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An extraordinary wealth of cosmological information lies in the cosmic microwave background (CMB)

temperature anisotropy at degree and subdegree scales. Yet despite the flurry of reported measurements

in the past several years,1 systematic errors, extragalactic sources and galactic foregrounds have prevented

definitive measurements at these scales. With adequate sky and frequency coverage, foreground contamina-

tion can be avoided or removed.2,3 Experiments presently in the planning stage are expected to overcome

such difficulties within the next few years. It is therefore timely to review the physics of anisotropy formation

in order to lay the basis for the science that may be extracted from these anticipated detections.

A definitive set of experiments must achieve good sensitivity at an an angular resolution of at least 10

arcminutes. Large angle anisotropies, detected by the COBE satellite,4 probe the fluctuations laid down in

the very early universe, possibly the result of quantum mechanical processes during an epoch of inflation.

These primordial fluctuations grew by gravitational instability into the large scale structure of the universe

today. To reveal more cosmological information, one has to probe the anisotropy of the CMB at smaller

angular scales where causal interactions take place. A causally-connected region, or horizon volume, at last

scattering subtends no more than a degree on the sky under most conditions.

Inside the horizon, acoustic,5 Doppler,6 gravitational redshift,7 and photon diffusion8 effects combine to

form a seemingly complicated spectrum of primary anisotropies. Considering the component contributions

individually reveals the underlying simplicity and sensitivity of the spectrum to a variety of cosmological

parameters, including the baryon density, the dark matter density, the cosmological constant, the Hubble

constant, and the curvature of the universe. Secondary effects generated at later times may provide important

clues for the process of structure formation. Furthermore, these degree and subdegree scale anisotropies will

enable one to attempt a reconstruction of the spectrum and evolution of density fluctuations on 100 Mpc

scales which deep galaxy redshift surveys are beginning to probe.

In this review, we draw on classical Newtonian analogues to represent anisotropy formation.9,10 We refer

the reader elsewhere for alternate descriptions, which differ in perspective not in physical content, and more

complete historical developments of the subject.11,12,13

Primary Anisotropies

Before redshift z∗ ' 103, CMB photons are hot enough to ionize hydrogen. Compton scattering tightly

couples the photons to the electrons which are in turn coupled to the baryons by electromagnetic interactions.

The system can thus be dynamically described as a photon-baryon fluid. Photon pressure resists gravitational

compression of the fluid and sets up acoustic oscillations. At z∗, neutral hydrogen forms and the photons

last scatter. Regions of compression and rarefaction at this epoch represent hot and cold spots respectively.

Photons also suffer gravitational redshifts from climbing out of the potentials on the last scattering surface.

The resultant fluctuations appear to the observer today as anisotropies on the sky. We call these fluctuations

primary anisotropies. Secondary anisotropies can also be generated between recombination and the present.

We consider those contributions in the next section.
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Normal Modes

Normal mode analysis breaks the system into independent oscillators. In flat space, this corresponds to

a Fourier decomposition of the fluctuation into plane waves of comoving wavenumber k. An isotropic

temperature perturbation Θ = ∆T/T in mode k evolves almost as a simple harmonic oscillator before

recombination,14 meffΘ̈ + k2c2Θ/3 ' meffg. The overdots represent derivatives with respect to conformal

time η =
∫

(1 + z)dt and the effective dimensionless mass of the oscillator is meff = 1 + R. Here R =

(ρb + pb)/(ργ + pγ) ' 3ρb/4ργ is the baryon-photon momentum density ratio. The oscillation frequency

obeys the dispersion relation ω = kc/
√

3meff = kcs, where cs is the sound speed. Gravity provides an

effective acceleration of g = −k2c2Ψ/3− Φ̈, where Ψ is the Newtonian gravitational potential and Φ ' −Ψ

is the curvature perturbation on spatial hypersurfaces. These are related to the density fluctuation via the

Poisson equation and give rise to gravitational infall and time dilation as we shall see.

Acoustic Oscillations

Let us first consider the case of a static potential.15 Here, g ' −k2c2Ψ/3 and supplies the usual gravitational

force that causes matter to fall into potential wells. Since big bang nucleosynthesis implies that the baryon

density is low, as a first approximation, assume that the photons completely dominate the fluid, R� 1.

Gravitational infall compresses the fluid until resistance from photon pressure reverses the motion. To

complete the description, we need to choose the initial conditions, assumed for now to be adiabatic (see

Box 1): Θ(0) = −2
3Ψ and Θ̇(0) = 0. Since a constant gravitational force merely shifts the zero point of

the oscillation to Θ = −Ψ, the initial displacement of 1
3
Ψ from the zero point enters into the oscillation

as Θ + Ψ = 1
3Ψ cos(ks), where the sound horizon is s =

∫
csdη (see Fig. 1a). At last scattering η∗, the

photons decouple from the baryons and stream out of potential wells suffering gravitational redshifts equal

to Ψ. We thus call Θ + Ψ the effective temperature fluctuation. Here the redshift exactly cancels the zero

point displacement since gravitational infall and redshift have the same physical origin if the baryons are

dynamically insignificant.

The phase of the oscillation is frozen in at last scattering. The critical wavenumber kA = π/s∗ corre-

sponds to the sound horizon at that time (see Fig. 1a). Longer wavelengths will not have evolved from the

initial conditions and possess 1
3Ψ fluctuations after gravitational redshift. This combination of the intrinsic

temperature fluctuation and the gravitational redshift is the well-known Sachs-Wolfe effect.7 Shorter wave-

length fluctuations can be frozen at different phases of the cos(ks∗) oscillation. As a function of k, there

will be a harmonic series of temperature fluctuation peaks with km = mkA = mπ/s∗ for the mth peak.

Odd peaks thus represent the compression phase (temperature crests), whereas even peaks represent the

rarefaction phase (temperature troughs), inside the potential wells. More exotic models might produce a

phase shift cos(ks∗ + φ), but even so the spacing between the peaks remains km − km−1 = kA (see Box 1).

Thus the sound horizon at last scattering s∗(Ω0h
2,ΩBh2) should be measurable from the CMB. Here the

Hubble constant is H0 = 100h km s−1 Mpc−1 and Ω0 and ΩB are the present matter and baryon density in

units of the critical density. The dependence on ΩBh2 is weak if R(z∗) ' 30ΩBh2 � 1.
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Figure 1. (a) Acoustic oscillations. Photon pressure resists gravitational compression of the
fluid setting up acoustic oscillations (left panel, real space −π/2 ∼< kx ∼< π/2). Springs and
balls schematically represent fluid pressure and effective mass respectively. Gravity displaces
the zero point such that Θ cos(kx) = −Ψ cos(kx) at equilibrium with oscillations in time
of amplitude Ψ/3 (right panel). The displacement is cancelled by the redshift Ψ cos(kx) a
photon experiences climbing out of the well. Velocity oscillations lead to a Doppler effect
V‖ shifted by π/2 in phase from the temperature perturbation. (b) Baryon drag increases
the gravitating mass, causing more infall and a net zero point displacement, even after
redshift. Temperature crests (compression) are enhanced over troughs (rarefaction) and
Doppler contributions.

Baryon Drag

While effectively pressureless, the baryons do contribute to the mass of the fluid meff = 1 + R, where recall

R ∝ ΩBh2. This changes the balance between pressure and gravity. In the presence of baryons, gravitational

infall leads to greater compression of the fluid in a potential well, i.e. a further displacement of the oscillation

zero point14 (see Fig. 1b). Since the redshift is not affected by the baryon content, this relative shift remains

after last scattering to enhance all peaks from compression over those from rarefaction. If R were constant,

Θ+Ψ = 1
3 Ψ(1+3R) cos(ks)−RΨ, with compressional peaks a factor of (1+6R) larger than the Sachs-Wolfe

plateau and a difference in peak amplitude of 2RΨ between even and odd peaks.52 In reality, these effects

are reduced since R→ 0 at early times. Nevertheless, the relative peak heights probe ΩBh2 through R and

the amplitude of potential perturbations at last scattering through Ψ.

Finally the evolution of the effective mass influences the oscillation. In classical mechanics, the ratio of

energy 1
2meffω

2A2 to frequency ω of an oscillator is an adiabatic invariant. Thus for the slow changes in

4



meff ∝ ω−2, the amplitude of the oscillation varies as A ∝ m−1/4
eff ∝ (1 +R)−1/4 representing a small decay

with time.

Doppler Effect

Since the turning points are at the extrema, the fluid velocity oscillates π/2 out of phase with the density (see

Fig. 1a). Its line-of-sight motion relative to the observer causes a Doppler shift. Whereas the observer velocity

creates a pure dipole anisotropy on the sky, the fluid velocity vγ causes an rms spatial temperature variation

V‖ = 1√
3
vγ/c on the last scattering surface from its line-of-sight component.6 For a photon-dominated

meff ' 1 fluid, the velocity contribution is equal in amplitude to the density effect15 V‖ = 1
3
Ψ sin(ks).

The addition of baryons changes the relative velocity contribution. As the effective mass increases,

conservation of energy requires that the velocity decreases for the same initial temperature displacement.

Thus the relative amplitude of the Doppler effect scales as m−1/2
eff . In the toy model of a constant baryon-

photon momentum ratio R, the contribution becomes V‖ = 1
3Ψ(1 + 3R)(1 + R)−1/2 sin(ks). Notice that

velocity oscillations are symmetric around zero leading to an even more prominent compressional peaks (see

Fig. 1a). Even in a universe with ΩBh2 ' 10−2 given by nucleosynthesis, R is sufficiently large to make

velocity contributions subdominant.

Driving Effect

All realistic models involve time-dependent potentials. Forced acoustic oscillations result and can greatly

enhance the peaks if the forcing frequency matches the natural frequency. Such is the case if the acoustic

perturbations themselves generate most of the force through their self-gravity.16,17

We have hitherto assumed that matter dominates the energy density. In reality, radiation dominates

above the redshift of equality zeq = 2.4× 104Ω0h
2, assuming the usual three flavors of massless neutrinos.

We show in Box 1 how radiation fluctuations introduce a distinct class of isocurvature perturbations and

distinguishes them from adiabatic ones by the associated driving mechanism. In both cases, the driving

effect boosts the amplitude of the oscillations and leaves an imprint of the matter-radiation transition in the

CMB. The critical scale corresponds to the wavenumber crossing the horizon at zeq, keq = 7.3× 10−2Ω0h
2

Mpc−1. For adiabatic fluctuations, acoustic oscillations smaller than this scale are boosted by a factor of

∼ 5 above the Sachs-Wolfe plateau in temperature. The peak-to-plateau ratio thus probes keq and so Ω0h
2.

Photon Diffusion

In reality, coupling is imperfect since the photons possess a mean free path to Compton scattering λC . As

the photons random walk through the baryons, hot and cold regions are mixed. Fluctuations damp nearly

exponentially as the diffusion length λD ∼
√
NλC =

√
cηλC overtakes the wavelength.8

At last scattering, the ionization fraction xe decreases due to recombination, thus increasing the mean

free path of the photons λC ∝ (xenb)−1. The effective diffusion scale kD can therefore be used as a probe of

the ionization history and the baryon content ΩBh2. Notice that this scale is not dependent on the nature

of the initial fluctuations assumed (cf. Box 1). If recombination is delayed, e.g. by the early release of energy

from particle decays or non-linear fluctuations, diffusion continues. As the diffusion length reaches the sound

horizon, the acoustic peaks vanish. This occurs in models where recombination never occurred. We will

return, below, to consider the less extreme variant of recombination followed by late reionization.
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Figure 2. Projection effects. Temperature fluctuations on a distant surface appear as
anisotropies on the sky. The angular size depends on the geometry of the universe and the
distance to this surface. At a fixed distance, a smaller physical scale is required to subtend
the same angle in a closed universe and larger in an open universe (schematically flattened
for clarity). Acoustic fluctuations from last scattering subtend a smaller angle on the sky
than the ISW effects for the same physical scale.

Projection Effect

The description of the primary signal now lacks only the relation between fluctuations at z ' 103 and

anisotropies today. A spatial fluctuation on this distant surface appears as an anisotropy on the sky. Two

quantities affect the projection: the curvature of the universe and the distance to the surface. The curvature

is defined as K = −H2
0 ΩK/c2. Here the relative contribution of the curvature to the expansion rate is

ΩK = 1− Ω0 −ΩΛ, with ΩΛ related to the cosmological constant as Λ = 3H2
0ΩΛ/c

2.

Consider first the case of positive curvature. Photons free stream to the observer on geodesics analogous

to lines of longitude to the pole (see Fig. 2). Positive curvature (closed universe K > 0) makes the same
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physical scale at fixed latitude (distance) subtend a larger angle than in the Euclidean case. The opposite

effect occurs for negative curvature15,18 (open universe K < 0).

Increasing the distance to the last scattering surface also decreases the angular extent of the features.

The distance to last scattering c(η0 − η∗) depends mainly on the expansion rate and hence on H0,Ω0,ΩK
and very weakly on ΩΛ. Putting these quantities together gives us the angular diameter distance d =

|K|−1/2 sinh[|K|1/2c(η0 − η∗)] for K < 0 and similarly for K > 0 with sinh → sin. The angular extent

θ ∼ `−1 of a physical feature in the CMB is given by `feature = kfeatured. These scales, especially the peak

spacing `A based on kA, provide angular size distance measures of the curvature.17,19 Combined, they allow

one to reconstruct the other fundamental cosmological parameters through their effect on the various physical

scales (e.g. kA,keq,kD) associated with the temperature fluctuations (see Box 2).

Secondary Anisotropies
Intervening effects between recombination and the present can alter the anisotropy. These divide basically

into two categories: gravitational effects from metric distortions and rescattering effects from reionization.

Both leave imprints of the more recent evolution of the universe and the structure within it. Compared with

the primary signal, secondary anisotropies provide more details on the evolution of structure and less robust

constraints on the background parameters.

Gravitational Effects

If metric fluctuations evolve as the photons stream past them, they leave their mark as gravitational

redshifts.7 Common manifestations include, the early ISW effect from the radiation, the late ISW effect

from rapid expansion, the Rees-Sciama effect from non-linear structures, and external sources such as gravi-

tational waves and topological defects. Metric fluctuations can also lens the photons and distort the primary

signal.

Consider first the gravitational redshift from ordinary scalar fluctuations. Here the metric fluctuations

are the now familiar Newtonian potential Ψ for the time-time component and the curvature perturbation Φ

for the space-space component. As we have already seen, gradients in the potential Ψ cause gravitational

infall and redshift. If the depth of the potential well changes as the photon crosses it, the blueshift from falling

in and the redshift from climbing out no longer cancel. This leads to a residual temperature fluctuation. To

understand what distortions to the spatial metric through Φ do to the photons, recall that as the universe

expands, the wavelength of the photon is also “stretched” through dilation effects. Similarly, the overdensities

which create potential wells also stretch the space-time fabric and change the wavelengths of the photons

(see Fig. 3). For example, as the potential decays, the contraction of the photon wavelength blueshifts the

CMB to higher temperatures. Since Φ ' −Ψ, it doubles the gravitational effect on the CMB. This heuristic

explanation holds for more complicated cases such as vector and tensor metric fluctuations.
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Dilation Effect

blueshift redshift

Figure 3. Dilation effect. Changes in the spatial metric distort the wavelength of passing
photons. If the potential decays, the contracting curvature perturbation blueshifts the pho-
tons. If the potential grows, the corresponding “stretching” of space redshifts the photons.
Since the curvature Φ ' −Ψ, this effect doubles the ordinary potential redshift effect for
both the driving force to the acoustic oscillator and the ISW effects.

Early ISW Effect. The early ISW effect arises if the universe is not completely matter dominated at last

scattering.14 For adiabatic models, the potential decays for modes that cross the sound horizon between

last scattering and full matter domination keq ∼< k ∼< k∗, yielding a net effect 5 times greater than the

Sachs-Wolfe temperature plateau for Ω0h
2 ∼< 0.04. In isocurvature models, potential growth outside the

sound horizon due to pressure fluctuations can contribute, which again is larger than the Sachs-Wolfe effect

for Ω0h
2 ∼< 0.04. These effects are thus sensitive to Ω0h

2 through the matter-radiation density ratio ρm/ρr.

The one subtlety in this and the following effects is that it arises from a distance closer to the observer than

the primary anisotropies so that the same physical scale subtends a larger angle on the sky (see Fig. 2).
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Late ISW Effect. In an open or Λ model, the universe enters a rapid expansion phase once matter no longer

dominates the expansion.20 Matter-curvature equality occurs at 1 + zK = ΩK/Ω0 and matter-Λ equality

at 1 + zΛ = (ΩΛ/Ω0)1/3. Since the potential decays to zero within an expansion time, independent of the

wavelength, it is the earlier of the two that matters zKΛ = max[zK , zΛ]. For the adiabatic case, the maximum

is again 5 times greater than the Sachs-Wolfe temperature plateau. However opposing effects from decaying

overdensities and underdensities tend to cancel if the photon can travel across many wavelengths during the

decay. Thus, this effect is suppressed below the horizon at the decay epoch k ∼> kKΛ. This scale is projected

onto a multipole moment `KΛ in the same manner as the primary anisotropy. For a fixed Ω0, the decay epoch

occurs much later in flat ΩK = 0 models than open ΩΛ = 0 ones. Thus Λ-models will suffer cancellation of

late ISW contributions at a much larger scale than open models.16 Similar agruments hold for isocurvature

models, save that the late ISW contribution exactly cancels the combined Sachs-Wolfe and early ISW effect

for ` � `KΛ. In summary, a feature at `KΛ is expected in the CMB and can be used to constrain ΩΛ in a

flat universe or the curvature ΩK of an open universe.21

Rees-Sciama Effect. Once fluctuations leave the linear regime, their subsequent evolution can also make

the potentials vary with time.22 In hierarchical models, where the smallest scales go non-linear first, the

effect peaks toward small scales. In most reasonable models, the non-linear scale is too small to significantly

affect CMB observations above the arcminute regime.23,24 Although not likely to be observable by the next

generation of experiments, the scale at which fluctuations become nonlinear `NL is in principle also imprinted

on the CMB.

Tensors. Gravitational waves introduce tensor fluctuations in the metric. Rather than a pure temperature

shift, these leave behind a quadrupole signature as they distort the distribution of passing photons.25,26

Gravitational waves redshift away inside the horizon so that their main effect on anisotropies occurs around

horizon crossing. Thus only scales above the horizon at recombination k ∼> k∗ contribute significantly. The

typical signature of gravity waves is an enhanced quadrupole ` = 2 and a cut off at `∗, the projected horizon

at last scattering. If the same mechanism generates both the scalar and tensor fluctuations, there may exist

a relation between their spectra. In particular, inflation predicts a consistency relation between the shape

of the tensor spectrum and the tensor-to-scalar amplitude ratio which may provide a sensitive test of this

paradigm.27,28

Other External Sources. In general, any process that distorts the metric will produce corresponding distor-

tions in the CMB. For example, topological defects may produce a spectrum of scalar, vector and tensor

perturbations. Once generated, scalar and tensor perturbations affect the CMB as described above. Vector

perturbations furthermore suffer decay from the expansion and are only important if continually generated by

the source. Since their growth and decay is usually correlated with horizon crossing, equal amplitude metric

fluctuations as a function of scale at this epoch produce a roughly scale-invariant spectrum of anisotropies

(cf. Box 2).29,30

Gravitational Lensing. Potential fluctuations also lens the CMB photons.31,32 Gravitational lensing smears

out sharp features in the spectrum of primary anisotropy. In a scale-invariant adiabatic model with ∼ 10−5

potential fluctuations initially, the smearing is less than 10% in angle above 10 arcminutes.33 This reflects the

fact that lensing is a second order effect and should be a small perturbation to the temperature perturbation

above the non-linearity scale.
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Secondary Scattering.

Reionization can introduce an epoch during which the photons are recoupled to the electrons. Rescattering

both erases primary anisotropies and generates new secondary ones. In models without large small-scale

fluctuations initially, such as the scale-invariant adiabatic model, reionization sufficiently early to make the

Compton optical depth τ ∼> 1 is unlikely. We therefore implicitly assume that the following effects represent

a perturbation on the primary signal.

Rescattering Damping. Rescattering damps fluctuations in the same manner as diffusion. Scattering elimi-

nates anisotropies leaving them only in the unscattered fraction e−τ . Since outside the horizon, fluctuations

are carried by isotropic temperature fluctuations, power is only lost on scales below the horizon at the rescat-

tering epoch. Thus the damping envelope of Fig. B2 gains a dip at this scale which can in principle be used

to measure or contrain the redshift of reionization.

Doppler Effect. Diffusion and rescattering prevents the appearance of large temperature fluctuations. How-

ever, the Doppler effect from scattering off electrons caught in the gravitational instability of the baryons

can regenerate anisotropies.6 These contributions are also suppressed in the same way as the late ISW effect:

photons that last scattered off overdensities and underdensities have Doppler shifts that tend to cancel.34

If the underlying primary signal is known, the angular extent of the new fluctuations measures the horizon

size at the rescattering epoch and their amplitude probes the baryon velocity at that time.

Non-Linear Effects. At very small scales, higher order contributions are more efficient than the Doppler effect

in regenerating anisotropies. These generally make use of combining the Doppler effect with variations in

the optical depth. Possibilities include linear perturbations in the baryon density (the Vishniac effect35,36),

inhomogeneities in the ionization fraction,37 or contributions from clusters (the kinematic Sunyaev-Zel’dovich

effect38). Clusters can also produce anisotropic spectral distortions due to the upscattering of photons in

frequency by hot electrons (thermal Sunyaev-Zel’dovich effect38). In models without high amplitude small-

scale power, it is unlikely that non-linear effects will dominate the total anisotropy in the observable regime.

Discussion
Primary anisotropy formation is a simple, well-understood linear process. The CMB anisotropy spec-

trum thus provides some of the cleanest and most robust cosmological tests available. Extraction of cos-

mological parameters from the primary fluctuations requires a specific model, but the number of unverified

underlying assumptions is greatly reduced as the resolution reaches the several arcminute range. For exam-

ple, the spacing between the peaks is a relatively robust probe of space curvature. It is determined from

the sound horizon by the angular size-comoving distance relation and provides what is potentially the most

sensitive and direct way to measure the geometry of the universe (see Fig. 4).

Obtaining other parameters will pose a greater challenge. In inflationary, i.e. near scale invariant

adiabatic models, the morphology of the first peak is controlled by potential decay and baryon drag, which

translate into additional dependences on Ω0h
2 and ΩBh2. The real advance will come with mapping of

the higher peaks, where these various parameters have contrasting signatures on the peak heights and

assumptions about the specific model may be relaxed.

To achieve these goals, coverage of a significant part of the sky is crucial. One needs a large number of

independent patches at any specified angular scale to reduce the sampling variance. The ultimate or so-called
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Figure 4. Idealized second (20µK sensitivity on 18′ × 18′ pixels) and third (5.5µK on
10′ × 10′ pixels) generation satellite experiments with full sky coverage. For an underlying
inflationary model with Ω0 = 1, Ω0h

2 = 0.25 and ΩBh2 = 0.025 (dark blue curve), the power
∝ `(`+1)C` at each multipole ` ∝ θ−1 can be recovered within the blue error contour (dark
blue outline for the third generation). At low `, deviations are due to “cosmic variance,”
the same for both experiments; at high ` from the beam size and sensitivity. Binning better
traces the smooth structure of the underlying power spectrum (light blue boxes ' 10% in `).
The Ω0 = 0.3 open and even the Λ variant (fixed Ω0h

2 and ΩBh2, normalized to ` = 10) are
easily distinguished under the inflationary paradigm. More robust parameter measurements
require that several acoustic features be resolved by the third generation (cf. Box 2). In
practice, foreground contamination will reduce the amount of sky available, increasing the
errors as f−1/2

sky , foreground subtraction will increase the noise, and secondary anisotropies
will distort the spectrum at high `.

“cosmic variance” limit is reached with a full sky map (see Fig. 4) although in practice some fraction of the

sky will have to be discarded due to galactic foregrounds. Perhaps the greatest uncertainty lying ahead

will be that of foregrounds due to unresolved sources. If at least half of the sky is mapped and relatively
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foreground free, one should be able to measure most cosmological parameters presently being considered to

a precision of better than a few percent with 10-20 arcminute resolution at a sensitivity currently attainable.
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Figure B1. Driven oscillations. (a) Adiabatic case. As the fluid begins to compress, photon
pressure resists the increase in the density perturbation thereby allowing the potential to
decay. Left in a highly compressed state, the fluid then oscillates with enhanced amplitude.
(b) Isocurvature case. Radiation fluctuations are set up to eliminate the potential initially.
Photon pressure resists the accompanying rarefaction. The fluid then falls back into the
well, lending its self-gravity to enhance the depth. At the compressional maxima, photon
pressure again causes potential decay leaving the fluid in a highly compressed state. These
feedback effects increase with the radiation-matter density ratio ρr/ρm driving a cosine
oscillation in the adiabatic case and a sine oscillation in the isocurvature case.

Box 1: Adiabatic vs. Isocurvature Modes
Adiabatic and isocurvature models differ in their initial conditions. In the adiabatic case, number densities n

of the different particle components fluctuate together. The resultant energy density perturbation δ generates

a non-vanishing curvature fluctuation Φ = 1
2
δ and a gravitational potential Ψ ' −Φ. If radiation dominates,

δ = δr = 4Θ whereas if matter dominates δ = δm = δnr/nr = 3Θ. On the other hand, by balancing the

initial fluctuations so that energy density perturbations cancel, isocurvature fluctuations may be established.

Causality implies that the curvature perturbation remains constant until the matter can be redistributed.17

Thus in an isocurvature model, the gravitational perturbations only grow to be significant near horizon

crossing. Since they represent the force felt by the oscillator, adiabatic and isocurvature conditions yield

distinctly different acoustic signatures. The details of how the isocurvature fluctuation is set up, e.g. through
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balancing radiation fluctuations with baryons, cold dark matter, or defects such as textures,39 is not as

important as the fact that potential fluctuations vanish initially and then grow in anticorrelation with the

photon fluctuations until horizon crossing.17

In both cases, the self-gravity associated with the acoustic perturbation can feed back into the potentials

to drive the oscillator. For the adiabatic mode, the initial potential perturbation is formed in large part by

the photon-baryon density fluctuation. At horizon crossing, the photon-baryon fluid begins to compress itself

due to its self-gravity and the effective temperature reverses sign. As pressure tries to stop the compression,

the potential decays. The fluid is left in a highly compressed state. Thus self-gravity acts as a driving

term timed to enhance the first compression of a cos(ks) series (see Fig. B1). This effect is doubled by

dilation from the decaying curvature perturbation Φ (see Fig. 3). If self-gravity dominates, as in the case in

which the universe was radiation dominated at horizon crossing, the fluid is left in a cosine oscillation with

2Ψ− 1
3Ψ = 5

3Ψ or 5 times the amplitude of the Sachs-Wolfe tail. Peaks occur at mkA = mπ/s∗ and baryon

drag enhances all odd peaks.

In the isocurvature case, photon density fluctuations are initially balanced by those of the other species

to eliminate the curvature. Photon pressure intercedes near horizon crossing to break this balance letting

the potential fluctuation grow from zero. Still the photons attempt to compensate by becoming more and

more underdense or rarefied inside potential wells Θ + Ψ ' 2Ψ < 0 (see also Fig. 3). This continues until

sound horizon crossing where photon pressure successfully resists further rarefaction (see Fig. B1). The fluid

turns around and begins falling into the potential wells and furthermore enhances them by their self-gravity.

As the photons resist further compression at the positive maximum, the self-gravity contribution to the

potential fluctuation decays. This again leaves the photon-baryon fluid in a highly compressed state and

increases the amplitude of the acoustic oscillation. Just as with the adiabatic case, the self-gravity of the

photon-baryon fluid essentially drives the oscillator. Unlike the adiabatic case, it drives the sine rather than

the cosine oscillation. Peaks occur at km = (m − 1/2)kA and baryon drag enhances all even peaks.16 The

first peak, a result of superhorizon rarefaction required by photon compensation, is generally shallow and

may be difficult to observe. Even so the harmonic series serves to distinguish the two cases through the ratio

of peak location to separation `m/`A = km/kA.

Isocurvature models can also possess exotic forcing mechanisms well inside the horizon which could over-

whelm the signal described above. A rapidly varying potential can produce complicated acoustic spectra, and

stochastic perturbations can entirely wash out peaks in the anisotropy spectrum.40 However, gravitational

potentials inside the horizon are difficult to generate and require extreme non-linear conditions.
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Figure B2. Anisotropy spectrum: power in anisotropies `(`+1)C` per logarithmic interval
in ` ∼ θ−1. The decomposition into various physical effects allows one to extract four fun-
damental scales in the spectrum: `ΛK and `eq which enclose the Sachs-Wolfe (SW) plateau
in the potential envelope, `A the acoustic spacing, and `D the characteristic scale of the
diffusion damping envelope. Here a scale-invariant adiabatic case is shown for illustration
purposes. These scales may be combined to infer the four fundamental cosmological param-
eters ΩK(≡ 1 − ΩΛ − Ω0), ΩΛ, Ω0h and ΩBh2. Baryon drag enhances all compressional
(here odd) maxima of the acoustic oscillation, and can probe the spectrum of fluctuations
at last scattering and/or ΩBh2.

Box 2: Power Spectrum
The scale invariant adiabatic model illustrates how the anisotropy spectrum encodes cosmological information

(see Fig. B2). It is conventionally denoted `(` + 1)C` and represents the power per logarithmic interval in

temperature fluctuations on angular scales ` ∼ θ−1. Highly accurate numerical results for the spectrum

in this model have long been available41,42,43 with only moderate improvements to match the increasing

precision of experiments44,45 (see also Fig. 4). Here we present a more schematic description that better

illuminates the physical content and also may more easily be adapted to alternate models.
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Several physical scales kfeature are imprinted in the angular power spectrum by the mechanisms described

in the text. Furthermore, each known physical scale represents a standard ruler. This is converted to an

angle on the sky as `feature = kfeatured by the angular diameter distance d(K, η0− ηfeature).

The four angular scales imprinted on the CMB, `KΛ, `eq, `A, and `D , form the fundamental basis for the

spectrum. The first two scales appear because of the difference in potential evolution between the radiation,

matter, and curvature-Λ dominated epochs. This defines a “potential envelope” as depicted in Fig. B2.

The exact form of this envelope varies with the model but should generally bear the imprint of the two

fundamental scales. For example, a baryon or axionic isocurvature model has an inverted form where the

maximum contributions are between `KΛ ∼< ` ∼< `eq (see Box 1), and open adiabatic models may have less

power at low ` due to a lack of super-curvature sized perturbations.49,50

In the adiabatic case, the potential envelope also separates cleanly into three basic pieces: the late

ISW fall, the Sachs-Wolfe (SW) plateau, and the early-ISW/driven oscillation rise. Driving effects produce

temperature and sub-dominant velocity oscillations regularly spaced by `A. Photon diffusion provides a

damping envelope with a characteristic scale `D that is entirely independent of the initial conditions (see

Box 1).

For the standard thermal history and a universe composed of baryons, photons, cold dark matter, and

neutrinos, these four scales can be combined to extract the four basic parameters16,46,47,48 ΩK , ΩΛ, Ω0h
2,

and ΩBh2. Note that Ω0 = 1−ΩK −ΩΛ is not an independent parameter and hence the Hubble constant h

may also be inferred from these measurements. We choose this representation since it is commonly supposed

that either ΩK or ΩΛ vanishes and because the matter-radiation and baryon-photon density ratios control

the physical processes in the early universe.

Since `A, the spacing between the acoustic peaks, is only weakly dependent on the other parameters

and relies on the most distinctive features in the spectrum, it provides the cleanest measure of the curvature

ΩK . Even the degenerate but mild dependence on ΩΛ can be removed by measurements or constraints on

`KΛ. The dramatic change in the potential envelope at `eq provides a sensitive probe of Ω0h
2. In particular

`eq/`A is entirely independent of ΩK and ΩΛ and only weakly dependent on ΩBh2 thus serving to isolate

Ω0h
2. Even weaker effects such as the shift in `eq and `A from the neutrino mass and number are potentially

observable45,51. Unfortunately, a precise measurement of `eq must account for the damping envelope. Still,

with complete information on the spectrum, no ambiguity arises. Baryon drag can also increase the height

of the first peak but its signal in the higher peaks is unambiguous as it predicts alternating peak heights.

The relative peak heights measure the baryon content times the potential at last scattering. To isolate Ψ∗,

one can employ `A/`D which is independent of ΩK and ΩΛ and weakly dependent on Ω0h
2 to measure the

baryon content ΩBh2. Aside from gross features set by the potential envelope, the relation between the peak

locations and the peak spacing `m/`A, and Ψ∗ from baryon drag, reveal the most valuable information about

the model for the fluctuations that formed structure in the universe (see Box 1).

As discussed in the text, complications arise if other sources between recombination and the present

are important. The damping envelope gains a step at the projected horizon of a late ionization epoch. New

Doppler contributions can mask the damped peaks. Tensor modes can introduce features in the spectrum at

` < `A. Non-linear effects can alter the spectrum at ` > `NL. However, if these signals are subdominant, as

is likely in many models, they will not destroy our power to measure fundamental cosmological parameters
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from the gross features in the CMB. Furthermore they may allow a more detailed reconstruction of the

thermal history and evolution of fluctuations since z ∼ 103 using precision measurements.
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