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TESTING INFLATION WITH SMALL SCALE CMB ANISOTROPIES†
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We discuss ability of the harmonic pattern of peaks in the CMB angular power spectrum to test inflation. By studying robust
features of alternate models, which must all be isocurvature in nature, we reveal signatures unique to inflation. Inflation thus
could be validated by the next generation of experiments.

Inflation is the front running candidate for generating
fluctuations in the early universe: the density pertur-
bations which are the precursors of galaxies and cosmic
microwave background (CMB) anisotropies today. By
“inflation” here we simply mean the idea that the uni-
verse underwent a period of vacuum driven superluminal
expansion during its early evolution, which provides a
mechanism of connecting, at early times, parts of the
universe which are currently space-like separated. It has
been argued that inflation is the unique causal mech-
anism for generating correlated curvature perturbations
on scales larger than the horizon [1,2]. If there are unique
consequences of such super-horizon curvature perturba-
tions, their observation would provide strong evidence for
inflation.

Here we probe the nature of the fluctuations through
CMB anisotropy observations of the acoustic signatures
in the spectrum. Many of the relevant technical details
as well as more subtle examples can be found in [2]. As a
working hypothesis, we shall assume that the CMB spec-
trum exhibits a significant harmonic signature: a series of
peaks in the power spectrum when plotted against multi-
pole number ` (see Fig. 1a; for reviews of the underlying
physics of these peaks see [5,6]). Such a signature is ex-
pected in inflationary models and is characterized by the
locations and relative heights of the peaks as well as the
position of the damping tail.

The possibility of distinguishing some specific defect
models from inflation based on the structure of the power
spectrum below 0◦.5 has recently been emphasized [3,4].
By characterizing the features of such alternate models
and revealing signatures unique to inflation [2], we pro-
vide the extra ingredients necessary to allow a test of
the inflationary paradigm. Another means of testing in-
flation is the consistency relation between the ratio of
tensor and scalar modes and the tensor spectral index
[7,8]. However this test requires a large tensor signal [8]
or it will be lost in the cosmic variance.

In Fig. 1a (solid lines), we show the angular power
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spectrum of CMB anisotropies for a standard cold dark
matter (CDM) inflationary model, as a function of mul-
tipole number ` ∼ θ−1. Let us review the physics behind
the features in the spectrum below 0◦.5 (` ∼> 200). Con-
sider the universe just before it cooled enough to allow
protons to capture electrons. At these early times, the
photons and baryon-electron plasma are tightly coupled
by Compton scattering and electromagnetic interactions.
These components thus behaved as a single ‘photon-
baryon fluid’ with the photons providing the pressure
and the baryons providing inertia. In the presence of
a gravitational potential, forced acoustic oscillations in
the photon-baryon fluid arise. The energy density, or
brightness, fluctuations in the photons are seen by the
observers as temperature anisotropies on the CMB sky.
Specifically, if Θ0 is the temperature fluctuation ∆T/T
in normal mode k, the oscillator equation is

d

dη

[
meff

dΘ0

dη

]
+
k2

3
Θ0 = −F [Φ,Ψ, R] (1)

with

F [Φ,Ψ, R] =
k2

3
meffΨ +

d

dη

[
meff

dΦ
dη

]
, (2)

where meff = 1+R, R = 3ρb/4ργ is the baryon-to-photon
momentum density ratio, η =

∫
dt/a is conformal time,

Φ is the Newtonian curvature perturbation, and Ψ ≈ −Φ
is the gravitational potential [2,5].

In an inflationary model, the curvature or potential
fluctuations are created at very early times and remain
constant until the fluctuation crosses the sound horizon.
Inside the sound horizon the pressure becomes important
and the potential begins to decay (see Fig. 2). As a
function of time, this force excites a cosine∗ mode of the
acoustic oscillation with peaks at x/

√
3 ' π, 2π, 3π, · · ·.

The first feature represents a compression of the fluid

∗The inflationary series only reaches a cosine asymptotically
at high peak number: 0.88 : 1.89 : 2.93 : · · ·. Likewise the
most natural isocurvature series starts at 0.85 : 2.76 : 4.83 :
· · · [2].
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FIG. 1. (a) The angular power spectrum of a “standard” inflationary CDM model with Ω0 = 1, h = 0.5 and Ωb = 0.05
(solid) compared with an axionic isocurvature model (dashed) of the same parameters. Note the peaks are offset from the
inflationary prediction, and the first “peak” is more of a shoulder in this model. (b) The relative positions of the peaks in the
angular power spectrum `1 : `2 : `3 · · · for the inflationary (left panel, points) and 5 isocurvature models (right panel, points,
see text). The series are normalized at `3 to the idealized inflationary and isocurvature series respectively (dotted lines). Test
cases illustrate that the two cases remain quite distinct, especially in the ratio of the first to the third peak and to the peak
spacing.

inside the potential well as will become important in the
discussion below. Furthermore, the harmonic series of
acoustic peak location `1 : `2 : `3 approximately follows
the cosine series of extrema 1 : 2 : 3 · · ·. There are two
concerns that need to be addressed for this potential test
of inflation. How robust is the harmonic prediction in
the general class of inflationary models? Can any other
model mimic the inflationary series?

The peak ratios are not affected by the presence of spa-
tial curvature or a cosmological constant in the universe
[2]. However it is possible to distort the shape of the first
peak by non-trivial evolution of the metric fluctuations
after last scattering. For example, the magnitude of the
scalar effect increases with the influence of the radiation
on the gravitational potentials, e.g. by a decrease in the
matter content Ω0h

2. Tensor fluctuations could distort
the first peak and spectral tilt shift the series only if they
are very large. That possibility is inconsistent with the
observed power at degree scales.† The damping of power
in the oscillations at small scales due to photon diffusion
cuts off the spectrum of peaks and could also confuse a
measurement of their location. In Fig. 1b, we plot the

†If degree scale power is present, n ≥ 0.5, the peaks and
positions are not obscured by tilt.

FIG. 2. The self-gravity of the photon-baryon fluid drives
a cosine oscillation for adiabatic initial conditions (thin lines)
and a sine oscillation (thick lines) for isocurvature initial con-
ditions. The dashed lines show the full potential, the solid
lines the effective temperature.
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ratio of peak locations as a function of Ω0h
2. Although

the first peak is indeed slightly low in the low Ω0h
2 mod-

els the harmonic series is still clearly discernible in the
regular spacing of the higher peaks. Two numbers serve
to quantify the spectrum: the ratio of third to first peak
location `3/`1 ≈ 3.3− 3.7 and the first peak location to
the spacing between the peaks `1/∆` ≈ 0.7 − 0.9. Ra-
tios in this range are a robust prediction of inflation with
reasonable baryon content.‡

Is the cosine harmonic series a unique prediction of in-
flation? Causality requires that all other models form
significant curvature perturbations near or after horizon
crossing.§ We call these isocurvature models. The axionic
isocurvature model of Fig. 1a (dashed lines) is represen-
tative [9]. Since curvature fluctuations start out small
and grow until horizon crossing, the peak locations are
phase shifted with respect to the inflationary prediction
(see Fig. 2).

In typical models, including the baryon isocurvature
[5], texture [3], axionic isocurvature [9], hot dark matter
isocurvature [10], and pressure scaling [11] models, the
peaks approximately form a sine series 1 : 3 : 5 · · · (see
Fig. 1b). The origin of this sine series signal is described
in [2] where it is shown acoustic oscillations are driven
as the fluctuation passes the sound horizon by the fluid’s
own self gravity. The first “peak” is a rarefaction, which
is a continuation of the super-horzon scale behaviour of
the isocurvature model. This is robust due to causal con-
straints as we shall see below and also implies that the
first peak can be quite small. Thereafter, the photon
pressure becomes important and the fluid collapses into
the potential, becoming more dense and boosting Φ (see
Fig. 2). This enhances the second peak. The tendency to
first fight and then help the driving potential is generic.
Because this is a resonant process, in most cases it dom-
inates over other truly external effects. In particular, all
models in which fluctuations are generated causally by
pressure perturbations that are constrained to produce
nearly scale invariant CMB anisotropies will be domi-
nated by this effect in their acoustic signature [11].

However since we wish to test inflation against all pos-
sible alternatives, let us now turn to the broader class
of isocurvature models. Isocurvature models with more
radical source behavior may introduce some other phase
shift with respect to the inflationary prediction. Might
this allow an isocurvature scenario to mimic the infla-
tionary prediction? Two possibilities arise. If the first

‡If both the baryon content Ωbh
2
∼> 0.03 and the CDM con-

tent Ω0h
2
∼> 0.6 are anomalously high then the second peak

(r) will be hidden by the baryon inertia [2].
§This does not preclude the possibility of white noise curva-

ture perturbations at low k generated by pressure perturba-
tions. See [2,11] for more discussion.

isocurvature feature, which is intrinsically low in ampli-
tude, is hidden, e.g. by external metric fluctuations such
as tensor and vector contributions between last scatter-
ing and the present, the series becomes approximately
3 : 5 : 7. Might this be mistaken for an inflationary spec-
trum, shifted to smaller angles by the curvature of the
universe? The spectra remain distinct since the spacing
between the peaks ∆` is model-independent: it reflects
the natural period of the oscillator. The ratio of the first
peak position to peak spacing `1/∆` is thus larger by a
factor of 1.5 in this case if Ω0h

2 is fixed. In [2], we treat
the ambiguity that arises if this and other background
quantities are unknown. More generally, any isocurva-
ture model that either introduces a pure phase shift or
generates acoustic oscillations only well inside the causal
horizon can be distinguished by this test. Of course,
isocurvature models need not exhibit a simple regularly-
spaced series of peaks [2,4], but these alternatives could
not mimic inflation.

The remaining possibility is that an isocurvature model
might be tuned so that its phase shift precisely matches
the inflationary prediction. Heuristically, this moves the
whole isocurvature spectrum in Fig. 1 toward smaller
angles. We shall see that causality forbids us to make
the shift in the opposite direction. As Fig. 1a implies,
the relative peak heights can distinguish this possibility
from the inflationary case.

The important distinction comes from the process of
compensation, required by causality. During the evo-
lution of the universe, the dominant dynamical compo-
nent counters any change in the curvature introduced by
an arbitrary source [2]. Producing a positive curvature
perturbation locally stretches space. The density of the
dominant dynamical component is thus reduced in this
region, and hence its energy density is also reduced. This
energy density however contributes to the curvature of
space, thus this reduction serves to offset the increased
curvature from the source. Heuristically, curvature per-
turbations form only through the motion of matter (see
[11] for more details), which causality forbids above the
horizon.

In the standard scenario, the universe is radiation dom-
inated when the smallest scales enter the horizon (see [2]
for exotic models). Thus near or above the horizon, the
photons resist any change in curvature introduced by the
source. Breaking Φ into pieces generated by the photon-
baryon fluid (γb) and an external source (s), we find in
this limit [2]

x2Φ′′γb + 4xΦ′γb = −x2Φ′′s − 4xΦ′s, (3)

where primes denote derivatives with respect to x = kη.
Thus the first peak in an isocurvature model, if it

is sufficiently close to the horizon to be confused with
the inflationary prediction and follows the cosine series
defined by the higher peaks, must have photon-baryon
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fluctuations anti-correlated with the source. The first
peak in the rms temperature thus represents the rar-
efaction (r) stage when the source is overdense rather
than a compression (c) phase as in the inflationary pre-
diction. The peaks in the inflationary spectrum obey a
c-r-c pattern while the isocurvature model displays a r-
c-r pattern. Though compressions and rarefactions have
the same amount of power (squared fluctuation), an addi-
tional effect allows us to distinguish the two: baryons pro-
vide extra inertia to the photons to which they are tightly
coupled by Compton scattering (the meff terms in Eq. 1).
If overdense regions represent gravitational wells,∗∗ this
inertia enhances compressions at the expense of rarefac-
tions leading to an alternating series of peaks in the rms
[5]. For reasonable baryon content, the even peaks of
an isocurvature model are enhanced by the baryon con-
tent whereas the odd peaks are enhanced under the in-
flationary paradigm (see Fig. 1a). This non-monotonic
modulation of the peaks is not likely to occur in the ini-
tial spectrum of fluctuations. The oscillations could be
driven at exactly the (evolving) natural frequency of the
oscillator in such a way as to counteract this shift, but
such a long duration tuned driving seems contrived.

There is one important point to bear in mind. Since
photon diffusion damps power on small scales, the 2nd
compression (3rd peak) in an inflationary model may
not be higher than the 1st rarefaction (2nd peak), even
though it is enhanced (see e.g. Fig. 1a). However it
will still be anomalously high compared to a rarefaction
peak, which would be both suppressed by the baryons
and damped by diffusion. Since the damping is well un-
derstood this poses no problem in principle [2].

Diffusion damping also supplies an important consis-
tency test. The physical scale depends only on the back-
ground cosmology and not on the model for structure for-
mation (see Fig. 1a and [5,2]). This fixed scale provides
another measure of the phase shift introduced by isocur-
vature models. For example, if the first isocurvature peak
in Fig. 1a is hidden, the ratio of peak to damping scale
increases by a factor of 1.5 over the inflationary models.
We also consider in [2] how the damping scale may be
used to test against exotic background parameters and
thermal histories.

In summary, the ratio of peak locations is a robust pre-
diction of inflation. If acoustic oscillations are observed
in the CMB, and the ratio of the 3rd to 1st peak is not
in the range 3.3− 3.7 or the 1st peak to peak-spacing in
the range 0.7− 0.9 then either inflation does not provide

∗∗Neil Turok (private communication) has shown that for a
particular choice of stress-energy tensor, with an anisotropic
stress large compared with the density, it is possible to have
underdensities associated with potential wells. If such a model
also has peaks π out of phase with the cosine mode it could
mimic an inflationary spectrum.

the main source of perturbations in the early universe or
big bang nucleosynthesis grossly misestimates the baryon
fraction. The ranges can be tightened if Ω0h

2 is known.
If the spatial curvature of the universe vanishes, these
tests require CMB measurements from 10 − 30 arcmin-
utes. Even if the location of the first peak is ambiguous,
as might be the case in some isocurvature models, these
tests distinguish them from inflation. Isocurvature mod-
els thus require fine tuning to reproduce this spectrum.
To close this loophole, the relative peak heights can be
observed. If the location of the peaks follows the infla-
tionary prediction, the enhancement of odd peaks is a
unique prediction of inflation.††

The true discriminatory power of the CMB manifests
itself in the spectrum as a whole, from degree scales into
the damping region. In particular, we emphasize the
acoustic pattern which arises from forced oscillations of
the photon-baryon fluid before recombination, including
the model-independent nature of the damping tail. The
tests we describe rely on the gross features of the angular
power spectrum and so could be performed with the up-
coming generation of array receivers and interferometers.
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