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ABSTRACT
We develop a method for estimating the shear power spectra from weak-lensing observations and test

it on simulated data. Our method describes the shear Ðeld in terms of angular power spectra and the
cross-correlation of the two shear modes, which di†er under parity transformations. Two of the three
power spectra can be used to monitor unknown sources of noise in the data. The power spectra are
decomposed in a model-independent manner in terms of ““ band powers,ÏÏ which are then extracted from
the data using a quadratic estimator to Ðnd the maximum of the likelihood and its local curvature (for
error estimates). We test the method against simulated data from Gaussian realizations and cosmological
N-body simulations. In the Gaussian case, the mean band powers and their covariance are well recov-
ered even for irregular (or sparsely) sampled Ðelds. The mild non-Gaussianity of the N-body realizations
causes a slight underestimation of the errors that becomes negligible for scales much larger than several
arcminutes and does not bias the recovered band powers. These techniques can also be directly applied
to cosmic microwave background polarization E and B mode analyses on small Ðelds.
Subject headings : cosmology : theory È gravitational lensing È large-scale structure of universe
On-line material : color Ðgures

1. INTRODUCTION

Weak lensing of background galaxies by foreground
large-scale structure has now been convincingly detected
(Bacon, Refregier, & Ellis 2000 ; Kaiser, Wilson, & Luppino
2000 ; van Waerbeke et al. 2000 ; Wittman et al. 2000) and is
rapidly becoming a valuable tool for studying the distribu-
tion and clustering evolution of dark matter in the universe.
Lensing produces a correlated distortion of the ellipticities
of background galaxies, at the percent level, which can be
used to measure a two-dimensional projection of the mass
distribution.

While there are numerous observables that can be
deÐned from the shear maps produced by such surveys, one
of the most important is the angular power spectrum. The
angular power spectrum contains valuable information on
cosmological parameters that complements other astro-
physical measurements (Jain & Seljak 1997 ; Kaiser 1998 ;
Hu & Tegmark 1999). In this respect, weak lensing is very
similar to anisotropies in the cosmic microwave back-
ground (CMB), and in fact much of the theory and data
analysis is very analogous as well.

In this paper, we suggest a technique for the presentation
and interpretation of weak-lensing data that is commonly
employed in CMB analysis : the use of ““ band powers ÏÏ
extracted from the data by an iterated quadratic estimator
of the maximum likelihood solution. This technique has the
advantage of automatically taking into account irregular
survey geometries and varying sampling densities. It pro-
vides an optimal estimate of the power spectrum in the
Gaussian regime and makes efficient use of all of the data
on the relevant angular scales. Error estimates that include
the sampling and noise variance of the survey are also auto-
matically produced by this method. Similar claims cannot
be made for methods based on correlation functions or
simple Fourier Transforms of the data.
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Throughout, our focus will be on weak lensing by large-
scale structure, speciÐcally on angular scales larger than
several arcminutes (or wavenumbers These are thel [ 103).
scales that will be probed by ongoing wide-Ðeld surveys,
e.g., the Deep Lens Survey,3 surveys with the VLT, and the
Hawaii/IfA lens survey. On these angular scales, the signal
reduces simply to a projection of the density contrast along
the line of sight (Blandford et al. 1991 ; Miralda-Escude
1991 ; Kaiser 1992), which is well approximated by a Gauss-
ian probability distribution. In this limit the angular power
spectrum encodes all the relevant information about the
Ðeld, and in particular can be predicted from the three-
dimensional power spectrum of the density Ðeld using
LimberÏs equation. On subarcminute scales, the Ðeld
becomes substantially non-Gaussian, lens-lens coupling
and perturbations to the photon trajectory become increas-
ingly important, and the weak-lensing approximations
break down. On these angular scales the signal is domi-
nated by individual objects along the line of sight (e.g., clus-
ters of galaxies), and a correlation function or power
spectrum analysis becomes less useful.

The outline of this paper is as follows. In ° 2 we describe
the shear signal covariance matrix and its relationship to
the three fundamental shear power spectra. We then
develop (° 3) and test (° 4) the iterated likelihood method for
band power extraction using simulated data. We conclude
in ° 5.

2. WEAK LENSING

In this section we brieÑy review the theory of weak gravi-
tational lensing to establish our notation and conventions.
Throughout, we focus on the two-point function of gravita-
tional shear, since this will determine the angular power
spectrum in ° 3.

The gravitational deÑection of light induces a mapping
between the two-dimensional source plane (S) and the
image plane (I). The deformation so induced can be written

dx
i
S \ A

ij
dx

j
I , (1)

3 Deep Lens Survey information is available at : http ://dls.bell-labs.com.

67



68 HU & WHITE Vol. 554

where dx is the separation vector between points on the
respective planes. In the weak-lensing limit, the deformation
can be decomposed as (Mellier 1999 ; Bartelmann & Schnei-
der 2001)

A
ij
\ (1[ i)d

ij
[ c1 p3 [ c2 p1 , (2)

where the are the 2 ] 2 Pauli matrices, i > 1 is the con-p
ivergence, and is the shear. If a galaxy has (weighted)c

a
> 1

second moments MS, then the image will have

MI \ A~1 Æ MS Æ A~1 . (3)

The ellipticities are usually deÐned in terms of the second
moments of the light distribution, corrected for instrumen-
tal and observational e†ects, and in the weak-lensing regime
equation (3) simpliÐes dramatically, such that the observed
ellipticity of a galaxy is linearly related to the shear. The
proportionality constant depends on the deÐnition of the
ellipticity ; we take

SeT \ c , (4)

but note that 2c is often found in the literature (Bartelmann
& Schneider 2001). The result is that e deÐnes a (noisy)
estimate of the local shear Ðeld at nü .

Now consider an observation of a given area of the sky.
The observed Ðeld yields an estimate of the ellipticities e

iand positions of a set of galaxies binned into pixelsnü
ii\ 1, . . . , In a Cartesian coordinate system on the sky,Npix.the two components of the shear Ðeld, and trans-c1(nü ) c2(nü ),form as a spin-2 Ðeld. The Fourier decomposition is

c1(nü )^ ic2(nü )\
P d2l

(2n)2W (l)[v(l)^ ib(l)]eB2irleil Õ n9 , (5)

where is the angle between l and the x-axis, and W (l) isr
lthe Fourier transform of the pixel window function. For

square pixels of side p in radians,

W (l)\ j0
Alp

2
cos r

l

B
j0
Alp

2
sin r

l

B
, (6)

where is the zeroth-order spherical Besselj0(x)\ sin (x)/x
function. Note that for long wavelengths, the pixelization is
irrelevant and the window goes to unity.

We are interested in the power spectrum or correlation
function of the shear Ðeld. The two-point correlations in the
shear are determined by the three shear power spectra,

Sv(l)v(l @)T \ (2n)2d(l [ l@)C
l
vv ,

Sb(l)b(l@)T \ (2n)2d(l [ l@)C
l
bb ,

Sv(l)b(l@)T \ (2n)2d(l [ l@)C
l
vb . (7)

For the shear generated by weak lensing, C
l
vv \C

l
ii, C

l
bb \

0, and For shot noise, Systematic errorsC
l
vb \ 0. C

l
vv \C

l
bb.

can in principle generate any of the power spectra.
Since a 45¡ rotation of the shears takes v] b, it converts

the lensing signal to a spectrum withC
l
bb\ C

l
ii C

l
vv \

A more general rotation leaves a signal in bothC
l
vb\ 0. C

l
vv

and but also correlates them as ForC
l
bb, (C

l
vb)2\ C

l
vv C

l
bb.

the shot noise, the relation is invariant underC
l
vv\ C

l
bb

rotations. These rotations also allow one to visualize the
pattern implied by each spectrum (see Fig. 1). In particular,
the b-component possesses a ““ handedness ÏÏ ; formally, the
two are distinguished by their transformation under parity.

By direct substitution,

Sc1(nü i)c1(nü j)T \
P d2l

(2n)2 (C
l
vv cos2 2r

l
] C

l
bb sin2 2r

l

[C
l
vb sin 4r

l
)W 2(l)eil Õ (n9 i~n9 j) ,

Sc2(nü i)c2(nü j)T \
P d2l

(2n)2 (C
l
vv sin2 2r

l
] C

l
bb cos2 2r

l

]C
l
vb sin 4r

l
)W 2(l)eilÕ(n9 i~n9 j) ,

Sc1(nü i)c2(nü j)T \
P d2l

(2n)2
C1
2

(C
l
vv [ C

l
bb) sin 4r

l

]C
l
vb cos 4r

l

D
W 2(l)eilÕ(n9 i~n9 j) . (8)

For a coordinate system that is oriented so that nü
i
[ nü

j
px

and pixel separations that are small compared with the
coherence scale of the Ðeld, the cosmological vv signal gen-
erates For shot noise and forSc1 c1T [ 0. Sc2 c2T B Sc1 c1T,
either These are the tests suggested bySc1 c2T B 0.
Miralda-Escude (1991).

FIG. 1.ÈFundamental shear modes and their cross-correlation. (a) Pure v-Ðeld obtained from a convergence map from White & Hu (2000). (b) Pure b-Ðeld
obtained by a rotation of the shears by n/4. (c) Correlated mixture of v and b with obtained by a rotation of the shears by n/8.C

l
vv \C

l
bb \C

l
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These relations (eq. [8]) allow us to deÐne the lensing
signal correlation matrix

C(ij)(ab)sig \ Sc
a
(nü

i
)c

b
(nü

j
)T . (9)

The correlation matrix can be simpliÐed by recalling that

exp (il Æ h)\ J0(lh)] 2 ;
m/1

=
imJ

m
(lh) cos (m(r

l
[ /)) , (10)

where (h, /) deÐne the magnitude and orientation of the
separation vector Furthermore, the window func-nü

i
[ nü

j
.

tion can be similarly decomposed as

W 2(l)\ ;
n/0

=
w
n
(l) cos (nr

l
) . (11)

For square pixels, the n \ 1, 2, 3 moments vanish because of
symmetry, and it is sufficient to retain the isotropic and
n \ 4 quadrupole contributions (see Fig. 2). The integral
over can now be performed analytically, leavingr

l

C(ij)(ab)sig \
P ldl

4n
;
X

C
l
X
C
w0(l)IabX ] 1

2
w4(l)Qab

X
D

, (12)

where X takes on the values vv, bb, and vb,

Ivv\<
t
>

J0 ] c4 J4 s4 J4
s4 J4 J0[ c4 J4

=
t
?

,

Ibb\<
t
>

J0[ c4 J4 [s4 J4[s4 J4 J0] c4 J4

=
t
?

,

Ivb \<
t
>

[2s4 J4 2c4 J4
2c4 J4 2s4 J4

=
t
?

, (13)

and

Qvv\<
t
>

J0] 2c4 J4] c8 J8 s8 J8
s8 J8 [J0] 2c4 J4[ c8 J8

=
t
?

,

Qbb\<
t
>

[J0] 2c4 J4 [ c8 J8 [s8 J8[s8 J8 J0] 2c4 J4[ c8 J8

=
t
?

,

Qvb\<
t
>

[2s8 J8 2J0] 2c8 J8
2J0] 2c8 J8 2s8 J8

=
t
?

. (14)

FIG. 2.ÈLow-order moments of the pixel window function squared.
The Ðrst two moments sufficiently approximate the pixel window function
to where p is the width of the pixel in radians. [See thelD 2lpix \ 4n/p,
electronic edition of the Journal for a color version of this Ðgure.]

Here we have used the shorthand notation c
n
\ cos (n/)

and and the (suppressed) argument of thes
n
\ sin (n/),

Bessel function in each case is lh. Thus, for a Ñat band power
we need only evaluate

C(n)(h) 4
P
l|B

dl
2l

J
n
(lh) (15)

for n \ 0, 4, 8.

3. SHEAR LIKELIHOOD

We wish to estimate the (angular) power spectra of the
shear Ðeld from the observed image ellipticities by means of
a maximum likelihood technique. This ensures that, under
the stated assumptions, we make optimal use of the data
and correctly handle any irregular survey geometry that
may a†ect the correlations on large angular scales. Nonuni-
form or correlated noise can also be efficiently handled by
this formalism.

First we decide to parameterize the underlying power
spectra with a set of parameters where a \ 1, . . . ,pa, N

p
.

These parameters could be cosmological or describe a par-
ticular model of noise or systematic errors. In this paper we
are mainly interested in the case in which the are ““ bandpapowers,ÏÏ i.e., we approximate the angular power spectrum
as piecewise constant, with the value of inpa l(l] 1)C

l
/2n

band So long as the constant sections are narrower thanBa.any feature in the power spectrum that we wish to repro-
duce, the sharp steps in power will not produce any ill
e†ects, and at the same time the parameterization is model
independent.

Such a speciÐcation is not sufficient to describe the most
general likelihood function of the observations given the pa ;
however, if the shear Ðeld is Gaussian, it is. We assume that
on sufficiently large angular scales, which are of interest
here, the Ðeld is sufficiently Gaussian that the estimate of
the two-point function so derived is not seriously in error.
Once the Ðeld becomes signiÐcantly non-Gaussian, the
utility of a power spectrum estimate become suspect. We
return to this point in detail in the next section.

Consider the data as a 2N component vector,

d \ Mc1(nü 1), c2(nü 1) ; . . . ; c1(nü N), c2(nü N)N ; (16)

then the likelihood is simply

L(pa) \
1

(2n)N oC(pa) o1@2
exp

C
[ 1

2
dTC~1(pa)d

D
. (17)

Here the correlation matrix C is a sum of two terms. The
Ðrst is the cosmological signal (eq. [9]), and the second is
the noise. Each galaxy has an rms intrinsic ellipticity per
component cint, which we assume is uncorrelated with the
underlying shear Ðeld, taken to be constant across the
galaxy. The ellipticity is thus a noisy estimator of the shear
Ðeld at its position, and the noise matrix is

C(ij)(ab)noise \ (c
i
int)2
N

i
d
ij
d
ab

, (18)

where is the number of galaxies in pixel i. More gener-N
ially, the noise matrix can include observational errors on

the ellipticities, which could be correlated from galaxy to
galaxy. The likelihood formalism can efficiently handle a
general noise matrix.

One then maximizes the likelihood as a function of the
model parameters We accomplish this maximizationpa.
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iteratively by using the Newton-Raphson method to Ðnd
the root of (Bond, Ja†e, & Knox 1998 ; SeljakdL/dpa \ 0
1998). SpeciÐcally, from an initial set one makes anpü a,improved estimate wherepa\ pü a ] dpa,

dpa \ j ;
b

1
2

(F~1)ab tr [(ddT [ CŒ )(CŒ ~1CŒ ,b CŒ ~1)] , (19)

and where the Fisher matrix is

Fab\ 12 tr (CŒ ~1CŒ ,a CŒ ~1CŒ ,b) , (20)

and j ¹ 1 is a parameter that is set to reduce the step size
when the full value causes large jumps in parameter space.
Note that in maximizing this function for the band powers,
several matrices and their derivatives must be computed
and inverted. Using equations (12)È(15), we Ðrst compute
the derivative matrices for The full correlationCŒ ,a pa\ 1.
function is then the sum plus the noise term.£apaCŒ ,aWith an appropriate choice of and j, this methodpatypically converges rapidly to the desired solution. General
rules of thumb for these quantities include that the bands
should be at least twice as wide as wherelfield\ 2n/hmax,is the largest pixel separation. This reduces the covari-hmaxance between the bands that is due to the survey geometry.
The lowest band should include vv modes below tolfieldabsorb any DC o†sets in the data. The highest band should
include modes above since the window func-lpix \ 2n/hpix,tion of square pixels has a long tail to high multipoles.

The choice of j to achieve rapid convergence is more of
an art than a science. We have found empirically that it is
sufficient to choose j so that at each iteration no vv param-
eter in the range changes up or down by alfield\ l\ lpixfactor of more than 3. However, for bands that are noise
dominated, there are cases in which the maximum likeli-
hood solution requires negative signal power. For this
reason, we also impose a minimum j \ 0.01 so that the
power in a band can be reduced below zero ; we do require
that the total power in the signal and noise be positive by
resetting negative values to a small positive number at the
start of each iteration. On top of these criteria, we halve j
whenever dpÏs from consecutive iterations cancel to B20%.
Since there is in principle no or little signal in the bb, vb,
and end vv bands, we stop iterating when we reach better
than 5% convergence in all the remaining bands. The end
bands should then be dropped when using the band powers
for cosmological constraints.

Finally, it remains to estimate the errors on our
maximum likelihood power spectrum. Ideally, one would
estimate the two-point function of the parameters bypa

Monte Carlo integration,

Covab\ Sdpa dpbT \
P

dp dpa dpbL(pa) , (21)

over the likelihood function. However, the likelihood evalu-
ation is sufficiently slow that this method is impractical.
Instead, we use the Fisher matrix. If the likelihood is suffi-
ciently Gaussian (in the parameters) around the maximum,
one can estimate the covariance matrix from the curvature
matrix,

Fab 4 [ [ lnL(pa)],ab
\ tr [(ddT [ C)(C~1C,aC~1C,bC~1

[ 12 C~1C,abC~1)]] 12 tr (C~1C,aC~1C,b) , (22)

or, assuming that the maximum likelihood model is correct,
from its expectation value, the Fisher matrix,

CovabB (F~1)ab . (23)

Since the Fisher matrix is automatically calculated in the
iteration process, error estimates come at no additional
computational expense.

4. TESTS

There are several approximations that we have intro-
duced in the above algorithm, and it is of interest to ask
how well the method works on simulated data. This also
provides us an opportunity to demonstrate the advantages
of this method for realistic observational scenarios, in which
irregularly shaped Ðelds complicate the calculation of the
large-angle correlation function or power spectrum. These
might arise from excising contaminated regions of the map
or from sparse sampling strategies.

4.1. Gaussian Shear
In Figure 3, we show a Gaussian realization of a shear

power spectrum that corresponds to the "CDM cosmology
with source galaxies at z\ 1 employed in White & Hu
(2000). Gaussian distributed noise has been added to the
625 D 8@] 8@ pixels, corresponding to andc

i
int \ 0.4 n6 \ 56

galaxies per arcmin2. The theoretical signal and noise
power spectra are shown as lines in the left panel of Figure
3. We choose seven vv, six bb, and six vb bands according to
the rules set down in the previous section. The exact l-
ranges for the vv bands are given in Table 1 ; the other sets
are similar except for the absence of the lowest l-band. Note
that and The recovered vv powerlfield\ 106 lpix \ 2550.
spectrum is shown in Figure 3 (top left), with sampling error
estimates per realization obtained from averaging the

TABLE 1

BAND COVARIANCE

Band 37È90 90È270 270È450 450È669 669È1306 1306È2550 2550È5100

37È90 . . . . . . . . . . . 1.00 [0.14 0.23 0.12 0.13 0.07 [0.08
90È270 . . . . . . . . . . ([0.15) 1.00 0.08 0.20 0.17 0.05 0.02
270È450 . . . . . . . . (0.01) ([0.11) 1.00 0.37 0.43 0.25 [0.15
450È669 . . . . . . . . (0.00) ( 0.00) ([0.11) 1.00 0.38 0.26 [0.22
669È1306 . . . . . . . (0.00) ([0.01) (0.00) (0.05) 1.00 0.50 [0.38
1306È2550 . . . . . . (0.00) ([0.01) (0.00) (0.03) ([0.31) 1.00 [0.66
2550È5100 . . . . . . (0.00) ( 0.01) (0.00) ([0.00) ([0.40) ([0.68) 1.00

NOTE.ÈCovariance matrix of the vv bands recovered from N-body simulations. Top : run-to-run covariance.
Bottom (parenthetical numbers) : Fisher matrix estimates. The Fisher matrix underestimates the covariance in the
intermediate regime where the signal is mildly non-Gaussian and dominates the shot noise.
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FIG. 3.ÈGaussian (top) and N-body (bottom) simulated shear (right) and recovered vv band powers (left) from 200 realizations. Solid lines represent the
predicted power spectrum; dashed lines represent the assumed shot-noise contribution. Errors are estimated from the Fisher matrix (shaded boxes) and the
run-to-run scatter (open boxes). The simulated Ðelds contain 625 pixels and are analyzed with seven vv bands, six bb bands, and six vb bands. The latter two
sets show no signiÐcant recovered power and have been omitted here for clarity. [See the electronic edition of the Journal for a color version of this Ðgure.]

Fisher variance estimates and run-to-run scatter over 200
realizations. Not shown are the bb and vb bands, where no
statistically signiÐcant power was recovered. Note that the
two methods of estimating the errors are in excellent agree-
ment. The bands were chosen to be wide enough that their
correlation due to survey geometry is negligible. For these
Gaussian simulations, the covariance matrix of the bands
reÑects this fact with negligible o†-diagonal entries except
for the end vv bands, which have little intrinsic signal.

4.2. N-Body Shear
In reality, the shear Ðeld will be non-Gaussian because of

the nonlinearity of the underlying density Ðelds. Because of
the averaging e†ect of projection, the non-Gaussianity of
the shear is much milder than that of the density Ðeld. To
test its e†ects on the likelihood method, we use the simula-
tions described in White & Hu (2000). We pixelize these
simulations to the same level as used for the Gaussian runs
and add the same amount of shot noise. A sample shear
Ðeld is shown in Figure 3 (bottom right). In the presence of
this level of pixelization and noise, the non-Gaussianity of
the N-body shear is in good agreement with that estimated

from higher resolution N-body simulations (Jain, Seljak, &
White 2000 ; White & Hu 2000).

In Figure 3 (bottom left), we show the power spectrum
recovered from the simulated skies with error estimates as
obtained in the Gaussian simulations. Non-Gaussianity
does not bias the power spectrum estimates. Deviations in
the lowest l bin can be attributed to Ðnite-box e†ects in the
White & Hu (2000) simulations.

Nevertheless, the errors are slightly underestimated by
the Fisher matrix in the intermediate regime where the
intrinsic Ðeld is mildly non-Gaussian and the removal of
shot noise does not dominate the errors. The increased
variance mainly arises from the covariance of the Fourier
modes within the bands induced by nonlinear mode coup-
ling e†ects in the underlying density Ðeld. Mode coupling
also correlates the bands themselves. We show the covari-
ance matrix of the vv band powersCovab/(Covaa Covbb )1@2
in Table 1 from the Fisher matrix and from the run-to-run
covariance. Again, in the intermediate regime, the covari-
ance of the bands is underestimated by the Fisher matrix.

Although not a severe e†ect, this underestimation sug-
gests that in the absence of a sufficient number of Ðelds from
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FIG. 4.ÈCheckerboard sampled Gaussian shear and recovered power vv band powers from 100 realizations. The number and size of the pixels and the
number and type of bands are the same as in Fig. 3. The mean power and errors are well recovered in spite of the more complicated sampling. [See the
electronic edition of the Journal for a color version of this Ðgure.]

which the covariance matrix can be extracted directly from
the data, simulations and semianalytic techniques (e.g.,
Scoccimarro, Zaldarriaga, & Hui 1999 ; Cooray & Hu 2001)
should be used to calibrate the covariance matrix of band
powers extracted from the data before using the measure-
ments to constrain cosmological parameters.

4.3. Irregular Sampling
One of the advantages of likelihood-based methods is

that they automatically account for any irregularity in the
sampling or survey geometry, while maintaining an optimal
weighting of the data on each angular scale. Sparse-
sampling techniques can be used to extend the dynamic
range of power spectrum estimates for the same amount of
observing time (Kaiser 1998). Irregular sampling can also be
used to test the e†ect suspect regions of the Ðeld might have
on the results.

For illustration, we test the method on a large Ðeld
sampled in a checkerboard fashion with the same number
and size of pixels as above (see Fig. 4, right). Figure 4 (left)
shows the power spectrum recovered from 100 realizations
along with error estimates as above. Both the recovered
power and the errors agree well.

4.4. Excess Noise
Including bands for the bb and vb power spectra is not

strictly necessary if all sources of noise have been accounted
for in the noise covariance matrix. However, they do
provide a means of checking for any excess shot noise or
systematic e†ects in the data. To illustrate this use, suppose
that the initial estimates of the shot noise contribution were
low by a factor of 10 (i.e., by 100 in power). As shown in
Figure 5 (top), the resulting power spectra in vv and bb show
excess contributions that scale as l2 in band power and are
equal in vv and bb above the pixel scale. Since a white-noise
spectrum is not well approximated by a Ñat band power,
errors in the pixel window function are exacerbated, leading
to deviations near the pixel scale.

In the event that excess noise is detected and that its
correlation function or power spectrum can be param-

FIG. 5.ÈMonitoring and removing excess noise. Top : Shot-noise
power underestimated by a factor of 100. The recovered nine vv and eight
bb band powers (end two bands of each o†-scale) show an excess that is
equal in the two bands and rises as l2 to the pixel scale (see text).lpix B 7500
Bottom : Shot-noise underestimated but removed with an added white-
noise parameter Both the seven vv bands (end band o†-scale) and thepnoise.excess white noise are well recovered. Boxes and shading represent errors
as in Fig. 3, and each Gaussian realization of 60 uses 625 pixels. [See the
electronic edition of the Journal for a color version of this Ðgure.]
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eterized, the likelihood technique can be easily modiÐed to
include and e†ectively marginalize these noise parameters
from the data itself. The white-noise case above provides the
simplest example, in which there is only one extra param-
eter providing an addition to the signal covariancepnoise,matrix of the form

C(ij)(ab)sig \ pnoise
N

i
d
ij
d
ab

. (24)

In Figure 5 (bottom), we show the result of dropping the bb
bands in favor of a white-noise parameter. Both the true
signal and excess white noise are well recovered by the tech-
nique. The parameter is plotted as a power spectrumpnoisewith error estimates from both the run-to-C

l
noise\ pnoise/n6 ,run scatter and the Fisher matrix. The covariance or degen-

eracy between the two is negligible, since white noise has
equal power in the two modes, whereas the true signal does
not. Excess noise from systematic errors will be more chal-
lenging to model, but the same principles and methods
apply. 4.5. Unexpected Signal

Just as the a priori description of the noise may not accu-
rately describe the actual noise, the recovered band-power
signal also may not resemble the nearly Ñat in band power
prediction of the "CDM model employed here. Substantial
deviations from Ñat power can lead to bias in the estima-
tion, just as in the case of excess shot noise above.

The procedure for handling this case is the same as in the
excess noise case : estimate the Ñat band powers and make a
suitable reparameterization based on these estimates. For
example, the parameters could be the amplitude of lnC

l
/2n,

where n is chosen to make the recovered spectrum approx-
imately Ñat. 5. CONCLUSIONS

On large angular scales, the shear Ðeld induced by weak
gravitational lensing of background galaxies by large-scale

structure is close to Gaussian. In this regime, the relevant
information is encoded in the angular power spectrum,

We have suggested a technique, commonlyl(l ] 1)C
l
/(2n).

used in CMB analysis, for determining the angular power
spectrum in this regime : the use of ““ band powers ÏÏ
extracted from the data by an iterated quadratic estimator
(Bondet al. 1998) of the maximum likelihood solution. This
technique has the advantage of automatically taking into
account irregular survey geometries and varying sampling
densities. It provides an optimal estimate of the power spec-
trum, which makes efficient use of all of the data on the
relevant angular scales. We have tested the technique
against simulated Gaussian and realistically non-Gaussian
data, regular and irregularly sampled data, and with known
and unknown amplitudes of shot noise from the intrinsic
ellipticities of galaxies. In all cases, the mean band powers
are recovered correctly.

The technique introduced here is a result of one of many
possible cross-fertilizations of CMB and weak-lensing
research. Indeed, the experience gained in measuring the
shear power spectra from noisy windowed data may feed
back into the formally identical problem of E and B band-
power estimation for future CMB polarization studies (Hu
& White 1997 ; Tegmark & de Oliviera Costa 2000). Tech-
niques for handling large CMB data sets for which the likel-
ihood algorithm used here becomes prohibitively expensive
(e.g., Wandelt, Hivon, & Gorski 2000 ; Szapudi et al. 2001)
will also be useful to lensing studies as the lensing Ðelds
become ever larger.
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Science Foundation.
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