe as it relates to the CMB spectrum. A feature in
the temperature fluctuations on the last scattering sur-
face, corresponding to wavenumber kfeature, is viewed as
an anisotropy on the sky at the multipole moment of
a spherical harmonic decomposition `feature = kfeatureD,
where D is the comoving angular size distance and is
dependent strongly on the curvature of the universe:

D = |K|−1/2 sinh[|K|1/2(η0 − η∗)], (1)

where η0 − η∗ is the conformal distance to the last scat-
tering surface and the curvature K = −H2

0 (1−Ωtot) (for
K > 0 replace sinh → sin). Here the Hubble constant is
H0 = 100h km s−1 Mpc−1. Since the projection depends
sensitively on ΩK = 1 − Ωtot, any feature in the CMB
at last scattering may serve in the angular size distance
test for curvature in the universe (see Fig. 1). Let us now
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FIG. 1. (a) Angular size distance. For an inflationary model, features at last scattering such as the peaks and damping tail
are fixed in real space by Ω0h

2 and Ωbh
2, providing in the anisotropy power spectrum `(`+1)C` standard rulers for the angular

size distance test. The cosmological constant ΩΛ yields a minor effect compared with the curvature 1−Ω0−ΩΛ. (b) In a broad
class of models, the peak spacing ∆` and damping tail location `D depend only on the background parameters and provide
rulers that are robust to model changes. The inflationary model is here compared with the pressure scaling model [7].

turn to the two acoustic features, the peak spacings and
damping tail location, that best suit this purpose.

Before recombination, the photons and baryons are
tightly coupled into a single fluid by Compton scatter-
ing. Acoustic oscillations are stimulated as the gravita-
tional compression or rarefaction of the fluid is halted and
turned around by photon pressure as the Jeans length (or
sound horizon) passes the wavelength. Because gravity
is impotent under the Jeans length, typically its effects
subsequently die away leaving the fluid to oscillate at its
natural frequency thereafter.

As discussed further in [2,3], the nature of the fluctu-
ations basically determines whether the photon-baryon
fluid is undergoing a compression or rarefaction at Jeans
crossing which affects the acoustic phase (see Fig. 1b).
For either case, the spacing of the peaks reflects the nat-
ural frequency of the oscillator. More specifically, in the
radiation-dominated era the oscillator equation for the
effective temperature fluctuation T of the CMB becomes
T ′′ + c2sT = 2Ψ′′, where Ψ is the Newtonian potential,
cs is the sound speed, and primes are derivatives with
respect to kη, where η =

∫
dt/a is the conformal time.

From the Poisson equation, |Ψ| ∼ (kη)−2δρ/ρ. Since
in the radiation-dominated era, the density fluctuation
δρ/ρ = O(T ) typically, Ψ is usually negligible well inside
the horizon. More generally, if Ψ′′ is small or slowly-
varying then the solution is an oscillation at the fre-
quency ω = kcs, possibly with a zero point offset. On the

FIG. 2. The peak spacing, especially between higher peaks,
is mainly dependent on the sound horizon at last scattering
(projected on the sky) yielding a robust feature for the an-
gular size distance test. Here five Ω0 = 1 models (see text;
Ω0h

2 = 0.25, Ωbh
2 = 0.0125 and ΩΛ = 0) are compared with

the simple prediction ∆` = `A (solid line).
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FIG. 3. (a) Peak spacing as a function of Ω0 in a flat cosmological constant (ΩK = 0) and open model (ΩΛ = 0). Uncertainties
in Ωbh

2 and h have little effect on the ability to distinguish an open from a flat model. (b) Damping tail as a function of Ω0.
The damping tail is more dependent on Ωbh

2 than the peak spacing but still provides interesting constraints.

last scattering surface, the acoustic peaks will be spaced
by

km+1 − km = kA = π/rs, ∆` = `A = kAD, (2)

where rs =
∫
csdη is the sound horizon at last scattering.

To summarize: while the phase and first peak bear the
mark of the model-dependent driving force, the spacing of
the higher peaks reflects the model-independent natural
frequency, set by the sound horizon at last scattering.

If the sound horizon at last scattering is a known quan-
tity, then the peak spacing provides a sensitive angular
size distance test of the curvature that is relatively ro-
bust to the nature of the fluctuations. In Fig. 2, we show
that the peak spacings for the inflationary, texture [5],
hot dark matter [4], axionic [6], and pressure scaling [7]
isocurvature models are to good approximation related
by Eq. (2) to the sound horizon scale.

There are two possible drawbacks to this method of
measuring the curvature. The first is that the sound
horizon at last scattering depends on the baryon content
Ωbh2, the matter-radiation ratio Ω0h

2 and the thermal
history. In Fig. 3a, we show that an uncertain baryon
content does not pose an obstacle nor do reasonable val-
ues of the Hubble constant 0.4 < h < 0.8. We shall return
to comment on the thermal history below. The second
drawback is that for a precise measurement, gravitational
forcing effects must be negligible so that the peak spacing
reflects the natural frequency of the oscillator. In some
models, this may not occur until the higher peaks where
damping and secondary effects may make the signal dif-

ficult to observe (compare the 1st-2nd peak spacing with
the higher ones in Fig. 2).

The location of the damping tail in the CMB spec-
trum provides yet another angular size distance test of
the curvature [2,8]. The damping is a function of the
duration of recombination, or the thickness of the last
scattering surface. As the universe recombines, the cou-
pling between the photons and the baryons decreases
and the distance that photons can travel before scatter-
ing increases. Acoustic oscillations are destroyed as the
photons random walk through the electron-baryon fluid.
The random walk distance, approximately the geometric
mean of the horizon and Compton mean free path, sets
the scale of this feature in the CMB.

The benefit of this test is that it is entirely indepen-
dent of the nature of the fluctuations (see Fig. 1b). As
long as the baryon fluctuations are linear, the random
walk scale depends only on the background baryon den-
sity, ionization fraction, and expansion rate, not on the
fluctuations themselves. The main drawback is that it is
difficult to measure accurately. The signature of diffusion
damping is a sharp exponential cutoff in ` at the diffusion
scale (see Fig. 1a). Although this exponential shape is
essentially unique, secondary effects such as gravitational
redshifts between last scattering and the present (ISW ef-
fect) can quickly overwhelm the signal making it difficult
to measure. How much these factors will degrade the
measurement of the curvature will vary from model to
model. In inflationary models, both this effect and var-
ious other secondary anisotropies are small enough that
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FIG. 4. Discriminating exotic cases. (a) If the baryon content is far from the BBN value, it will be reflected in the ratio
of the damping scale to peak spacing `D/`A, which gives roughly the number of observable peaks. (b) Likewise, `D/`A will
also detect any delay in recombination. For simplicity, we have here assumed that the universe recombines instantaneously
at z∗. A realistic recombination scenario will lower `D/`A. If recombination occurs late, the model becomes identical to the
no-recombination (NR) scenario in its prediction for the CMB.

`D should be measurable [8].
Another concern is that the damping scale is quite sen-

sitive to the background baryon content, expansion rate
and thermal history. In Fig. 3b, we show that for reason-
able values of Ωbh2 and h this will not prevent us from
distinguishing between Ω0 ≈ 0.3 and 1.0 models.

Interestingly the benefits and drawbacks of the peak
spacing and damping tail tests are complementary. The
peak spacing is easily measured and relatively robust to
changes in the other background parameters, but not
fully immune to radical behavior in the model for the
gravitational fluctuations. The damping tail is immune
to such effects but is more difficult to measure and suffers
more from uncertainties in the other background param-
eters.

Ideally, we would like to measure both quantities. By
combining these two tests, we have an important consis-
tency check on the underlying assumptions of the model
and a discriminator against truly exotic models. For ex-
ample, the baryon content Ωbh2 could be far from the
BBN value or recombination could be delayed by early
energy injection from decaying particles or non-linear

structure formation.∗ Since these exotic possibilities af-
fect the two scales differently, a useful discriminator is
the ratio of the two scales `D/`A (see Fig. 4). If this ra-
tio is anomalous, it is a clear indication that one of the
fundamental assumptions is invalid. If one knew from ex-
ternal information which assumption that is (e.g. baryon
content, radiation content, thermal history, etc.) then
accurate measurements of the curvature could again be
made.

The full acoustic signature in the CMB provides ad-
ditional consistency checks. The Compton drag of the
baryons on the photons tends to enhance the fluctuations
inside gravitational potential wells. For the acoustic os-
cillations, this implies that compressional phases will be
enhanced over rarefaction phases leading to an alternat-
ing series of relative peak heights (see Fig. 1b). If the
baryon content is far lower than the BBN value, then
this effect is too weak to modulate the peak heights. If
it is far higher then it is so strong that the rarefaction
phases will not appear as peaks in the anisotropy at all
[2]. This could also occur if recombination is delayed such

∗Late reionization does not interfere with these tests since
it mainly suppresses power uniformly on small scales without
changing the peak spacing or damping tail location.
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that the ratio of baryon to photon densities is higher at
last scattering. Since the modulation of the peaks is a
unique signature of baryons at last scattering, its detec-
tion would provide an important consistency check on
the assumptions underlying the curvature measurement.

In summary, the acoustic signature in the CMB
anisotropy spectrum provides a sufficient number of fea-
tures such that a curvature measurement which is essen-
tially robust to the nature of the fluctuations, the other
background parameters, and thermal history may be con-
structed. The full battery of tests will require complete
information on the acoustic signal – from the first peak
all the way through to the damping tail.
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