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ABSTRACT
For a universe with massive neutrinos, cold dark matter, and baryons, we solve the linear perturbation

equations analytically in the small-scale limit and Ðnd agreement with numerical codes at the 1%È2%
level. The inclusion of baryons, a cosmological constant, or spatial curvature reduces the small-scale
power and tightens limits on the neutrino density from observations of high-redshift objects. Using the
asymptotic solution, we investigate neutrino infall into potential wells and show that it can be described
on all scales by a growth function that depends on time, wavenumber, and cosmological parameters. The
growth function may be used to scale the present-day transfer functions back in redshift. This allows us
to construct the time-dependent transfer function for each species from a single master function that is
independent of time, cosmological constant, and curvature.
Subject headings : cosmology : theory È dark matter È large-scale structure of universe

1. INTRODUCTION

The mixed dark matter (MDM) scenario for structure
formation involves a hot component of massive neutrinos
as well as the usual cold and baryonic dark matter com-
ponents. In this case, even calculations in linear pertur-
bation theory are nontrivial due to the time-dependent
energy-momentum relation and nonvanishing angular
moments of the neutrino distribution. Perturbations no
longer grow uniformly with time independent of scale. Spe-
ciÐcally, the growth of Ñuctuations is suppressed below the
time-dependent free-streaming scale of the neutrinos due to
collisionless damping. Numerical calculations with state-of-
the-art Boltzmann codes (e.g., & BertschingerMa 1995 ;

Gates, & Stebbins & ZaldarriagaDodelson, 1996 ; Seljak
still require a fair amount of time to solve the evolu-1996)

tion equations on small spatial scales. Moreover, the addi-
tional parameter represented by the neutrino mass mlmakes an exhaustive search of parameter space more diffi-
cult and has led most workers to date to Ðx parameters such
as the baryon density (see, e.g., For these reasons,Ma 1996).
we consider here an analytic treatment of small-scale per-
turbation theory in MDM cosmologies.

The inclusion of baryonic dark matter further compli-
cates the dynamics. Recent measurements of high-redshift
deuterium abundances et al. but see &(Tytler 1996 ; Rugers
Hogan and new theoretical interpretations of the Lya1996)
forest et al. and references therein) suggest a(Weinberg 1997
value of the baryon density greater than the Ðducial)

bnucleosynthesis value of 0.0125 h~2 et al.(Walker 1991).
Baryons suppress Ñuctuations on small scales because, prior
to recombination, photon pressure from the cosmic micro-
wave background (CMB) supports them against collapse.

& Sugiyama hereafter developed a formal-Hu (1996, HS96)
ism to account for this e†ect and to solve the evolution
equations exactly on small scales. The key aspect to the
treatment is the ability to ignore completely the role of
baryons as a gravitational source for enhancing cold dark
matter (CDM) Ñuctuations.

Massive neutrinos act in a manner similar to the prere-
combination baryons. On scales smaller than their free-
streaming length, the neutrinos are smoothly distributed
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and hence do not contribute to the growth of perturbations.
Here we generalize the techniques of to include theHS96
hot component, thereby allowing us to solve analytically for
the transfer function on the smallest scales. We then con-
sider how to describe the end of free streaming and the
resulting infall of neutrinos into the existing potential wells.
This allows us to collapse all of the late-time neutrino e†ects
and to base the transfer function on a single time-
independent function of scale.

In an MDM cosmology with realistic baryon content, the
amplitude of small-scale Ñuctuations is important due to
growing evidence of early structure formation from high-
redshift observations. The model has difficulty in explaining
observations of galaxies at redshift zD 3 et al.(Steidel 1996 ;

& Fukugita as well as damped Lya systems at aMo 1996)
comparable redshift & Miralda-Escude�(Mo 1994 ;

& Charlot et al. et al.Kau†mann 1994 ; Klypin 1995 ; Ma
Baryons only exacerbate this problem and tighten1997).

the upper limit on Indeed, they yield a stronger e†ect)l.for MDM as compared to CDM cosmologies because
rather than enters into the Ñuctuation)

b
/()0[ )l) )

b
/)0amplitude. Similarly, the growth rate of Ñuctuations is

determined by such that a given causes more)l/)0, )lsuppression in a low-density universe. Our results here
should therefore aid in the investigation of the parameter
space left available to MDM cosmologies.

The outline of this paper is as follows. After establishing
the notation in ° we present in ° the small-scale solu-2, 3
tions of the perturbation equations derived in the Appendix.
We use these solutions in ° to study the behavior of neu-4
trino infall and to Ðnd analytic approximations thereof.
From these results, we construct in ° the transfer functions5
in time and wavenumber for the CDM and total density
perturbations and Ðnd agreement at the percent level with
analytic results in the small-scale limit. In ° we show how6
these results may be scaled to cosmologies with a cosmo-
logical constant or spatial curvature.

2. NOTATION

We begin by establishing the notation used throughout.
The density of the ith particle species (i \ c, CDM; b, bary-
onic dark matter ; l, massive neutrinos) today in units of the
critical density is denoted whereas the fraction of the)

i
,
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total matter density today, is denoted)0\ ;
i
)

i
, f

i
\

As shorthand, we employ, for example, i\ cb to)
i
/)0.denote Note that Density per-f

cb
\ f

c
] f

b
. f

c
] f

b
] fl \ 1.

turbations are expressed as where the hybriddo
i
/o

i
\ d

i
,

combinations are density weighted (e.g., d
cb

\ f
c
d
c
] f

b
d
b
).

The CMB temperature is given by K; theTCMB\ 2.7#2.7best determination to date is 2.728^ 0.004 K et(Fixsen
95% conÐdence interval), at which it is Ðxed foral.1996 ;

most of our expressions. Finally, as usual the Hubble con-
stant is written as h km s~1 Mpc~1.H0\ 100

Time is parameterized as wherey \ (1] zeq)/(1 ] z),

zeq\ 2.50] 104)0 h2#2.7~4 (1)

is the redshift of matter-radiation equality. The second
important epoch is when the baryons are released from the
Compton drag of the photons near recombination, i.e.,

where & Huy
d
\ y(z

d
), (HS96; Eisenstein 1998a)

z
d
\ 1291

()0 h2)0.251
1 ] 0.659()0 h2)0.828 [1] b1()b

h2)b2] ,

b1\ 0.313()0 h2)~0.419[1] 0.607()0 h2)0.674] ,

b2\ 0.238()0 h2)0.223 . (2)

After this epoch, baryons fall into the potential wells pro-
vided by the CDM and participate in gravitational collapse.

We often label the comoving wavenumber k relative to
the scale that crosses the horizon at matter-radiation equal-
ity, thus deÐning the quantity

q \ k
Mpc~1 #2.72 ()0 h2)~1

\ k
19.0

()0 H02)~1@2(1 ] zeq)~1@2 . (3)

The small-scale limit is deÐned as q ? 1. In the next section
(° we place an additional restriction that the momentum3),
of the neutrinos keep them out of the perturbations formed
by the heavier species. Such scales are below the free-
streaming scale, which itself shrinks with time (cf. eq. [12]).
We show in ° how to account for neutrino infall.4

We often encounter functions of wavenumber or time
that depend additionally on cosmological parameters ; we
denote these as, e.g., F(y, q ; Where the cosmologicalfl . . . ).
parameter dependence is not being emphasized, we often
drop the parameters after the semicolon, e.g., F(y, q) 4
F(y, q ; fl . . . ).

3. SMALL-SCALE SOLUTION

Below the free-streaming scale of the neutrinos (see ° 4)
and sound horizon of the baryons at recombination, the
equations of motion for matter density Ñuctuations may be
solved analytically in a matter plus radiation universe using
the techniques of The key approximation is that onHS96.
sufficiently small scales the neutrinos move too quickly to
trace the perturbations in the CDM and baryons. In this
case the neutrinos contribute no gravitational sources to
the evolution equations of the other species, thereby
slowing the growth of Ñuctuations. The baryons have a
similar behavior prior to the drag epoch ; in the Appendix
we describe how to include both e†ects.

The result is that density perturbations grow as

d
cb
(y, q ; fl, f

b
, y

d
) \ D

cb
(y ; fl)dd

(q ; fl, f
b
, y

d
) . (4)

Equation states that the density perturbation today is(4)
the product of a growth function that depends on theD

cbneutrino fraction and the amplitude of Ñuctuations enter-d
ding the growing mode at the Compton drag epoch y

d
.

The quantity

p
i
( f

i
) \ 14(5[ J1 ] 24f

i
) º 0 (5)

determines the reduction from a linear growth rate d P y,
where is the fractional density in gravitationally clusteringf

icomponents : i \ c and i \ cb before and after the drag
epoch, respectively. Hence, the growth factor is given by

et al.(Bond 1980)

D
cb

(y ; fl) \ y1~pcb , (6)

where we take we generalize to in °)0\ 1 ; )0D 1 6.
The amplitude of the Ñuctuation entering the growing

mode at the drag epoch is (cf. eq. [A6])

d
d
(q ; fl, f

b
, y

d
) \ 9.50M

d
(q)'(0, q) , (7)

where '(0, q) is the initial amplitude of the potential pertur-
bation deep in the radiation-dominated epoch. The quan-
tity expresses the matching condition between theM

dgrowing mode before the drag epoch and aftery1~pc y1~pcb
the drag epoch, as well as the matching required to describe
the onset of matter domination. We Ðnd

M
d
(q ; fl, f

b
, y

d
) \ f

c
f
cb

5 [ 2(p
c
] p

cb
)

5 [ 4p
cb

(1 ] y
d
)pcb~pc

]
G
1 ] p

c
[ p

cb
2

C
1 ] 1

(3 [ 4p
c
)(7[ 4p

cb
)
D

] (1 ] y
d
)~1
H
A1(q) , (8)

where2

A1(q ; flb, fl) \
1 [ 0.553flb] 0.126f lb3
1 [ 0.193f l1@2] 0.169fl

ln (1.84b
c
q) , (9)

b
c
\ (1 [ 0.949flb)~1 . (10)

Equation results from a series expansion in of(8) (1 ] y
d
)~1

the analytic solution and accounts for small deviations from
the power-law growing-mode behavior due to radiation.
The expansion is only accurate for andf

b
] fl [ 0.6 y

d
Z 1,

but the form in the Appendix is general. Notice that
as and that the term in brackets in equationM

d
] A1 f

b
] 0

introduces only a small correction since in cases(8) y
d
Z 1

of interest.
In we display an example of the time evolutionFigure 1

of a mode given by the analytic solution (including here the
decaying mode given in the Appendix, important for y [ y

d
)

compared with numerical solutions. The 5% o†set at early
times is due to changes in the expansion rate as the neu-
trinos become nonrelativistic. The oscillatory errors arise
from neglect of baryon acoustic oscillations ; these damp
away well before the drag epoch for these scales. The main
e†ect of the neutrinos is to slow the growth of the CDM and
baryons after equality (y [ 1) because they represent a
smooth gravitationally stable component on these scales.
Similarly, since the baryons have no Ñuctuations on these
scales until they fall into CDM potential wells after the drag
epoch they reduce the growth rate between equality andy

d
,

2 We assume here the number of massive neutrinos seeNl\ 1 ; eq.
for the general case.(A17)
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FIG. 1.ÈGrowth suppression from the neutrinos and baryons. The
addition of neutrinos slows the growth of CDM plus baryon Ñuctuations
after matter-radiation equality y [ 1 (upper panel, curve a compared with
curve b). Increasing the baryon fraction further suppresses Ñuctuations by a
time-independent factor at due to growth suppression in the CDMy [ y

dÑuctuations for and the lack of baryon Ñuctuations in the1 \ y \ y
dweighted density perturbations (upper panel, curve c). The analytic expres-

sions (dashed lines) agree with numerical results (solid lines) for and)0\ 1
h \ 0.5 at the 1% level except for 5% discrepancies at y ¹ 1 (lower panel).
The scale here is q \ 160 and is chosen to be well in the free-streaming
regime.

the drag epoch. Furthermore, they reduce the net Ñuctua-
tion as leads to the o†set between the curves b andd

cb
f
c
/f
cbc in (upper panel).Figure 1

4. NEUTRINO INFALL

Eventually, the neutrinos fall into the CDM potential
wells, breaking the approximation of the last section. The
neutrino thermal velocity decays with the expansion of the
universe as infall occurs when their velocityvl P (aml)~1 ;
slows sufficiently to allow clustering by the Jeans criteria

& Szalay(Bond 1983 ; Ma 1996) :

kfs\ (4nGoa2/vl2)1@2P (1] z)~1@2()0 h2)3@2( fl/Nl) ,

qfsP y1@2( fl/Nl) , (11)

where the subscript ““ fs ÏÏ denotes free streaming. Recall that
k and q are related by equation Here is the number of(3). Nlmassive neutrino species, assumed to be degenerate in mass.
For simplicity, we restrict our examples to through-Nl \ 1
out, but we have veriÐed that the infall description is valid
for at the 1%È2% level in the rangeNl D 1 0 ¹ z¹ 25.3

On scales the neutrinos will follow the CDM. Byq > qfs,acquiring density perturbations, they enhance the CDM
plus baryon potential wells and drive the growth rate back
up to y. (cb curves) shows the growth rate of twoFigure 2

3 E†ects at redshifts approaching the epoch at which the neutrinos
become nonrelativistic are not accounted for by this approximation. For

the growth function of eq. (13) allows scaling at low redshifts, butNl D 1,
this does not imply that or is independent of around thed

d
Tmaster Nlmaximal infall scale. We treat these e†ects in & HuEisenstein (1998b).

FIG. 2.ÈAnalytic vs. numerical descriptions of neutrino infall for fl \
0.3, h \ 0.5. Upper panel : Growth functions compared tof

b
\ 0.01, )0\ 1,

the fully free-streaming time dependence of the case without infall isy1~pcb ;
represented by a horizontal line of amplitude 1 (cb) and (cbl)f

cb
\ 0.69

here. Numerical CDM plus baryon Ñuctuations are compared with growth
function (short-dashed lines) and numerical CDM plus baryon plusD

cbneutrino density-weighted Ñuctuations with (long-dashed lines). L owerD
cblpanel : Relative error.

modes relative to that in the free-streaming regime y1~pcb.
Because small-scale perturbations begin in the free-
streaming regime, these curves go to unity asymptotically at
early times. At some epoch which increases with q, theyfs(q),
free-streaming scale drops below the wavelength of the per-
turbation, causing a relative enhancement that scales as
(y/yfs)pcb.The transition epoch actually incorporates two e†ects.yfsThe Ðrst is that from equation the characteristic epoch(11),
for infall for a given wavenumber must scale as y P

The second is that the growing modes of the free-(qNl/fl)2.streaming epoch and the infall epoch Py must bePy1~pcb
matched across the transition. This matching condition
may only depend on We Ðnd that the total e†ect is wellfl.approximated by

yfs(q ; fl) \ 17.2fl(1 ] 0.488f l~7@6)(qNl/fl)2 , (12)

The growth rate of the CDM plus baryon density Ñuctua-
tions can be described by smoothly interpolating the analy-
tic results across yfs :

D
cb

(y, q ; fl)\
G
1 ]

C y
1 ] yfs(q ; fl)

D0.7Hpcb@0.7
y1~pcb , (13)

where the coefficient 0.7 represents a Ðt to the numerical
evolution. In we compare this expression toFigure 2
numerical solutions (short-dashed lines) and Ðnd excellent
agreement.

Furthermore, the density-weighted Ñuctuation

d
cbl \ f

cb
d
cb

] fl dl (14)
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follows from the infall solution by noting that it converges
above the free-streaming scale to and below tod

cb
f
cb

d
cb

.
Thus

d
cbl(y, q ; fl, f

b
, y

d
)\ D

cbl(y, q ; fl)dd
(q ; fl, f

b
, y

d
) , (15)

where

D
cbl(y, q ; fl) \

G
f
cb
0.7@pcb ]

C y
1 ] yfs(q ; fl)

D0.7Hpcb@0.7
y1~pcb .

(16)

In (cbl curves) we show that this form produces aFigure 2
good Ðt to the numerical results (lower set, long-dashed
lines). Note that no infall here is represented by a horizontal
line at f

cb
\ 0.69.

Finally, the horizon at the epoch when the neutrinos
become nonrelativistic sets the maximal free-streaming
scale. Beyond this scale, the neutrinos are always in the
infall regime, and the evolution of density Ñuctuations
becomes independent of the neutrino fraction :

lim
q?0

d
cb

(y, q)\ 1
137q2 y'(0, q) . (17)

The appearance of in equation ensures they/(1] yfs) (13)
proper time dependence for the evolution in the large-scale
limit. The growth functions are thus not subject to a small-
scale approximation and remain valid for all q.

5. TRANSFER FUNCTIONS

We are now in a position to evaluate the transfer function
deÐned as

T
i
(y, q)\ d

i
(y, q)

d
i
(y, 0)

'(0, 0)
'(0, q)

(18)

for the ith component of the matter. For the CDM plus
baryon (i\ cb) and the CDM plus baryon plus neutrino
(i \ cbl) systems, we obtain

T
cb
(y, q ; fl, f

b
, y

d
)\ y~1D

cb
(y, q ; fl)Tmaster(q ; fl, f

b
, y

d
) ,

T
cbl(y, q ; fl, f

b
, y

d
)\ y~1D

cbl(y, q ; fl)Tmaster(q ; fl, f
b
, y

d
) ,

(19)

where has the small-scale limit ofTmaster

lim
q?=

Tmaster(q ; fl, f
b
, y

d
) \ M

d
(q)

14.4q2 , (20)

which follows from equations and It is important to(7) (17).
note that relation of equation holds independently of(19)
the small-scale approximation, namely, that once the
growth factors are removed, the transfer functionsy~1D

idepend on only a single time-independent function of q
related to perturbations in the CDM component at the drag
epoch. This simpliÐcation holds only for near they ? y

d
;

drag epoch, the contribution of the decaying mode cannot
be neglected. In & Hu we exploit theEisenstein (1998b),
existence of this master function to obtain the full time- and
q-dependent transfer functions based on Ðtting formulae for
Tmaster.

FIG. 3.ÈDemonstration of the existence of a time-independent master
function. The transfer functions for the CDM plus baryon and CDM(T

cb
)

plus baryon plus neutrino Ñuctuations at three di†erent redshifts are(T
cbl)divided by the growth factors and respectively, to obtain esti-D

cb
D

cbl,mates of That the six curves superposed in the upper panel agree atTmaster.the 1%È2% level (relative to at z\ 0, as shown in the lower panel)T
cb

/D
cbestablishes the existence of the master function and veriÐes the accuracy of

the growth functions. The analytic prediction for (long-dashed line)Tmasterconverges to within 1% of the numerical results at q ? 1. The model here is
h \ 0.5, and)0\ 1, fl\ 0.4, f

b
\ 0.2.

We show a comparison between analytic and numerical
results in The numerical (lower curves,Figure 3. T

cb
, T

cblsolid and dashed lines, respectively) at three di†erent red-
shifts are plotted here. The upper curve represents the
master function obtained through inverting theTmastergrowth factor. Note that six di†erent estimates of Tmasterobtained from and are superposed and agree at theT

cb
T
cbl

D1%È2% level. Also shown is the small-scale prediction of
equation which converges rapidly for(20), q Z 1.

Finally, note that the neutrino transfer function is implic-
itly deÐned as

Tl\ fl~1(T
cbl [ f

cb
T
cb
) , (21)

and its construction from the growth functions and Tmasteryields density-weighted errors of the same order as the other
transfer functions, i.e., (1%È2%)] d

cbl/fl dl.

6. LOW-DENSITY MODELS

The formulae presented thus far are valid for cos-)0\ 1
mologies. We have, however, shown that the transfer func-
tions today can be expressed as the products of a growth
function and a master function related to Ñuctuations at the
drag epoch. At this earlier time, the cosmological constant
and curvature have negligible e†ects on the dynamics. This
implies that a simple modiÐcation of the growth function at
late times to account for e†ects will suffice for a)0 D 1
complete description.

Let us recall that on the largest scales, where neutrino free
streaming and radiation pressure gradients are negligible,
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FIG. 4.ÈDemonstration of the invariance of the master function
under changes in the cosmological constant ". The model has the(Tmaster)same and as at z\ 0, but with Division of)0 h2, f

b
, fl Fig. 3 )0\ 0.25. T

cband by the growth functions returns the master function overT
cbl Tmasterwhich the estimate of and the small-scale analytic solution areFig. 3

plotted (upper panel). The errors are plotted relative to from theTmaster T
cb

,
z\ 0 estimate of and show agreement at the 1%È2% level (lowerFig. 3
panel).

Ñuctuations grow as (Heath 1977)

D(y ; )0, )") \ 5
2

g(y)
P y dx

x3g(x)3 , (22)

where

g2(y) \ y~3] y~2y0~1(1[ )0[ )")/)0] y0~3 )"/)0 ,

(23)

with Analytic forms for the andy0\ (1 ] zeq). )" \ 0
cases are given in & Peebles and)0] )" \ 1 Groth (1975)

et al. respectively. The normalization ofBildhauer (1992),
the growth rate has been chosen so that D\ y at early
times. Moreover, equation states that after matter(22)
ceases to dominate the expansion rate, Ñuctuation growth
halts.

By matching these asymptotic limits, we can approximate
the growth function in the presence of neutrinos by the
replacement of y with D, i.e.,

D
cb
(y, q ; fl, )0, )")

\
G
1 ]

C D(y)
1 ] yfs(q)

D0.7Hpcb@0.7
D1~pcb(y) , (24)

D
cbl(y, q ; fl, )0, )")

\
G
f
cb
0.7@pcb ]

C D(y)
1 ] yfs(q)

D0.7Hpcb@0.7
D1~pcb(y) , (25)

where, of course, D(y) \ D(y ; implicitly. Likewise,)0, )")
the transfer functions become

T
cb
(y, q) \ D~1(y)D

cb
(y, q)Tmaster(q) ,

T
cbl(y, q) \ D~1(y)D

cbl(y, q)Tmaster(q) . (26)

We show an example in The model has beenFigure 4.
chosen to have with the same)0\ 0.25, )" \ 0.75 )0 h2, f

b
,

and as and hence the same The invari-fl Figure 3 Tmaster.ance of the master function is demonstrated by overplotting
estimates from and in this model and from ofT

cb
T
cbl T

cbThe lower panel shows the fractional di†erence ofFigure 3.
the former with respect to the latter.

In principle, the fact that infall freezes out at a later red-
shift in a " versus open cosmology of the same allows)0one to distinguish between these two alternatives by the
shape of the transfer function at a single redshift alone.
Massive neutrinos therefore break the shape degeneracy of
the transfer function in low-density universes. However,
since this e†ect is only signiÐcant if the more impor-)0> 1,
tant fact is that growth in the matter-dominated epoch
depends on hence, even a relatively small(1[ )l/)0) ;density in neutrinos can make a dramatic e†ect on the
growth rates in a low-density universe. demon-Figure 4
strates that in an universe gives the)l \ 0.1 )0\ 0.25
same magnitude e†ects as in an universe.)l \ 0.4 )0\ 1
Upper limits on from small-scale Ñuctuations thus)ltighten for low-density universes et al.(Primack 1995).

7. DISCUSSION

We have presented small-scale solutions to the linear
evolution of perturbations in a cold] hot ] baryonic dark
matter cosmology. They converge to within 1% of the
numerical solutions for q ? 1 and and are expressedq ? qfsin terms of hypergeometric functions in the appendix. We
have also given simpliÐed forms in the main text, employing
only algebraic functions, which are valid for )

b
] )l [

and Baryons play a signiÐcant role in0.6)0 )0 h2Z 0.1.
MDM cosmologies since dark matter perturbations are
density weighted and depend on and not on)

b
/()0[ )l)Likewise neutrinos in a low-density universe yield)

b
/)0.enhanced e†ects since growth rates depend on)l/)0.By comparing analytic and numerical results at q [ qfs,we have isolated the e†ects of neutrino infall and described

them to an accuracy of 1%È2% by time- and wavenumber-
dependent growth factors for the CDM and total matter.
The freeze-out of infall at late times when " or curvature
come to dominate can similarly be taken into account. We
have shown that these growth factors are valid beyond the
small-scale approximation.

The full time- and wavenumber-dependent transfer func-
tions for the CDM and total matter can thus be described
as a product of these growth factors and a single function of
wavenumber related to the amplitude of Ñuctuations at the
Compton drag epoch that in turn depends on )0 h2, )l/)0,and the number of degenerate neutrino species. We)

b
/)0,leave a quantitative description of this master function and

implications for constraints on to a companion paper)l& Hu(Eisenstein 1998b).
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APPENDIX

DERIVATION OF THE SMALL-SCALE SOLUTION

Following the analytic approach of one can solve the equation of motion for the CDM on small scales where theHS96,
gravitational e†ects of the MDM can be neglected. The idea is to separate the evolution before and after the drag epoch.
Before the drag epoch, the gravitational e†ects of the baryons can be ignored below the sound horizon as they are pressure
supported by the photons. The equation of motion then becomes

d�
c
] a5

a
d5
c
\ 3

2a
f
c
)0H02 d

c
, (A1)

where overdots indicate derivatives with respect to conformal time g. Unfortunately, the complicated equation of state of
massive neutrinos prevents the time evolution of the scale factor a(g) from being written down in closed form. However, we
know that the neutrinos behave as radiation at early times when and as matter at late times when TheseTl ? ml Tl> ml.limits are identical to those found if one considered the neutrinos to be massless and added their mass to that of the
nonrelativistic matter. It is therefore a reasonable Ðrst approximation to leave the background evolution unmodiÐed by the
replacement of a portion of the nonrelativistic matter with massive neutrinos, i.e.,

g \ 2()0H02)~1@2(1 ] zeq)~1@2(J1 ] y [ 1) , (A2)

where Here, (eq. assumes three massless neutrino species with the usual thermal history. Wey \ (1 ] zeq)/(1 ] z). zeq [1])
neglect cosmological constant and curvature e†ects here (see ° This form otherwise errs only between and the epoch at6). zeqwhich the neutrinos become nonrelativistic. Our approach will be to use this approximation to solve the small-scale limit
analytically and then correct for a modiÐcation due to changes in the expansion rate.[5%

With this approximation, equation can be rewritten in terms of as(A1) y 4 (1 ] zeq)/(1 ] z)

d2
dy2 d

c
] (2 ] 3y)

2y(1] y)
d
dy

d
c
\ 3

2y(1] y)
f
c
d
c

. (A3)

As shown in the general solution to this equation is given through GaussÏs hypergeometric function F (alsoHS96,
written 2F1) :

U
i
\ (1 ] y)~aiF

A
a
i
, a

i
] 1

2
, 2a

i
] 1

2
;

1
1 ] y

B
, (A4)

where i \ 1, 2, and

a
i
\ 1 < J1 ] 24f

c
4

, (A5)

with minus and plus for i \ 1 and i \ 2, respectively. It is useful to note that thus, the two solutionslim
y?= U

i
\ y~ai ;

represent the growing and decaying mode for i \ 1 and 2, respectively. Clearly, a1] a2\ 12 .
We obtain the amplitude of the growing and decaying mode by matching onto the y > 1 solution of equation (B12),HS96 4

d
c
\ 9.50 ln (9.24qy)'(0, q) , y > 1 , (A6)

to Ðnd

d
c
(y, q) \ 9.50[A1(q)U1(y) ] A2(q)U2(y)]'(0, q) , y \ y

d
, (A7)

where the matching coefficients are

A1(q) \ !(a1)!(a1] 1/2)
!(2a1] 1/2)2n cot (2na1)

[ln (9.04q) ] 2t(1)[ 2t(1 [ 2a1) [ 2 ln 2] , (A8)

with t(x) \ !@(x)/!(x). The expression for follows from equation with the replacement 1] 2 in the subscripts.A2 (A8)
Equation takes the evolution up to the drag epoch. After the drag epoch, the baryons are released from the photons(A7)

and behave as CDM. The equation of motion for the combined CDM plus baryon system is the same as equation but(A3)
with the replacements

d
c
]

f
c

f
cb

d
c
] f

b
f
cb

d
b
4 d

cb
, f

c
] f

cb
, (A9)

4 The numerical factors here reÑect the kick a perturbation gets at horizon crossing deep in the radiation-dominated epoch. They are calibrated to agree at
the 1% level with CMBfast version 2.3 (high-precision version) and represent a 1%È2% shift vs. the calibration of based on OurHS96 Sugiyama (1995).
calibration also matches the code of M. White et al. at the 1% level.(Hu 1995)
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and therefore has the same solutions as given by equation with arguments(A4)

a8
i
\ 1 ^ J1 ] 24f

cb
4

. (A10)

The full solution for is now found by matching the solution of equation onto the new growing and decaying modes.d
cb

(A7)
Since the decaying mode becomes unimportant for y ? y

d
,

d
cb

(y, q) \ 9.50M
d
(q)U3 1(y)'(0, q) , (A11)

where

M
d
(q) \ f

c
f
cb

CU3 2@ (A1U1] A2U2)[ U3 2(A1 U1@ ] A2U2@ )
U3 1 U3 2@ [ U3 1@ U3 2

D K
y/yd

(A12)

gives the matching condition.
Furthermore, the baryons fall into CDM potential wells at the drag epoch and subsequently follow them so that

d
cb

\ d
c
\ d

b
, y ? y

d
. (A13)

For high (or so that the decaying-mode contribution to equation coming through is)0 h2Z 0.1 h Z 0.3), y
d
? 1 (A11) U2negligible. Furthermore, the growing mode can be expanded in powers of as(1 ] y

d
)~1

M
d
(q) B

f
c

f
cb

2(a8 1] a1) [ 1
4a8 1[ 1

(1 ] y
d
)az1~a1

G
1 ] (1] y

d
)~1 a1[ a8 1

2
C
1 ] 1

(4a1] 1)(4a8 1[ 3)
DH

A1(q) . (A14)

The approximation holds for Note that the apparent divergence at or disappears once thef
c
Z 0.2. f

c
\ 0.125 a1\ [14decaying mode is properly included.

The quantity can either be evaluated from equation or approximated asA1 (A8)

A1(q) \ (1 [ 0.553flb] 0.126f lb3 ) ln (1.84b
c
q) , (A15)

with

b
c
4 exp [[2t(2a2) [ 2t(3)]B (1 [ 0.949flb)~1 , (A16)

which is valid at the 1% level for Finally, we correct for the change in the background expansion rate by comparingflb[ 23 .
equation to an numerical integration of equation and Ðnd the small correction(A11) (A1)

A1(q) ]
A1(q)

1 [ 0.193Jfl Nl] 0.169fl Nl0.2
, (A17)

for With the identities and the derivation of the small-scale evolution (eq. is nowfl[ 0.6. a1\ p
c
[ 1 a8 1\ p

cb
[ 1, [4])

complete.
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