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ABSTRACT

A formalism is presented that allows cosmological experiments to be tested for consistency and that allows
a simple frequentist interpretation of the resulting significance levels. As an example of an application, this
formalism is used to place constraints on bulk flows of galaxies using the results of the microwave back-
ground anisotropy experiments COBE and SP91, and a few simplifying approximations about the experimen-
tal window functions. It is found that, if taken at face value, with the quoted errors, the recent detection by
Lauer & Postman of a bulk flow of 689 km s~ * on scales of 150 h~* Mpc is inconsistent with SP91 at a 95%
confidence level within the framework of a cold dark matter model. The same consistency test is also used to
place constraints that are completely model-independent, in the sense that they hold for any power spectrum
whatsoever—the only assumption being that the random fields are Gaussian. It is shown that the resulting
infinite-dimensional optimization problem reduces to a set of coupled nonlinear equations that can readily be
solved numerically. Applying this technique to the above-mentioned example, we find that the Lauer-Postman
result is inconsistent with SP91 even if no assumptions whatsoever are made about the power spectrum.

Subject headings: cosmic microwave background — cosmology: theory — dark matter

1. INTRODUCTION

Together with the classical cosmological parameters h, Q,
and so forth, the power spectrum P(k) of cosmological density
fluctuations is one of the most sought-after quantities in
modern cosmology, vital for understanding both the formation
of large-scale structure and the fluctuations in the cosmic
microwave background (CMB) radiation.

The traditional approach has been to assume some function-
al form for P(k) (such as that predicted by the cold dark matter
[CDM] scenario, for instance), and then investigate whether
the predictions of the model are consistent with experimental
data. The large amounts of data currently being produced by
new CMB experiments and galaxy surveys, all probing differ-
ent parts of the power spectrum, allow a new and more attrac-
tive approach. We can now begin to probe the exact shape of
the function P(k) without making any prior assumptions about
P(k). More specifically, we measure different weighted averages
of the function, the weights being the experimental window
functions.

This new approach is quite timely (Juszkiewicz 1993), as
there are now many indications that the primordial power
spectrum may have been more complicated than an n=1
power-law. There are several sources of concern about the
standard CDM cosmology, with inflation leading to Q ~ 1 and
a primordial n= 1 Harrison-Zel’dovich power spectrum.
Compared to COBE-normalized CDM, the observational data
show unexpected large-scale bulk flows (Lauer & Postman
1994, hereafter LP), too weak density correlations on small
scales (Maddox et al. 1990), a rather quiet local velocity field
(Schlegel et al. 1992), and a deficit of hot X-ray clusters (Oukbir
& Blanchard 1992). The combined data from the COBE differ-
ential microwave radiometer (DMR; Smoot et al. 1992) and
the Tenerife anisotropy experiment (Hancock et al. 1994) point
to a spectral index exceeding unity (Watson & Gutiérrez de la

! max@physics.berkeley.edu.

Cruz 1993), which, if correct, cannot be explained by any of the
standard inflationary models. The recent possible detections of
halo gravitational microlensing events (Alcock et al. 1993) give
increased credibility to the possibility that the dark matter in
our Galactic halo may be baryonic. If this is indeed the case,
models with Q <1 and nothing but baryonic dark matter
(BDM) (Peebles 1987; Gnedin & Ostriker 1992; Cen, Ostriker,
& Peebles 1993) become rather appealing. However, in con-
trast to CDM with inflation, BDM models do not include a
physical mechanism that makes a unique prediction for what
the primordial power spectrum should be. Rather, the com-
monly assumed P(k) oc k™ */2 is chosen ad hoc to fit observa-
tional data. Moreover, for fluctuations near the curvature scale
in open universes, where the Q = 1 Fourier modes are replaced
by hyperspherical Bessel functions with the curvature radius as
a built-in length scale, the whole notion of scale-invariance
loses its meaning (Kamionkowski & Spergel 1994).

In summary, it may be advisable to avoid theoretical pre;j-
udice as to the shape of the primordial power spectrum. In this
spirit, we will develop a consistency test that requires no such
assumptions whatsoever about the form of the power spec-
trum. This approach was pioneered by Juszkiewicz, Gorski,
and Silk (1987), and Gorski (1992) who developed a formalism
for comparing two experiments in a power-spectrum-—
independent manner. We generalize this method to the case of
more than two experiments, and then use the formalism to
assess the consistency of three recent observational results: the
CMB anisotropy measurements made by the COBE DMR
(Smoot et al. 1992), the South Pole anisotropy experiment
(SP91; Gaier et al. 1992), and the measurement of bulk velocity
of Abell clusters in a 150 »~! Mpc sphere (LP).

In § 2, we develop a formalism for testing cosmological
models for consistency. In § 3, we apply this formalism to the
special case of CDM and the LP, SP91, and COBE experi-
ments. In § 4, we solve the variational problem that arises in
consistency tests of models where we allow arbitrary power
spectra, and apply these results to the LP, SP91, and COBE
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experiments. Section 5 contains a discussion of our results.
Finally, two different goodness-of-fit parameters are compared
in Appendix A, and the relevant window functions are derived
in Appendix B.

2. CONSISTENCY TESTS FOR COSMOLOGICAL MODELS

In cosmology, a field where error bars tend to be large,
conclusions can depend crucially on the probabilistic interpre-
tation of confidence limits. Confusion has sometimes arisen
from the fact that large-scale measurements of microwave
background anisotropies and bulk flows are fraught with two
quite distinct sources of statistical uncertainty, usually termed
experimental noise and cosmic variance. In this section, we
present a detailed prescription for testing any model for consis-
tency with experiments and discuss the appropriate probabil-
istic interpretation of this test. By model we will mean not
merely a model for the underlying physics, which predicts the
physical quantities that we wish to measure, but also a model
for the various experiments. Such a model is allowed to
contain any number of free parameters. In subsequent sections,
we give examples of both a very narrow class of models
(standard CDM where the only free parameter is the overall
normalization of the power spectrum) and a wider class of
models (gravitational instability with Gaussian adiabatic fluc-
tuations in a flat universe with the standard recombination
history, the power spectrum being an arbitrary function).

Suppose that we are interested in N physical quantities c,,
..., cy and have N experiments E;, ..., Ey devised such that
experiment E; measures the quantity c;. Let s; denote the
number actually obtained by experiment E;. Because of experi-
mental noise, cosmic variance, and so forth, we do not expect s;
to exactly equal c;. Rather, s; is a random variable that will
yield different values each time the experiment is repeated. By
repeating the experiment M times on this planet and averaging
the results, the uncertainty due to experimental noise can be
reduced by a factor M2, However, if the same experiment
were carried out in a number of different horizon volumes
throughout the universe (or, if we have ergodicity, in an ensem-
ble of universes with different realizations of the underlying
random field), the results would also be expected to differ. This
second source of uncertainty is known as cosmic variance. We
will treat both of these uncertainties together by simply
requiring the model to specify the probability distribution for
the random variables s;.

Let us assume that the random variables s; are all indepen-
dent, so that the joint probability distribution is simply the
product of the individual probability distributions, which we
will denote f(s). This is an excellent approximation for the
microwave background and bulk flow experiments we will
consider. Finally, let §;, ..., §y denote the numbers actually
obtained in one realization of the experiments.

The general procedure for statistical testing will be as
follows:

1. First, define a parameter # that is some sort of measure of
how well the observed data s; agree with the probability dis-
tributions f;, with higher # corresponding to a better fit.

2. Then compute the probability distribution f,(n) of this
parameter, either analytically or by employing Monte Carlo
techniques.

3. Compute the observed value of #, which we will denote 7.

4. Finally, compute the probability P(n < #), i.e., the prob-
ability of getting as bad agreement as we do or worse.

We will now discuss these four steps in more detail.
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2.1. Choosing a Goodness-of-Fit Parameter

Obviously, the ability to reject models at a high level of
significance depends crucially on making a good choice of
goodness-of-fit parameter #. In the literature, a common choice
is the likelihood product

N
n oC l=_[1 Sdsi) - 1

In this paper, we will instead use the probability product, ie.,
the product of the probabilities P; that each of the experiments
yields results at least as extreme as observed:

N
Ny = l=_[1 Ps;) . V)]

The probabilities P; are defined in the following way: if the
observed §; is smaller than the median of the distribution f;, we
have P; = 2P(s; < §;), whereas §; larger than the median would
give P; = 2P(s; > §;). The factor of 2 is present because we want
a two-sided test. Thus P; = 1 if §; equals the median, P; = 2% if
§;1is at the high 99th percentile, and so forth.

For the experiments we will be discussing, the likelihood
product and the probability product have quite similar behav-
ior. We choose the probability product as our goodness-of-fit
parameter because it yields a consistency measure with
remarkably simple analytic form. A comparison with the likeli-
hood product is given in Appendix A.

2.2. Its Probability Distribution

Apart from its simple interpretation, the probability product
n has the advantage that its probability distribution can be
calculated analytically, and is completely independent of the
physics of the model—in fact, it depends only on N. We will
now give the exact distributions.

By construction, 0 < # < 1. For N = 1, n will simply have a
uniform distribution:

1, fo<y<1,
Sty = {0 , otherwise . ®)

Thus in the general case, n will be a product of N independent
uniformly distributed random variables. The calculation of the
probability distribution for # is straightforward and can be
found in a number of standard texts. The result is

!
L (Clntt, if0<n<t,
w1 i nUsT @

0, otherwise .

OE

2.3. The Consistency Probability

The probability P(n < 7), the probability of getting as bad
agreement as we do or worse, is simply the cumulative dis-
tribution function F,(f)), and the integral can be carried out
analytically for any N :

7 N=1(_ 1naw
Fi= P <) = [ s = oy’ s, S0
n=0 :

where 8 is the Heaviside step function and F,(7j) = 1 for 4 > 1.
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FIG. 1.—Function F,. The cumulative probability distribution for the
goodness-of-fit parameter 7 is plotted for a few different N-values.

Since the product of N numbers between zero and one tends to
zero as N — o0, it is no surprise that

F,(#) > 0()ie™"™" = 0(7) (6)

as N — o, i.e., that f,(#7) — 6(#}). The function F,(#}) is plotted in
Figure 1, and the values of #j for which F,(f) = 0.05, 0.01, and
0.001, respectively, are given in Table 1 for a few N-values. For
example, if three experimental results give a goodness-of-fit
parameter 7 = 0.0002 for some model, then this model is ruled
out at a confidence level of 99%. Thus if the model were true
and the experiments where repeated in very many different
horizon volumes of the universe, such a low goodness-of-fit
value would be obtained less than 1% of the time.

2.4. Ruling Out Whole Classes of Models

If we wish to use the above formalism to test a whole set of
models, then we need to solve an optimization problem to find
the one model in the set for which the consistency probability
is maximized. For instance, if the family of models under con-
sideration is standard n = 1, T = 0.5 CDM (see § 3), then the
only free parameter is the overall normalization constant A.
Thus we can write the consistency probability as p(4) and use
some numerical method to find the normalization A4, for which
p(A) is maximized. After this, the statistical interpretation is
clear: if the experiments under consideration are carried out in
an ensemble of CDM universes, as extreme results as those
observed will only be obtained at most a fraction p(4,) of the
time, whatever the true normalization constant is. Precisely
this case will be treated in the next section. For the slightly
wider class of models consisting of CDM power spectra with
arbitrary A4, n, and I, the resulting optimization problem
would be a three-dimensional one, and the maximal consis-

TABLE 1
ProBaBiLITY PRODUCT LIMITS

Confidence Level N=1 N=2 N=3 N=4
95% tiiiiiiiannnn 0.05 0.0087 0.0018 0.00043
99 0.01 0.0013 0.00022 0.000043
999 .. 0.001 0.000098 0.000013 0.0000021
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tency probability would necessarily satisfy
p(A*’ Ny, r*) = p(A*’ 1’ 05) = p(A*) . (7)

An even more general class of models is the set of all models
where the random fields are Gaussian, i.e., allowing completely
arbitrary power spectra P. In § 4, we will show that the
resulting infinite-dimensional optimization problem can be
reduced to a succession of two finite-dimensional ones.

3. CDM CONFRONTS SP91, COBE, AND LP

As an example of an application of the formalism presented
in the previous section, we will now test the standard CDM
model of structure formation for consistency with the SP91
CMB experiment and the LP bulk flow experiment.

Let E, be the LP measurement of bulk flows of galaxies in a
150 k= Mpc sphere. Let E, be the SP91 experiment (Gaier et
al. 1992). Let E; be the COBE DMR experiment (Smoot et al.
1992). All of these experiments probe scales that are well
described by linear perturbation theory, and so as long as the
initial fluctuations are Gaussian, the expected results of the
experiments can be expressed simply as integrals over the
power spectrum of the matter perturbation:

(s = j W(k)P(k)dk .

Here s, and s, are the mean-square temperature fluctuations
measured by the experiments, and s,, = (v/c)® is the squared
bulk flow. The corresponding window functions W;,, W,,, and
W, are derived in Appendix B, and plotted in Figure 2. These
window functions assume that the initial perturbations were
adiabatic, that Q = 1, and that recombination happened in the
standard way, i.e., a last-scattering surface at z ~ 1000. The
SP91 window function is to be interpreted as a lower limit to
the true window function, as it includes contributions only
from the Sachs-Wolfe effect, not from Doppler motions or
intrinsic density fluctuations of the surface of last scattering.
Now let us turn to the probability distributions for the
random variables s,,, s,, and s.. The standard CDM model
with power-law initial fluctuations proportional to k" predicts

1078k
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[k W,(k)]/2
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©

1010k

10-11g

Il 1 1
0.0001 0.001 0.01 0.1
k [h-'Mpc]

F1G. 2—Window functions. The window functions of LP, SP91, and COBE
are plotted as a function of comoving wavenumber k.
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a power spectrum that is well fitted by (Bond & Efstathiou
1984)

Aq"
{1 + [ag + (bg)*® + (cq)*]*-13}2/1-13”°

where a =64, b =3.0,c =17, and g = (1 h~* Mpc)k/T". For
the simplest model, I = h, but certain additional com-
plications such as a nonzero cosmological constant A and a
nonzero fraction Q, of hot dark matter can be fitted with rea-
sonable accuracy by other values of I' (Efstathiou, Bond, &
White 1992). Thus the model has three free parameters: n, I,
and the overall normalization A. Integrating the power spec-
trum against the three window functions yields the values of ¢;
given in Table 2. The two rightmost columns contain the quo-
tients c,,/c,, and c;,/c., respectively. As can be seen, the depen-
dence on I is quite weak, and the quotient c,/c,, is quite
insensitive to the spectral index n as well. Let us for definiteness
assume the canonical values n = 1 and I" = 0.5 in what follows.

These values c; would be the average values of the probabil-
ity distributions for s, and s, if there where no experimental
noise. We will now model the full probability distributions of
the three experiments, including the contribution from experi-
mental noise.

For a bulk flow experiment, the three components v,, v,, and
v, of the velocity vector v are expected to be independent
Gaussian random variables with zero mean, and

Aoy =y - ©®

However, this is not quite the random variable s,, that we
measure, because of errors in distance estimation, and so forth.
Denoting the difference between the observed and true bulk
velocity vectors by ¢, let us assume that the three components
of € are identically distributed and independent Gaussian
random variables. This should be a good approximation, since,
even if the errors for individual galaxies are not, the errors in
the average velocity € will be approximately Gaussian by the
Central Limit Theorem. Thus the velocity vector that we
measure, v + €, is also Gaussian, being the sum of two Gauss-
ians. The variable that we actually measureiss;, = |[v + € 12, s0

P(k) = ®

slp = %(Clp + le)X% ’ (10)

where y2 has a y? distribution with three degrees of freedom,
and ¥, is the variance due to experimental noise, ie., the
average variance that would be detected even if the true power
spectrum were P(k) = 0. The fact that the expectation value of
the detected signal s,, (Which is usually referred to as the uncor-
rected signal in the literature) exceeds the true signal ¢, is
usually referred to as error bias (LP; Strauss, Cen, & Ostriker
1994, hereafter SCO). Error bias is ubiquitous to all experi-

TEGMARK, BUNN, & HU

Vol. 434

ments of the type discussed in this paper, including CMB
experiments, since the measured quantity is positive definite
and the noise errors contribute squared. In the literature,
experimentally detected signals are usually quoted after error
bias has been corrected for, i.e., after the noise has been sub-
tracted from the uncorrected signal. For LP, the uncorrected
signal is 807 km s~ !, whereas the signal quoted after error bias
correction is 689 km s,

For the special case of the LP experiment, detailed probabil-
ity distributions have been computed using Monte Carlo simu-
lations (LP; SCO), which incorporate such experiment-specific
complications as sampling errors, asymmetry in the error ellip-
soid, and so forth. To be used here, such simulations would
need to be carried out for each value of ¢,, under consideration.
Since the purpose of this section is merely to give an example of
the test formalism, the above-mentioned y? approximation will
be quite sufficient for our needs.

For the SP91 nine-point scan, the nine true values AT;/T are
expected to be Gaussian random variables that to a good
approximation are independent. They have zero mean, and

UATITP?) = ¢y - (11)
Denoting the difference between the actual and observed
values by J;, we make the standard assumption that these nine
quantities are identically distributed and independent Gauss-
ian random variables. Thus the temperature fluctuation that
we measure at each point, AT;/T + §,, is again Gaussian, being
the sum of two Gaussians. The variable that we actually
measure is

1 & (AT, )2 1 )
Sgp == —+6;) ==(cp + Vs , 12
sp 9 ’Z< T i 9 ( sp sp)x9 ( )
where x3 has a y? distribution with nine degrees of freedom,
and V,, is the variance due to experimental noise, the error
bias, i.e., the average variance that would be detected even if
the true power spectrum were P(k) = 0.

We will use only the signal from highest of the four fre-
quency channels, which is the one likely to be the least affected
by Galactic contamination. Again, although Monte Carlo
simulations would be needed to obtain the exact probability
distributions, we will use the simple y2 approximation here. In
this case, the main experiment-specific complication is the
reported gradient removal, which is a nonlinear operation and
thus does not simply lead to a x? distribution with fewer
degrees of freedom.

The amplitude of the COBE signal can be characterized by
the variance in AT/T on an angular scale of 10°. This number
can be estimated from the COBE data set as s, = 624 =
[(11.0 + 1.8) x 10731 (Smoot et al. 1992). The uncertainty in
this quantity is purely due to instrument noise and contains no
allowance for cosmic variance. We must fold in the contribu-
tion due to cosmic variance in order to determine the probabil-

TABLE 2
ExPECTED RMS SIGNALS FOR CDM PowER SPECTRUM WITH 4 = (1 h~! Mpc)?

n r LP SP91 COBE LP/SP91 LP/COBE
| S 0.5 9.2 x 1077 1.6 x 1078 2.0 x 1078 56.7 45.1
07 ........ 0.5 1.7 x 107¢ 29 x 1078 51 x 1078 57.2 327
2 0.5 14 x 1077 2.6 x 107° 12 x107° 539 1122
) SR 0.1 14 x 107° 23 x 1078 43 x 1078 579 319
o 10 23 x 1077 4.1 x 107° 46 x 107° 559 49.6
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ity distribution for s, We determined this probability
distribution by performing Monte Carlo simulations of the
COBE experiment. We made simulated COBE maps with a
variety of power spectra (including power laws with indices
ranging from 0 to 3, as well as -function power spectra of the
sort described in § 4). We included instrumental noise in the
maps and excluded all points within 20° of the Galactic plane.
By estimating s, from each map, we were able to construct a
probability distribution corresponding to each power spec-
trum. In all cases, the first three moments of the distribution
were well approximated by

b= (s> =
ty = {82y — (s.p? <0.063c? + 1.44 x 10721, (13)
ps = (s3> =0.009¢3 .

Furthermore, in all cases the probability distributions were
well modeled by x? distributions with the number of degrees of
freedom, mean, and offset chosen to reproduce these three
moments. Note that the magnitude of the cosmic variance
depends on the shape of the power spectrum as well as its
amplitude. The inequality in the above expression for u, rep-
resents the largest cosmic variance of any of the power spectra
we tested. Since we wish to set conservative limits on models,
we will henceforth assume that the cosmic variance is given by
this worst-case value. Thus we are assuming that the random
variable (s, — so)/As has a x? distribution with & degrees of
freedom, where

So = Uy — 2#%/#3 s
As = ps /4y, , (14
o =8u3/uj .

The results obtained using these three probability distribu-
tions are summarized in Table 3. In Tables 3A and 3B, N = 2,
and the question asked is whether LP is consistent with COBE
and SP91, respectively. In Table 3C, N = 3, and we test all

0.01

T
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T

Consistency probability
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&

._.
[S)
&
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._.
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&
T

|

400 800
True LP power [km/s]

T 1
260 800 1000

Orrrrm

FI1G. 3.—Consistency probabilities. The probability that LP, COBE, and
SP91 are consistent with CDM is plotted as a function of the normalization of
the power spectrum. The normalization is expressed in terms of the expected
bulk flow in a LP measurement. The dashed line is the product of these three
probabilities and takes a maximum for a normalization corresponding to 168
kms™!,
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TABLE 3
CONSISTENCY PROBABILITY CALCULATIONS
A. ARE LP AND COBE CONSISTENT WITH CDM?

LP COBE
(km s™1) (1K) Combined

Noise 420 9.8

Signal 169 338

Noise + signal 453 352

Detected 807 352

fi 0.046 1.00 0.046
P(n <) 0.046 1.00 0.19

B. ARe LP AND SP91 CONSISTENT WITH CDM?

LP SP91

(kms™!) (uK) Combined
Noise 420 26.4
Signal 0 0
Noise + signal 420 26.4
Detected 807 199
7l 0.023 0.35 0.0079
P(n < 1) 0.023 0.35 0.046

C. ARE LP, SP91, AND COBE ALL CONSISTENT WITH CDM?

LP SP91 COBE
(km s™Y) (uK) (uK) Combined

Noise 420 26.4 9.8

Signal 168 26.9 338

Noise + signal 452 37.7 35.1

Detected 807 19.9 35.2

7l 0.046 0.039 0.97 0.0017
P(n < 1) 0.046 0.039 0.97 0.046

Note.—First row in each table gives the experimental noise, i.e.,
the detection that would be expected in the absence of any cosmo-
logical signal. Second row gives the best-fit value for the cosmo-
logical signal c, the value that maximizes the combined consistency
probability in the lower right corner of the table. Third row gives
the expected value of an experimental detection and is the sum in
quadrature of the two preceding rows. Fourth row gives the
goodness-of-fit parameter for each of the experiments, i.e., the prob-
ability that they would yield results at least as extreme as they did;
rightmost number is the combined goodness-of-fit parameter,
which is the product of the others. Last row contains the consis-
tency probabilities, the probabilities of obtaining goodness-of-fit
parameters at least as low as those on the preceding line.

three experiments for consistency simultaneously. In each case,
the optimum normalization (proportional to the entries
labeled “Signal ”) is different, chosen such that the consistency
probability for the experiments under consideration is maxi-
mized. For instance, in Table 3C the normalization is chosen
such that the dashed curve in Figure 3 is maximized. As can be
seen, the last two tests rule out CDM at a significance level of
95% i.e., they predict that in an ensemble of universes, results
as extreme as those we observe would be obtained less than 5%
of the time. Note that using both COBE and SP91 to constrain
LP yields a rejection that is no stronger than that obtained
when ignoring COBE. In the latter case, the best fit is indeed
that with no cosmological power at all, which agrees well with
the observation of SCO that sampling variance would lead LP
to detect a sizable bulk flow (before correcting for error bias)
even if there were none.
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4. ALLOWING ARBITRARY POWER SPECTRA

In this section, we will derive the mathematical formalism
for testing results from multiple experiments for consistency,
without making any assumptions whatsoever about the power
spectrum. This approach was pioneered by Juszkiewicz et al.
(1987) for the case N = 2. Here we generalize the results to the
case of arbitrary N. Despite the fact that the original opti-
mization problem is infinite-dimensional, the necessary calcu-
lations will be seen to be of a numerically straightforward type,
the case of N independent constraints leading to nothing more
involved than numerically solving a system of N coupled non-
linear equations. After showing this, we will discuss some
inequalities that provide both a good approximation of the
exact results and a useful qualitative understanding of them.

4.1. The Optimization Problem

Let us consider N = n + 1 experiments numbered 0, 1,..., n
that probe the cosmological power spectrum P(k). We will
think of each experiment as measuring some weighted average
of the power spectrum, and characterize an experiment E; by
its window function W(k) as before.

Purely hypothetically, suppose that we had repeated the
same experiments in many different locations in the universe
and for all practical purposes knew the quantities ¢y, ..., c,
exactly. Then for which power spectrum P(k) would ¢, be max-
imized, and what would this maximum be? If we experimen-
tally determined ¢, to be larger than this maximum value, our
results would be inconsistent, and we would be forced to con-
clude that something was fundamentally wrong either with our
theory or with one of the experiments. In this section, we will
solve this hypothetical problem. After this, it will be seen that
the real problem, including cosmic variance and experimental
noise, can be solved in almost exactly the same way.

The extremal power spectrum we are looking for is the solu-
- tion to the following linear variational problem:

Maximize

f " P W)k (15)
0

subject to the constraints that

P(kyW{k)dk =c;, fori=1,...,n,

Pk) >0, forall k>0.

This is the infinite-dimensional analogue of the so-called
linear programming problem, and its solution is quite analo-
gous to the finite-dimensional case. In geometrical terms, we
think of each power spectrum as a point in the infinite-
dimensional vector space of power spectra (tempered distribu-
tions on the positive real line, to be precise) and limit ourselves
to the subset Q of points where all the above constraints are
satisfied. We have a linear function on this space, and we seek
the point within the subset Q where this function is maximized.
We know that a differentiable functional on a bounded region
takes its maximum either at an interior point, at which its
gradient will vanish, or at a boundary point. In linear opti-
mization problems like the one above, the gradient (here the
variation with respect to P, which is simply the function W) is
simply a constant and will never vanish. Thus any maximum
will always be attained at a boundary point. Moreover, from
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the theory of linear programming, we know that if there are n
linear constraint equations, then the optimum point will be a
point where all but at most n of the coordinates are zero. It is
straightforward to generalize this result to our infinite-
dimensional case, where each fixed k specifies a “coordinate ”
P(k), and the result is that the solution to the variational
problem is of the form

PO = 3 pidlk— k). (7

This reduces the optimization problem from an infinite-
dimensional one to a 2n-dimensional one, where only the con-
stants p; and k; remain to be determined:

Maximize

3., Wik (13)

subject to the constraints that

iWik)=c¢;, fori=1,...,n,
,;p’ (k) (19)

pi=0, fori=1,...,n.

This problem is readily solved using the method of Lagrange
multipliers: defining the Lagrangian

-Sowto- $4 Somiy-a] e

and requiring that all derivatives vanish leaves the following
set of 3n equations to determine the 3n unknowns p;, k;, and 4;:

Wolk) — ¥ 3, Wik) = 0
j=1
[Wb(ki) - ,g% W;(ki)]pi =0, 1)
¢ — 2": iWik)=0.

ji=1

Introducing matrix notation by defining the k;-dependent
quantities A;; = W(k;), B;j= W(k), a;= Wy(k;), and b, =
W(k;) brings out the structure of these equations more clearly:
If p; # O, then

Al =a,
Bi=b, 22)
Ap=c.

If A and B are invertible, then eliminating 4 from the first two
equations yields the following system of n equations to be
solved for the n unknowns k, ..., k,:

A la=B1b. (23)

Although this system is typically coupled and nonlinear and
out of reach of analytical solutions for realistic window func-
tions, solving it numerically is quite straightforward. A useful
feature is that once this system is solved, a, b, 4, and B are mere
constants, and the other unknowns are simply given by matrix
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inversion:

A=A"1a,
{,,=(A-1)rc, 9

Since the nonlinear system (23) may have more than one solu-
tion, all solutions should be substituted back into equation (18)
to determine which one is the global maximum. Furthermore,
to make statements about the solution to our original opti-
mization problem (15), we need to consider also the case where
one or more of the n variables p,, ..., p, vanish. If exactly m
of them are nonvanishing, then without loss of generality, we
may assume that these are the first m of the n variables. Thus
we need to solve the maximization problem (18) separately for
the cases where P(k) is composed of n J-functions, n — 1
d-functions, and so forth, all the way down to the case where
P(k) is single J-function. These solutions should then be substi-
tuted back into equation (15) to determine which is the global
maximum sought in our original problem. Thus the solutions
depend on the window functions W, and the signals ¢; in the
following way:

1. From the window functions alone, we can determine a
discrete and usually finite number of candidate wavenumbers k
where d-functions can be placed.

2. The actual signals ¢; enter only in determining the coeffi-
cients of the d-functions in the sum, i.e., in determining what
amount of power should be hidden at the various candidate
wavenumbers.

If we have found an the optimal solution, then a small change
in the signal vector ¢ will typically result in a small change in p
and no change at all in the number of -functions in P(k) or
their location. If ¢ is changed by a large enough amount, the
o-functions may suddenly jump and/or change in number as a
different solution of equation (18) takes over as global
optimum or one of the coefficients p; becomes negative, the
latter causing the local optimum to be rejected for constraint
violation. Thus, within certain limits, we get the extremely
simple result that, for the optimal power spectrum P(k),

o= L " PUWiH)dk = (4~ 'a) - c . (25)

Thus within these limits, ¢, depends linearly on the observed
signal strengths c¢;. This is exactly analogous to what happens
in linear programming problems.

4.2. A Useful Inequality
Before proceeding further, we will attempt to provide a more

intuitive understanding of the results of the previous section.
For the special case of only a single constraint, i.e., n = 1, we
obtain simply P(k) = p, 8(k — k), where k, is given by

ok )Wi(ky) = W'k )Wo(ky) . (26)
For the case of n constraints, let us define the functions
_ )
COWk)

i

Then we see that for n = 1, k, is simply the wavenumber for
which the function f; is maximized, and that the maximum
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signal possible is simply ¢, = f(k,). Thus the maximum signal
in experiment O that is consistent with the constraint from
experiment i is obtained when the power is concentrated where
the function f; is large. In other words, if we want to explain a
high signal ¢, in the face of low signals in several constraining
experiments, then the best place to hide the necessary power
from the ith experiment is where f; takes its maximum. These
functions are plotted in Figure 4 for the experiments discussed
in § 3, the optimization problem being the search for the
maximum LP signal that is consistent with the constraints
from SP91 and COBE. For illustrative purposes, we here
assume that ¢,, and c, are known exactly and given by the
detected signals 52> ~ 19.9 uK and 5§}/ ~ 33.8 uK (we will give
a proper treatment of cosmic variance and noise in the follow-
ing section). Using the n = 1 constraint for each constraining
experiment separately, the smallest of the functions thus sets an
upper limit to the allowed signal ¢, = ¢,,. Thus the limit is
given by the highest point in the hatched region in Figure 4,
ie.,

co < cM) = sup min fi(k) . 27
k i

We see that using the SP91 constraint alone, the LP signal
would be maximized if all power were at k ~ (940 Mpc) ™.
Since this flagrantly violates the COBE constraint, the best
place to hide the power is instead at k = (100 Mpc) ™.

By using the above formalism to impose all the constraints
at once, the allowed signal obviously becomes lower. If the
constraints are equalities rather than inequalities, then this
stronger limit can never lie below the value at k, = (250
Mpc) ™!, where f(k,) = f(k,), since this is the signal that
would result from a power spectrum of the form P(k)oc
3(k — k,). Thus, for the particular window functions in our
example, where the constraint from the n =2 calculation
cannot be more than a factor £,,(80 Mpc)/f,,(250 Mpc) ~ 1.05
stronger than the simple n = 1 limits, the latter are so close to
the true optimum that they are quite sufficient for our pur-
poses. If the constraints are upper limits rather than equalities,
then the limit on ¢, is more relaxed and is always the upper-

most point in the hatched region, i.e., ci),.

i
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FI1G. 4—Best places to hide power. The functions f;, (solid line) and f,
(dashed line) are plotted as a function of wavenumber k. The shaded region, i.c.,
the area lying beneath both curves, constitutes the LP bulk flows that would be
consistent with the SP91 and COBE experiments using the N = 1 constraints
only, when the power spectrum is a single d-function located at k.
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4.3. Including Noise and Cosmic V ariance

To correctly handle cosmic variance and instrumental noise,
we need to use the formalism developed in § 2. Thus given the
probability distributions for the various experimental results s;,
we wish to find the power spectrum for which the consistency
probability n is maximized. This optimization problem, in
which all experiments are treated on an equal footing, will be
seen to lead directly to the asymmetric case above where the
signal in one is maximized given constraints from the others.
For definiteness, we will continue using the example with the
LP, SP91, and COBE experiments. As seen in § 2, the source of
the low consistency probabilities is that 3, is quite high when
compared to §;, and .. Thus it is fairly obvious that, for the
power spectrum that maximizes the consistency probability,
we will have §,, > (s;,», whereas §,, < <s,,»> and §, < (s>, s0
we can neglect power spectra that do not have this property.
Let us first restrict ourselves to the subset of these power
spectra for which ¢;, = D and c, = E, where D and E are some
constants. Then these power spectra all predict the same prob-
ability distributions for s;, and s.. The consistency probability
n is clearly maximized by the power spectrum that maximizes
{84, and this will be a linear combination of one or two
d-functions as shown in § 4.1. The key point is that since the
locations of these d-functions are independent of D and E
(within the range discussed in § 4.1), the infinite-dimensional
optimization problem reduces to the following two simple
steps:

1. Solve for the optimal number of J-functions m and their
locations k; as described in § 4.1.

2. Find the m coefficients p; for which the power spectrum
P(k) = Y, p;6(k — k;) maximizes the consistency probability.

4.4. Power Spectrum Independent Constraints on
LP,SP91,and COBE

When applying the above consistency test to the LP, SP91,
and COBE experiments, we obtain exactly the same consis-
tency probability as in Table 3B. The reason for this is that the
optimal normalization turns out to be zero. This will obviously
change if the LP error bars become smaller in the future. Thus
dropping the CDM assumption does not improve the situation
at all, which indicates that main source of the inconsistency
must be something other than the CDM model.

In anticipation of future developments, consistency prob-
abilities were also computed for a number of cases with less
noise in the LP experiment. Comparing only LP and SP91, the
optimum power spectrum has a J-function at k = (941
Mpc)~!. When including all three experiments, treating the
COBE and SP91 constraints as upper limits, the optimum
power spectrum has a single d-function at k ~ (79 Mpc)~?, so
the addition of COBE strengthens the constraint only slightly,
due to the flatness of £, in Figure 4. Interestingly, for all these
cases with smaller LP error bars, consistency probabilities
were found to be almost as low when allowing arbitrary power
spectra as for the CDM case. This is again attributable to the
flatness of f;,, since weighted averages of a flat function are
fairly independent of the shape of the weight function (here the
power spectrum).

5. DISCUSSION

We have developed a formalism for testing multiple cosmo-
logical experiments for consistency. As an example of an appli-
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cation, we have used it to place constraints on bulk flows of
galaxies using the COBE and SP91 measurements of fluctua-
tions in the CMB. It was found that, taken at face value, the
recent detection by LP of a bulk flow of 689 km s~ ! on scales
of 150 h~! Mpc is inconsistent with SP91 within the frame-
work of a CDM model, at a significance level of about 95%.
However, interestingly, this cannot be due solely to the CDM
assumption, since the LP result was shown to be inconsistent
with COBE and SP91 at the same significance level even when
no assumptions whatsoever were made about the power spec-
trum. This leaves four possibilities:

1. The window functions are not accurate.

2. Something is wrong with the quoted signals or error bars
for at least one of the experiments.

3. The observed fluctuations cannot be explained within the
framework of gravitational instability and the Sachs-Wolfe
effect.

4. The random fields are not Gaussian.

Case 1 could be attributed to a number of effects: If Q # 1,
then both the calculation of the Sachs-Wolfe effect (which
determines W,, and W) and the growth of velocity pertur-
bations (which determines W;,) are altered. If the universe
became reionized early enough to rescatter a significant frac-
tion of all CMB photons, then small-scale CMB anisotropies
were suppressed, which would lower W,,. A quantitative treat-
ment of these two cases will be given in a future paper. Other
possible causes of case 1 include a significant fraction of the
density perturbations being isocurvature (entropy) pertur-
bations or tensor-mode perturbations (gravity waves). Apart
from these uncertainties, we have made several simplifying
assumptions about the window functions for LP and SP91. To
obtain more accurate consistency probabilities than those
derived in the present paper, a more accurate LP window func-
tion should be used that incorporates the discreteness and the
asymmetry of the sample of Abell clusters used. This can either
be done analytically (Feldman & Watkins 1994) or circum-
vented altogether by performing Monte Carlo simulations like
those of LP or SCO, but for the whole family of power spectra
under consideration.

As to case 2, there has been considerable debate about both
the LP and the SP91 experiments. A recent Monte Carlo simu-
lation of LP by SCO basically confirms the large error bars
quoted by LP. As is evident from the flatness of the LP curve in
Figure 3, it will be impossible to make very strong statements
about inconsistency until future experiments produce smaller
error bars. With the SP91 experiment, a source of concern is
the validity of using only the highest of the four frequency
channels to place limits, even though it is fairly clear that the
other three channels suffer from problems with Galactic con-
tamination. The situation is made more disturbing by the fact
that a measurement by the balloon-borne MAX experiment
(Gundersen et al. 1993) has produced detections of degree-scale
fluctuations that are higher than those seen by SP91, and also
higher than another MAX measurement (Meinhold et al.
1993). Other recent experiments that have detected greater
fluctuations include ARGO (de Bernardis et al. 1994),
PYTHON (Dragovan et al. 1994), and MSAM (Cheng et al.
1994). On the other hand, SP91 has been used only as an upper
limit in our treatment, by including only the Sachs-Wolfe effect
and neglecting both Doppler contributions from peculiar
motions of the surface of last scattering and intrinsic density
fluctuations at the recombination epoch. If these effects (which
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unfortunately depend strongly on parameters such as h and Q,)
where included, the resulting constraints would be stronger.

Case 3 might be expected if the universe underwent a late-
time phase transition, since this could generate new large-scale
fluctuations in an entirely nongravitational manner.

In the light of the many caveats in cases 1 and 2, the appar-
ent inconsistency between LP and SP91 (Jaffe et al. 1994) is
hardly a source of major concern at the present time, and it
does not appear necessary to invoke cases 3 or 4. However, we
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expect the testing formalism developed in this paper to be able
to provide many useful constraints in the future, as more
experimental data are accumulated and error bars become
smaller.

The authors wish to thank M. Strauss, B. Bromley, B. Jain,
D. Scott, J. Silk, and M. White for many useful comments and
suggestions.

APPENDIX A

COMPARISON OF GOODNESS-OF-FIT PARAMETERS

In this appendix, we compare the performances of the probability product and the likelihood product as goodness-of-fit
parameters. We attempt to address the question of which parameter is a better choice for hypothesis testing.

First of all, what do we mean by a goodness-of-fit parameter # being good? Suppose that we want to use # to test a particular
model. We compute the value 7 corresponding to the model, and we say that the model is rejected at some confidence level x if
P(n < #) < 1 — x. Note that any goodness-of-fit parameter n will lead to the correct model being ruled out a fraction 1 — x of the
time. Since this is true for all choices of #, we cannot use it to help us distinguish among different potential #’s. Rather, the
conventional criterion for rating goodness-of-fit parameters is rejection power: given a model and a set of observations, one 7 is said
to be more powerful than another if it rejects the model at a higher level of significance. An example of a very stupid goodness-of-fit
parameter, which in fact has the lowest rejection power possible, is a random variable # drawn from a uniform distribution on [0, 1],
thus containing no information whatsoever about the model or the observed data. Use of this parameter will reject the model at
95% confidence only 5% of the time, even if the data are blatantly inconsistent with the model.

Bothn,and n, Can Be “ Fooled” ...

Given a random variable s; with probability distribution f;, we define the corresponding random variable for likelihood by
L; = f{(s)/f.nax» Where we chose the normalization constant f, ,, = max, fi(x) so that we will always have 0 < L; < 1. Thus for N
experiments, the likelihood product

N
m= 1__[1 L;

will also be a random variable on the interval [0, 1].

It is easy to construct examples where either the probability product #,, (as defined in § 2.1) or the likelihood product #, give very
low rejection power. The Achilles’s heel of the probability product is multimodal distributions, where values near the mean are
rather unlikely. For example, suppose N = 1 and we have a double-humped distribution such as

fi(s) oc 275 .

If we observe a value §; = 0, then 5, would reject the model with 100% confidence, whereas the probability product fails miserably,
rejecting with 0% confidence since §; equals the mean.

The likelihood product, on the other hand, has the weakness that the highest likelihood may be attained far out in the tail of the
distribution. Suppose for instance that N = 1 and we have the probability distribution

f1(8) = (1 — €o(s) + o((s — 10)/e) ,

where ¢(x) = exp (—x?%/2)/(2n)!/? is a Gaussian of zero mean and unit variance, and € = 10~ %, This distribution looks like a
Gaussian of unit variance, with a very tall, narrow spike far out in the tail. The variable s has the very low probability € of being
drawn from the spike, even though #, takes on its maximum value there. In other words, if we observe §; = 10, then the probability
product will correctly rule out the model at very high confidence, while the likelihood product will have 0% rejection power.

... But They Usually Give Similar Results

It is important to note that neither of the two examples above is particularly physical. The random variables arising from cosmic
variance have Gaussian or y? distributions, and the same tends to hold for the various experimental noise distributions. Thus the
probability distributions to which our goodness-of-fit parameter is applied in this paper are unimodal and taper off to zero
smoothly. Hence for cosmological applications, goodness-of-fit parameters should not be rated by their performance with such
pathological distributions, but rather by their rejection power when applied to continuous, unimodal distributions. We will now
compare the performance of 77, and #, for a few such cases.
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For a symmetric exponential distribution
fls) = 3e7"1,

it is easy to see that the likelihood L; has a uniform distribution. This means that n, and », will have identical distributions, for
arbitrary N. It is straightforward to show that the same holds for symmetric triangle distributions

Js)=1—1s|.

A third case where 7, and #, give identical results is when N = 1 and fis any smooth unimodal function.
For a Gaussian distribution

fls) = @m)~12e72
we have
P(L; < x) = 2 erfc (—2Inx)*/?) .

Although the probability distribution of , appears not to be expressible in terms of elementary functions for arbitrary n, it is easy to
show that #, has a uniform distribution for the special case N = 2. Thus the likelihood product gives rejection at a confidence level of

P(n, < 1) = exp (— (5% + 59)/2) .
Comparing this with the corresponding confidence level based on 7, shows a remarkable agreement between the two methods.
Within the disk §} + § < 4, over which P(y < #) varies with many orders of magnitude, the two methods never differ by more than
a factor of 2. Thus, at worst, one may yield a confidence level of say 99.98% where the other yields 99.99%. The probability product
is stronger in slightly more than half of the (§,, §,)-plane, roughly for regions that are more than 20° away from any of the coordinate
axes.

In conclusion, we have seen that for unimodal, continuous probability distributions, the likelihood product and the probability
product tend to give fairly similar—in a few special cases even identical—results. Thus choosing one parameter over the other is
more a matter of personal preference than something that is likely to seriously affect any scientific conclusions. There is, however,
one important practical consideration: 7, is easier to use than #,, for the following reason. In order to compute the significance level
at which a model can be rejected, one must compute the probability P( < ). It is therefore not enough that # be easy to compute; it
is also necessary to know the probability distribution f,(1). The probability distribution of #, depends on the probability distribu-
tions of the random variables s;. This means that, apart from a few fortuitous special cases such as described above, it can generally
not be calculated analytically. Rather, it must be computed numerically, through numerical convolution or Monte Carlo simula-
tion. The probability distribution for 57, on the other hand, is always known analytically, as given by equation (4), so the probability
product is considerably simpler to use.

APPENDIX B
WINDOW FUNCTIONS

The results of CMB anisotropy experiments can be conveniently described by expanding the temperature fluctuation in spherical
harmonics:

00

A 1
TO=3 % ank. B1)

1=2 m=-1

(The monopole and dipole anisotropies have been removed from the above expression, since they are unmeasurable.) If the
fluctuations are Gaussian, then each coefficient a,,, is an independent Gaussian random variable with zero mean (Bond & Efstathiou
1987). The statistical properties of the fluctuations are then completely specified by the variances of these quantities

Ci=Llaml*> . (B2)

(The fact that the variances are independent of m is an immediate consequence of spherical symmetry.) Different CMB experiments
are sensitive to different linear combinations of the C;s:

S=)Y FC, (B3)
1=2

where S is the ensemble-averaged mean-square signal in a particular experiment and the “filter function” F, specifies the sensitivity
of the experiment on different angular scales. The filter functions for COBE and SP91 are

2
F? = Ql:—l) exp (-—af(l + %) ) ,
4 (B4)

1% ¢
F¢® =4 exp (—a’szp<l + 5) ) Y. Hiom),

m=—1

where H, is a Struve function, ¢, = 4225 and o,, = 0°70 are the rms beamwidths for the two experiments, and a = 1°5 is the
amplitude of the beam chop (Bond et al. 1991; Dodelson & Jubas 1993, White, Krauss, & Silk 1993).
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For Sachs-Wolfe fluctuations in a spatially flat universe with the standard ionization history, the angular power spectrum C, is
related to the power spectrum of the matter fluctuations in the following way (Peebles 1984; Bond & Efstathiou 1987):

Ci=—; f dk P(k)j (k) . (BS)

Here 1, is the conformal time at the present epoch, and
Jik) = sz((fo —k)V(z)dr, (B6)
where jj is a spherical Bessel function. The v1s1b111ty function V is the probability distribution for the conformal time at which a
random CMB photon was last scattered. j,(k) is therefore the average of j(kt) over the last scattering surface. We have used the V of

Padmanabhan (1993).
We can combine equations (B3), (B4), and (B5), to get the window functions for the two experiments:

W= 2kzz 2 Z Ji(k) exp <—G (l + 1) )(2! +1),

32 1)\? !
W, = e Z ji(k) exp < <l + -2-) ) Y. Hiam). (B7)
m=—1
The mean-square bulk flow inside of a sphere of radius a is (see, e.g., Kolb & Turner 1990)
1
w? = J dk PU) =5 8 ’(;C(k)‘? . (BS)

However, we must make two corrections to this result before applying it to the LP data. This formula applies to a measurement of
the bulk flow within a sphere with an infinitely sharp boundary. In reality, errors in measuring of the bulk flow within a sphere with
an infinitely sharp boundary. In reality, errors in measuring distances cause the boundary of the spherical region to be somewhat
fuzzy. If we assume that distance measurements are subject to a fractional error €, then the window function must be multiplied by
e~ ¢k We have taken € = 0.16, the average value quoted by LP. It should be noted that this value varies from galaxy to galaxy in
the LP sample, due to the distance estimation technique used and that a more accurate window function that reflects the discrete
locations of the Abell clusters used in the survey should take this into account.

The second correction has to do with the behavior of the window function at small k. Equation (B8) applies to the velocity relative
to the rest frame of the universe. The velocity measured by LP is with respect to the CMB rest frame. If there is an intrinsic CMB
dipole anisotropy, then these two reference frames differ. Therefore, we must include in equation (B8) a term corresponding to the
intrinsic CMB dipole. This correction was first noticed by Gorski (1991). After applying both of these corrections, the LP window

function is
_ ]1(’“1) o~ (cka)? JllLk_) 2
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