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ABSTRACT
We calculate the anisotropies in the cosmic microwave background induced by long-wavelength primordial

gravitational waves in a universe with negative spatial curvature, such as are produced in the “open inflation”
scenario. The impact of these results on the COBE normalization of open models is discussed.
Subject headings: cosmic microwave background — cosmology: theory

There is considerable observational prejudice suggesting
that we live in a universe with negative spatial curvature, an
open universe. Recently, Bucher, Goldhaber, & Turok (1995)
have devised an open inflationary cosmogony. This has al-
lowed one, for the first time, to calculate the spectrum of
primordial fluctuations in an open model. The scalar field
modes, which give rise to density perturbations, come in three
types and have been extensively discussed in the literature (for
a recent review, see Cohn 1996). As with all inflationary
models, a nearly scale-invariant spectrum of gravitational
waves (tensor modes) is also produced, and the spectrum of
such modes has recently been computed (Tanaka & Sasaki
1997; Bucher & Cohn 1997). If the energy density during
inflation is high enough, these modes induce a measurable
cosmic microwave background (CMB) anisotropy (Abbott &
Wise 1984). In this Letter we calculate these CMB anisotro-
pies and their implications for the COBE normalization of
open models.

The gravitational waves represent tensor perturbations to
the metric

ds2 5 a2 ~h! @2 dh2 1 ~gij 1 hij! dxi dxj#, (1)

where a(h) is the scale factor, dh 5 dtya(t) is the conformal
time, and gij is the three-metric for a space of constant
(negative) curvature K 5 2H0

2(1 2 V0). The perturbations
decompose as hij 5 2hQij, where the harmonic modes are the
transverse-traceless tensor eigenfunctions of the Laplacian
É2Qij 5 2k2Qij (Kodama & Sasaki 1984; Abbott & Schaefer
1986). The photon temperature distribution function Q can
likewise be expanded in mode functions Q(h, x, n̂) 5
(k(lQ1(k)Gl(x, k, n̂), which form a complete basis constructed
out of covariant derivatives of Qij.

The Einstein equations reduce to a single relation that
expresses the evolution of the amplitude of the tensor metric
perturbation in the presence of tensor anisotropic stress in the
matter pp (Kodama & Sasaki 1984; Abbott & Schaefer 1986),

h¨ 1 2
ȧ

a
ḣ 1 ~k2 1 2K!h 5 8pGa2pp . (2)

The quadrupolar variations in the metric induced by ḣ leave a
corresponding signature through the photon quadrupole (l 5
2), which acts as the source to the tensor Boltzmann hierarchy
(Hu & White 1997),
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(3)

where ṫ 5 anesT is the differential optical depth to Thomson
scattering, and the geodesic deviation factors are kl

2 5 [1 2
(l2 2 3)Kyk2]. In the above, we have neglected the coupling of
the temperature anisotropy to the CMB polarization since this
has a small effect on the temperature anisotropy spectrum
calculated (see Hu & White 1997 and its generalization to
open universes Hu et al. 1997 for more details). The power
spectrum of temperature anisotropies today is defined as

~2l 1 1!2Cl
~T! 5

2

p E
0

E dq

q
q3uQl~h0, q!u2, (4)

where q2 5 k2 1 3K ranges from 0 to E since the subcurvature
modes are complete for k $ Î 2 3K (Abbott & Schaeffer
1986). There are no supercurvature modes for the gravity wave
background (Tanaka & Sasaki 1997).

The initial gravitational wave power spectrum may be
parameterized as

q3Ph~q! [ q3uh~h 5 0, q!u2
F

~q2 1 4!

~q2 1 1!
f ~q! . (5)

The bubble models predict f(q) 1 q for q ,, 1 and f(q) 3 1
for q ? 2 (Tanaka & Sasaki 1997; Bucher & Cohn 1997). The
minimal anisotropies are produced when this turnover occurs
at the largest allowed q, or f(q) 5 tanh (pqy2) (see Bucher &
Cohn 1997, eq. [6.5]), which we display in Figure 1 (dashed
lines). Decreasing the turnover scale increases the low-l an-
isotropy, as shown in the f(q) 5 tanh (pq) example of Figure
1 (dotted lines).

The exact form of the function f(q) is sensitive to the1 Alfred P. Sloan Fellow.
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parameters of the bubble. However, as illustrated in Figure 1,
variations are confined to the low multipoles for reasonable
values of V0 ? 0.3, as was the case for the scalar modes
(Yamamoto & Bunn 1996). Small changes in bubble parame-
ters will thus be lost in cosmic variance. Since a calculation of
nonscale-invariant spectra has not been performed for tensors,
we make an Ansatz that the spectral tilt is a pure power law in
k, viz. (kyH0)nT times the above result.

In flat space, as k3 0 the power in the Boltzmann hierarchy
of equation (3) remains in the quadrupole. Thus, we expect
that tensor contributions in a flat universe will have an
enhanced quadrupole due to long-wavelength modes (as seen
in Fig. 2). However, as k3 0, equation (2) requires that ḣ 3
0, so the source of the anisotropy dies off to low k, ensuring a
finite quadrupole. If K , 0, then even as q 3 0, the metric

perturbation damps when h ? uKu21y2, i.e., when the curvature
scale crosses the horizon. This provides a source to the
anisotropy to arbitrarily low q, and indeed the Cl from a
scale-invariant spectrum, q3P(q) 5 const, would diverge loga-
rithmically. A similar divergence would occur for the scalar
monopole because of the decay of the gravitational potential
(see Fig. 2 and Sugiyama & Silk 1994), but the monopole is not
observable. The open inflation models regulate this divergence
with the finite energy difference before and after the tunneling
event that defines the bubble (Tanaka & Sasaki 1997; Bucher
& Cohn 1997) and translates into the turnover in f(q) dis-
cussed above. If one goes to sufficiently low V0 = 0.1, the
effect of the curvature cutoff k(q 5 0) 5 Î 2 3K can also be
seen as a low multipole suppression in the spectrum. However,
for V0 of interest for structure formation the curvature cutoff
is absent, and the large contribution from low-q is the domi-
nant effect, leading to anisotropy spectra that decrease
strongly with l on COBE scales.

Since gravitational waves provide anisotropies but no den-
sity fluctuations, they lower the normalization of the matter
power spectrum. Open models already have quite a low
normalization (e.g., White & Silk 1996; White & Scott 1996),
so we seek the minimal anisotropies induced by gravity waves.
These minimal anisotropies are also, in fact, close to what
most models would predict, with reasonable inflationary po-
tentials. We express the COBE 4 yr normalization (Bennett et
al. 1996) in terms of the value of the density perturbations per
logarithmic interval in k evaluated at horizon crossing. Writing
D2(k) 5 k3P(k)y(2p2), we define dH [ D(k 5 H0). If we hold
the “shape” of the matter power spectrum fixed, then the
small-scale power (e.g., s8) is proportional to dH. For minimal
models with ñ [ n 2 1 5 nT the COBE 4 yr data give

105dH 5 1.95V0
20.3520.19 ln V0 1 0.15ñ exp ~1.02ñ 1 1.70ñ2! . (6)

The fitting function works to 3% over the range 0.2 , V0 # 1
and 0.7 , n , 1, whereas the COBE 1 s error is 10%.
Compared with the equivalent expression without gravity
waves (Bunn & White 1997, eq. [31]), we isolate the additional

FIG. 1.—The CMB anisotropy spectrum induced by a spectrum of gravitational waves with nT 5 0. The solid line is V0 5 1 with h 5 0.75. Dashed lines show the
minimal anisotropy for (lef t) V0 5 0.1, 0.2, and 0.3, and (right) 0.4, 0.6, and 0.8 relative to V0 5 1. The dotted lines (lef t) illustrate how low-l anisotropies are enhanced
as the bubble parameters are altered from their minimal values.

FIG. 2.—Relative tensor and scalar anisotropy contributions for a model
with V0 5 0.4 and n 5 0.8 assuming nS 2 1 5 nT, VBh2 5 0.02, and h 5 0.6.
This model has been chosen for illustration to have TyS 3 1 and would
produce insufficient large-scale structure, e.g., s8 3 0.25, as well as provide a
poor fit to the COBE data.
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suppression as V0
0.32ñ exp (2.02ñ 1 1.84ñ 2). This suppression

exacerbates the problem that low-V0 models have with the
present-day abundance of rich clusters (White & Silk 1996).

In conclusion, we have presented the first calculation of the
anisotropy in the CMB from a spectrum of long-wavelength
gravitational waves in an open universe. The spectrum exhibits
a peak in large-angle power that is dependent on the modifi-
cations to the initial power spectrum near the curvature scale
from the bubble wall. For very low V0 a curvature cutoff is seen
in the spectrum, analogous to the case of scalar modes. Since
gravitational waves provide anisotropies but no density fluctu-
ations, they lower the normalization of the matter power

spectrum. We have calculated this normalization from the
COBE 4 yr data and expressed our result in terms of a fitting
function (eq. [6]). The lower normalization of the tilted
models with gravitational waves exacerbates the difficultly such
models have in fitting the present-day abundance of rich
clusters.
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