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ABSTRACT
Secondary cosmic microwave background (CMB) anisotropies and polarization provide a laboratory

for studying structure formation in the reionized epoch. We consider the kinetic Sunyaev-Zeldovich e†ect
from mildly nonlinear large-scale structure and show that it is a natural extension of the perturbative
Vishniac e†ect. If the gas traces the dark matter to overdensities of order 10, as expected from simula-
tions, this e†ect is at least comparable to the Vishniac e†ect at arcminute scales. On smaller scales, it can
be used to study the thermal historyÈdependent clustering of the gas. Polarization is generated through
Thomson scattering of primordial quadrupole anisotropies, kinetic (second-order Doppler) quadrupole
anisotropies, and intrinsic-scattering quadrupole anisotropies. Small-scale polarization results from the
density and ionization modulation of these sources. These e†ects generically produce comparable E- and
B-parity polarization, but of negligible amplitude (10~3È10~2 kK) in adiabatic cold dark matter (CDM)
models. However, the primordial and kinetic quadrupoles are observationally comparable at present, so
that a null detection of B-polarization would set constraints on the evolution and coherence of the veloc-
ity Ðeld. Conversely, the detection of a cosmological B-polarization even at large angles does not neces-
sarily imply the presence of gravity waves or vorticity. For these calculations, we develop an all-sky
generalization of the Limber equation that allows for an arbitrary local angular dependence of the
source for both scalar and symmetric trace-free tensor Ðelds on the sky.
Subject headings : cosmic microwave background È cosmology : theory

1. INTRODUCTION

With the rapid improvement in the sensitivity of cosmic
microwave background (CMB) experiments in recent years,
it becomes increasingly important to address small contri-
butions to the anisotropy and polarization at the kK level
and below. While the primary anisotropies and polarization
from the epoch of recombination are thought to be theoreti-
cally understood at this level, secondary anisotropies from
reionization are not. In this work, we revisit the generation
of these secondary anisotropies, uncovering a potentially
important contribution from the nonlinear regime, and
explicitly calculate the small secondary polarization signal.
We consider only those contributions from reionization
that are true frequency-independent temperature distor-
tions. Isolating these contributions observationally from
potentially larger but frequency-dependent foregrounds will
be a great challenge, one that lies beyond the scope of this
paper (see, e.g., Bouchet & Gispert 1999 ; Tegmark et al.
1999).

Even the epoch of reionization itself cannot be accurately
predicted in the context of an otherwise precisely deÐned
theory of structure formation. The efficiency with which
ionizing photons are produced and escape from the Ðrst
baryonic objects in the universe will likely remain uncertain
even with substantial advances in numerical simulations
(see, e.g., Abel, Norman, & Madau 1999). In the adiabatic
cold dark matter (CDM) class of models, reionization is
expected to occur in the range but with large8 [ z

i
[ 20,

uncertainties (see, e.g., Haiman & Knox 1999 for a recent
review). Observationally, reionization must be essentially
complete by zD 5, because of the absence of the Gunn-
Peterson e†ect in quasar absorption spectra (Gunn &
Peterson 1965). For models with a roughly scale-invariant
spectrum of initial Ñuctuations, detections of degree-scale
anisotropies imply optically thin conditions or z

i
[ 50

(Griffiths, Barbosa, & Liddle 1999). The large-angle polar-
ization of the CMB can in principle yield precise constraints
on the reionization epoch, but it has not been detected to
date.

Even if reionization took place around z\ 5, secondary
anisotropies from the Vishniac (1987) e†ect should produce
kK anisotropies in the arcminute regime (Hu & White
1996). This is because it is a second-order e†ect whose
amplitude per logarithmic interval in (1 ] z) is constant, i.e.,
the contributions from below z\ 5 are similar in magni-
tude to those in the range In the optically thin5 \ z[ 30.
adiabatic CDM models, at least of the Vishniac e†ectD12comes from redshifts of Given these rather low red-z[ 5.
shifts of formation, it is interesting to consider whether non-
linear e†ects can further enhance the anisotropy. After
developing general techniques for calculating secondary
anisotropies and polarization in ° 2, we consider contribu-
tions from the kinetic Sunyaev-Zeldovich e†ect from large-
scale structure in the mildly nonlinear regime in ° 3, and
show that it is the natural nonlinear extension of the Vish-
niac e†ect. On small scales, both arise from the density
modulation of the Doppler e†ect from large-scale bulk
Ñows.

We then turn to secondary polarization. Back-of-the-
envelope estimates in these optically thin conditions imme-
diately place the secondary polarization signal orders of
magnitude below the secondary anisotropies, except for the
well-studied large-angle polarization from reionization.
Nevertheless, given the great potential of precision polariza-
tion measurements for studying gravity waves
(Kamionkowski, Kosowsky, & Stebbins 1997 ; Zaldarriaga
& Seljak 1997), an explicit calculation is of interest. In ° 4,
we treat the polarization that results from second-order
Doppler shifts due to bulk Ñows and separate the contribu-
tions in the two parity modes. This calculation may also be
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of interest to studies of CMB polarization in galaxy clusters.
In ° 5, we consider the analog of the Vishniac e†ect for
polarization : the density modulation of the kinetic and pri-
mordial polarization sources, as well as the generation of
polarization through rescattering of Vishniac temperature
anisotropies. Finally, in ° 6 we show that the same relation-
ship between anisotropies and polarization for density-
modulated signals holds for ionization-fractionÈmodulated
signals, as relevant for the brief epoch of inhomogeneous
ionization expected at the onset of reionization.

The basis for all of these calculations is presented in the
Appendix. There we generalize the Limber (1954) approx-
imation for sources with arbitrary local angular dependence
and Ðelds on the sky that are either scalar or tensor in
nature. These formulae also extend the Ñat-sky Limber
approach to the full sky, and may be useful in other cosmo-
logical studies.

2. GENERAL CONSIDERATIONS

We review the relevant properties and parameters of the
adiabatic CDM scenario for structure formation in ° 2.1. In
°° 2.2 and 2.3, we discuss the general principles involved in
calculating secondary CMB anisotropies and polarization,
based on the formalism developed in the Appendix.

2.1. Adiabatic CDM Model
We work in the context of the adiabatic CDM family of

models, in which structure forms through the gravitational
instability of the CDM in a background Friedmann-
Robertson-Walker metric. In units of the critical density,

where h km s~1 Mpc~1 is the Hubble3H02/8nG, H0 \ 100
parameter today ; the contribution of each component is
denoted where i\ c for the CDM, b for the baryons,)

i
,

and " for the cosmological constant. It is convenient to
deÐne the auxiliary quantities and)

m
\ )

c
] )

b
)

K
\ 1

which represent the matter density and the contri-[ £
i
)

i
,

bution of spatial curvature to the expansion rate, respec-
tively. The expansion rate then becomes

H2\ H02[)m
(1] z)3] )

K
(1] z)2] )"] . (1)

Convenient measures of distance and time include the
conformal distance (or look-back time) from the observer at
redshift z\ 0 in units of the Hubble distance today, H0~1\

h~1 Mpc,2997.9

D(z)\
P
0

z H0
H(z@)

dz@ , (2)

and the analogous angular diameter distance,

D
A

\ )
K
~1@2 sinh ()

K
1@2D) . (3)

Note that as )
K

] 0, D
A

] D.
The adiabatic CDM model possesses a power spectrum

of Ñuctuations in the gravitational potential ',

*'2 \ k3
2n2 P' \ A

A k
H0

Bn~1
T 2(k) , (4)

where the transfer function T (k)\ 1 for scales much larger
than the horizon at matter-radiation equality. We employ
the CMBFast code (Seljak & Zaldarriaga 1996) to deter-
mine T (k) at intermediate scales, and extend it to small
scales using the Ðtting formulae of Eisenstein & Hu (1999).
Throughout this paper, the notation will always rep-*

S
2

resent the logarithmic power spectrum of the Ðeld S, and
should be assumed to be time-dependent even where that

argument is suppressed. The rms of the Ðeld is deÐned as

Srms2 \
P dk

k
*

S
2 . (5)

The cosmological Poisson equation relates the power
spectra of the potential and density perturbations, d,

*'2 \ 9
4
AH0

k
B4A

1 ] 3
H02
k2 )

K

B~2
)

m
2(1] z)~2*d2 , (6)

and gives the relationship between their relative normal-
izations,

A\ 9
4
A
1 ] 3

H02
k2 )

K

B~2
)

m
2(1] z)~4G2d

H
2 . (7)

Here is the amplitude of present-day density Ñuctuationsd
Hat the Hubble scale ; we adopt the COBE normalization for

(Bunn & White 1997). G(z) is the growth rate of lineard
Hdensity perturbations, d(z) \ G(z)d(0). Expressions and

approximations for this growth function can be found in the
literature (e.g., Peebles 1980 ; Caroll, Press, & Turner 1992),
and when the energy density in radiation can be neglected,

G(z) P
H(z)
H0

P
z

=
dz@(1] z@)

C H0
H(z@)

D3
. (8)

For the matter-dominated regime where H P (1 ] z)3@2,
GP (1] z)~1 and A\ const. Likewise, the continuity
equation relates the density and velocity power spectra,

*
v
2 \

AG0
G

H0
k
B2

*d2 . (9)

For this type of Ñuctuation spectra and growth rate,
reionization of the universe is expected to occur rather late,

such that the reionized media is optically thin toz
i
[ 50,

Thomson scattering of CMB photons, The probabil-q[ 1.
ity of last scattering within dD of D (the visibility function) is

g \ q5 e~q \ Xq
H
(1] z)2e~q . (10)

Here overdots represent derivatives with respect to D, X is
the ionization fraction, and

q
H

\ 0.0691(1[ Y
p
))

b
h , (11)

is the optical depth to Thomson scattering to the Hubble
distance today, assuming full hydrogen ionization, where Y

pis the primordial helium fraction. Note that the ionization
fraction can exceed unity : forX \ (1 [ 3Y

p
/4)/(1 [ Y

p
)

singly ionized helium, for fullyX \ (1 [ Y
p
/2)/(1 [ Y

p
)

ionized helium. We assume that X \ 1 in the reionized
epoch, such that

q\ 2
3

q
H

)
m
2 [2[ 3)

m
] J1 ] )

m
z ()

m
z] 3)

m
[ 2)] (12)

for and)" \ 0,

q\ 2
3

q
H

)
m

[J1 [ )
m

] )
m
(1] z)3[ 1] (13)

for )
K

\ 0.
Although we maintain generality in all derivations, we

illustrate our results with a "CDM model. The parameters
for this model are h \ 0.65,)

c
\ 0.30, )

b
\ 0.05, )" \ 0.65,

n \ 1, and This model hasY
p
\ 0.24, d

H
\ 4.2] 10~5.

mass Ñuctuations on the 8 h Mpc~1 scale, in accord with
the abundance of galaxy clusters, A reasonablep8\ 0.86.
value here is important, since many of the e†ects discussed
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FIG. 1.ÈTemperature anisotropies for the Ðducial "CDM model with
q\ 0.1 The secondary density modulated signal has been(z

i
\ 13). (d

b
)

calculated under the assumption that the gas traces the dark matter. The
ionization (X) modulated signal assumes patches of 5 Mpc comoving size
and duration of patchiness dz

i
/(1] z

i
)\ 0.25.

below are nonlinearly dependent on the amplitude of mass
Ñuctuations at or below this scale. We consider reionization
redshifts in the range or For5 [ z

i
[ 30 0.025[ q[ 0.3.

reference, the primary anisotropies and polarization for a
model with q\ 0.1 are shown in Figures 1 and 2,(z

i
\ 13)

respectively.

2.2. Secondary Anisotropies
The motion of the scatterers imprints a temperature Ñuc-

tuation on the CMB through the Doppler e†ect,

#(nü )\
P

dDg(D)nü Æ ¿
b
(x) , (14)

where is the direction on the sky and is the velocity Ðeldnü ¿
bof the baryons evaluated along the line of sight, x \Dnü .

FIG. 2.ÈPolarization for the Ðducial "CDM model with q\ 0.1
separated into E (solid lines) and B (dashed lines) contributions. Secondary
anisotropies from the primordial quadrupole (Prim. Q) : top, homogeneous
scattering ; bottom, density and ionization (X) modulated scattering(d

b
)

following Fig. 1. For the kinematic quadrupole, the homogeneous and
density-modulated signals are shown; the ionization modulated and intrin-
sic quadrupole signals fall below this range. Note that the B-parity polar-
ization induced by gravitational lensing is much larger than any of these
secondary B signals.

Let us Ðrst consider the case in which the visibility g is
dependent on time only. The source is a Ðeld thatnü Æ ¿

bdepends on both direction and spatial position. It is useful
to decompose the Fourier transform of the velocity Ðeld
into a scalar and two vector (vorticity) modes,

¿
b
(k) \ [iv

b
(0) e3 ] ;

m/B1
v
b
(m) e2< ie1

J2
, (15)

such that

nü Æ ¿
b
(k) \ [i

S4n
3

;
m/~1

1
v
b
(m)Y 1(m)(nü ) , (16)

where As shown in the Appendix, the angular powere3 pkü .
spectrum resulting from the weighted projection of a source
with a local dipolar angular dependence is (see eq. [A18])

C
l
## \ n2

l3
P

dDg2D
A

;
m/B1

*
vb
2 (m) (17)

for l ? 1. The power per logarithmic interval in the velocity
Ðeld, is evaluated at the wavenumber that projects*

vb
2 (m),

onto the angular scale l at D,

k \ H0
l

D
A

. (18)

The implicit assumption here is that the visibility-weighted
source, is slowly varying across a wavelength ofg(D)v

b
(k, D),

the perturbation.
We will often use the power per logarithmic interval in

kK2 or nK2\ (10~3 kK)2,

*T
l
2\ l(l ] 1)

2n
C

l
## T CMB2 , (19)

where kK. The rule of thumb for isTCMB\ 2.728 ] 106 *T
l
2

that it is of the order of the logarithmic power spectrum of
the source (at cosmological distances divided by theD

A
D 1)

multipole l. This factor of l comes from the loss of modes
parallel to the line of sight due to crest-trough cancellation
of the contributions.

Note, however, that the m\ 0 potential Ñow component
drops out of the Ðnal expression and violates this rule. In a
potential Ñow, waves perpendicular to the line of sight lack
a velocity component parallel to the line of sight ; conse-
quently, there is no Doppler e†ect to leading order (Kaiser
1984). Ostriker & Vishniac (1986) pointed out that the same
is not true for vortical Ñows, since waves that run perpen-
dicular to the line of sight have velocities parallel to the line
of sight. Since Ñows in the linear regime are potential, the
leading-order Doppler e†ect is nonlinear in the pertur-
bations at small scales.

It is not necessary for the Ñows themselves to possess
vorticity. Since it is the visibility-weighted velocity Ðeld g¿

bthat is the real source, spatial modulations in the visibility
create an e†ective velocity Ðeld

¿
b
(1] dg/g) 4 ¿

b
] ¿

g
, (20)

which can be used in place of in equation (17). Spatial¿
bvariations in the free-electron density modulate the visibil-

ity and themselves may be caused by Ñuctuations in the net
baryon density (see ° 3) or the ionization fraction (see ° 6).
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2.3. Secondary Polarization
Thomson scattering of radiation with a quadrupole

anisotropy,

Q(m)(x)\ [
P

d)
Y 2m*(nü )
J4n

#(x, nü ) , (21)

generates linear polarization in the CMB. In terms of the
Stokes q and u parameters,

(q ^ iu)(nü )\ J24n
10

P
dDg ;

m/~2

2
Q(m)

B2 Y 2m(nü ) , (22)

where Q(m) are the Ðve quadrupole moments of the tem-
perature Ñuctuation1 and are the spin-2 spherical

B2Y
l
m

harmonics (Goldberg 1967).
Some subtleties arises when deÐning the Fourier trans-

form of the quadrupole source, since the orientation of the
coordinate system enters into its deÐnition. It is convenient
to choose the reference frame so that and this choiceeü 3 pk,
will be understood unless otherwise speciÐed. The conse-
quence is an ambiguity in combining contributions from
di†erent k-modes, but these can be removed by deÐning the
coordinate-independent components of the polarization
(Zaldarriaga & Seljak 1997 ; Kamionkowski et al. 1997),

(q ^ iu)(nü )\ ;
l

;
m/~2

2
[E

l
(m)^ iB

l
(m)]

B2Y 2m(nü ) . (23)

Since polarization is a spin-2 Ðeld and its source has a
local quadrupole angular dependence, its power spectrum is
given by equation (A18) with s \ ^2 and j\ 2. The power
spectra of the E and B parity states are then

C
l
EE\ 3n2

10l3
P

dDg2D
A

C3
4

*
Q
2 (0)] 1

8
;

m/B2
*
Q
2 (m)
D

,

C
l
BB\ 3n2

10l3
P

dDg2D
A

1
2

;
m/B1

*
Q
2 (m) , (24)

again evaluated with the projection equation (18) and a
slowly varying source. We deÐne the logarithmic power
spectrum of the polarization in the same way as for the
anisotropies (see eq. [19]). It is likewise reduced by a factor
of l from the power spectrum of the source, except when the
angular dependence of the source reduces it further, as in
the case of B-parity polarization from m\ 0,^ 2 and E-
parity polarization from m\ ^1.

As pointed out by Kaiser (1984) and examined quantitat-
ively by Efstathiou (1988), the polarization, even more than
the temperature anisotropy, is suppressed by cancellation at
small scales. The reason for this is simply that the source of
the polarization is the temperature anisotropy (quadrupole
moment), and thus both the source and its contributions
along the line of sight are suppressed.

The dominant source at small angles is again the visibility
modulation of the large-scale quadrupole anisotropy,

Q(m)] Q(m)(1] dg/g)4 Q(m)] Q
g
(m) . (25)

in the notation of Hu & White (1996) ; see their1 Q(m) \#2(m)/J5
equation (77).

We will consider quadrupole sources Q(m) in ° 4, the e†ect of
density modulation in ° 5, and that of ionization modula-
tion in ° 6.

3. DENSITY-MODULATED ANISOTROPIES

In this section we consider the temperature anisotropies
that arise from the modulation of the Doppler e†ect due to
density inhomogeneities. We begin with a review of the
second-order e†ect from linear density Ñuctuations (° 3.1)
and then generalize the calculation to include small-scale
nonlinearities in the density Ðeld (° 3.2).

3.1. L inear Fluctuations : V ishniac E†ect
Spatial variations in the opacity due to density pertur-

bations in the baryons modulates the visibility : dg/g \ d
b
.

When is in the linear regime, the result is called thed
bVishniac e†ect (Vishniac 1987). In this section, we rederive

the Vishniac e†ect in a manner that will make its nonlinear
generalization obvious.

The Fourier transform of is a convolution of the linear¿
gvelocity and density Ðelds,

¿
g
(k) \

P d3k1
(2n)3 ¿

b
(k1)db(k2) , (26)

where here and throughout

k2\ k [ k1 . (27)

The two vortical components to the velocity Ðeld are given
by the projections (see eq. [15])

v
g
(B1)(k) \ eü 2^ ieü 1

J2
Æ ¿

g

\
S4n

3
P d3k1

(2n)3 v
b
(k1)db(k2)Y 1B1*(kü1) , (28)

(where * is a complex conjugation), on a basis Wee3 pk.
have assumed that the underlying velocity Ðeld is a poten-
tial Ñow, ¿

b
(k) \[iv

b
(k)kü .

The power spectrum then becomes

*
vg
2 (1) \ 1

3
P dk1

k1
d)

k3
k23

o Y 11(k1) o2(A] B) , (29)

and likewise for the m\ [1 component. The two contribu-
tions are from the velocity-velocity, density-density power
spectra,

A\ *
vb
2 (k1)*db2 (k2) , (30)

and the velocity-density cross-correlation power spectra,

B\ [ k1
k2

*
vbdb2 (k1)*vbdb2 (k2) , (31)

where we have used the relation

Y 11(k2) \ [k1
k2

Y 11(k1) . (32)

Substituting these relations into equations (29) and (17),
after reexpressing the velocity power spectrum with the
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density power spectrum using equation (9), we obtain

C
l
## \ n2

2l5
P

dDD
A
3
A
g

G0
G
B2

*db4 I
V

, (33)

where we have used the fact that m\ ^1 contributes
equally. The mode-coupling integral is

I
V

\
P
0

=
dy1
P
~1

1
dk

(1[ k2)(1[ 2ky1)
y13 y25

*db2 (ky1)
*db2 (k)

*db2 (ky2)
*db2 (k)

.

(34)

Here and throughout,

k \ kü Æ kü1 ,

y1\ k1/k ,

y2\ k2/k \ J1 [ 2ky1] y12 . (35)

The form of the mode-coupling integral in equation (34)
is half that of Vishniac (1987 ; eq. [2.13]), which resolves the
apparent discrepancy with Dodelson & Jubas (1995) raised
by Ja†e & Kamionkowski (1998). As pointed out by Dodel-
son & Jubas (1995), this form is easier to evaluate numeri-
cally. In addition, for our purposes, it better brings out the
small-scale limit.

For wavelengths that are much smaller than the coher-
ence scale of the velocity Ðeld, these expressions simplify
considerably. The density-velocity cross-correlation (eq.
[31]) vanishes, and the remaining term (eq. [30]) can be
evaluated under the approximation k2\ o k [ k1 oB k,

*
vg
2 (B1) \ 13 *db2 vrms2 , (36)

where we have used the orthogonality of spherical harmo-
nics, / d) andY

l
mp Y

l{m{ \ d
l,l{ dm,m{,

vrms2 \
P dk

k
*

vb
2 . (37)

Note that is still a function of D.vrms2
Equation (38) has a simple interpretation. At small scales,

the e†ect arises from a density modulation of a uniform-
bulk velocity from larger scales whose rms in each com-
ponent is of the total.13Substituting the velocity power spectrum relation (eq.
[36]) into equation (29) yields

C
l
## \ 2n2

3l3
P

dDD
A

g2*db2 vrms2 . (38)

This equation can alternately be derived from equation (33)
in the limit that the integral gets its contribution from
y1> 1,

I
V
(dec)\ 4

3
P
0

= dy1
y13

*db2 (ky1, g)
*db2 (k, g)

,

\ 4
3
AG
G0

k
H0

B2 vrms2
*db2

. (39)

In Figure 3, we show that for the "CDM model, the
density and velocity contributions decouple in this manner

FIG. 3.ÈVelocity-density decoupling and density nonlinearities. For
the Ðducial "CDM model, the velocity and density Ðelds decorrelate in the
Vishniac calculation before the onset of nonlinearity in the(I

V
dec/I

V
B 1)

density Ðeld, especially at high redshift, where most of the scattering
occurs.

beyond k D 0.2 h Mpc~1. The approximation given in
equation (39) represents an efficient way of evaluating the
otherwise computationally expensive mode-coupling inte-
gral in this regime.

3.2. Nonlinear Perturbations : Kinetic SZ E†ect
Nonlinear density Ñuctuations caught up in a bulk Ñow

from larger scales give rise to the kinetic Sunyaev-Zeldovich
e†ect from large-scale structure. This can alternately be
thought of as the nonlinear extension of the Vishniac e†ect,
since in adiabatic CDM cosmologies, nonlinearities only
a†ect the density Ðeld below the coherence scale of the bulk
velocity. Recall that in this limit, the Vishniac e†ect arises
from density perturbations caught in a large-scale Ñow to
which it is uncorrelated.

Figure 3 illustrates this fact for the Ðducial "CDM. Note
that even at z\ 0, the dark matter density Ðeld only devi-
ates substantially from the linear approximation after equa-
tion (39) becomes a good description of the Vishniac e†ect.
If we then replace the linear density power spectrum with its
nonlinear analog, but leave the contribution from the veloc-
ity power spectrum the same, we obtain

C
l
## \ n2

2l5
P

dDD
A
3
A
g

G0
G
B2

*db2 (lin)*db2 I
V

, (40)

where the mode-coupling integral using equation (34) isI
Vevaluated under linear theory. This expression has the nice

feature that it expresses the total e†ect : it includes both the
Vishniac e†ect and the kinetic SZ e†ect from nonlinear
structures.

The underlying assumption is that the density Ñuctua-
tions in the nonlinear regime are uncorrelated with the bulk
velocity Ðeld. Nonlinear evolution in the density Ðeld will
correlate velocity and density modes if they are both in the
nonlinear regime. However, the bulk Ñow in adiabatic
CDM models arises mainly from the linear regime. In the
"CDM model, half the contributions to come fromvrms2
scales k \ 0.07 h Mpc~1, and the Ñuctuations go nonlinear
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at k D 0.2 h Mpc~1. Scoccimarro, Zaldarriaga, & Hui
(1999) found that for the 4-point statistics nonlinear modes
are highly correlated, but the correlation drops rapidly as
one pair of the modes enters the linear regime. Decorrela-
tion is even more e†ective here, since the relevant velocity
and density modes are oriented perpendicular to each other.

Once the nonlinear power spectrum of the baryonic gas is
known, the resulting anisotropies can be calculated with
equation (40). This unfortunately requires hydrodynamic
simulations in general, and ab initio attempts in the liter-
ature (e.g., Persi et al. 1995) to simulate the scattering e†ects
have not had the dynamic range to treat the full problem.
Let us instead break the problem into two: calculate the
e†ect under the assumption that the gas tracks the dark
matter, and then estimate where this approximation may
break down.

3.2.1. Maximal E†ect

Let us Ðrst consider the e†ect under the simple assump-
tion that the gas traces the dark matter to place an upper
limit on the magnitude of the e†ect. The nonlinear dark
matter power spectrum has been well studied with N-body
simulations for the full range of adiabatic CDM cosmol-
ogies. Hamilton et al. (1991) suggested a useful scaling rela-
tion for the correlation function in the nonlinear regime,
which was generalized to the power spectrum by Peacock &
Dodds (1994). The underlying idea is that nonlinear Ñuctua-
tions on a scale k arise from linear Ñuctuations on a larger
scale,

klin\ [1] *dc2 (k)]~1@3k , (41)

so that there is a functional relation between the nonlinear
and linear power spectra at these two scales,

*dc2 (k)\ fnl[*dc2 (lin)(klin)] , (42)

which can be Ðtted to simulations. We take the Peacock &
Dodds (1996 ; eqs. [21]È[27]) form for The resultingfnl.power spectra for the "CDM model are shown in Figure 4.

Under this assumption, the kinetic SZ e†ect provides a
signiÐcant enhancement of the Vishniac e†ect. As shown in

FIG. 4.ÈNonlinear vs. linear power spectra for the CDM under the
Peacock & Dodds (1996) scaling approximation and for the baryons under
the additional preÐltering Ansatz of Gnedin & Hui (1998). Note that the
dilation of scales brings the Ðltering scale deep into the nonlinear regime.

FIG. 5.ÈMaximal nonlinear enhancement of the Vishniac e†ect. Under
the assumption that the gas density traces the dark matter density into the
deeply nonlinear regime, the Vishniac e†ect is signiÐcantly enhanced by
nonlinearities at especially in the late reionization scenarios.lZ 1000,

Figure 5, the relative contribution is largest for late reioni-
zation scenarios (low because anisotropies then arisez

i
),

from structure that is well developed. However, one must
keep in mind that this is essentially an upper limit to the
contributions, since the gas pressure will smooth out the gas
density below the Jeans scale.

3.2.2. Pressure Cuto†

Gnedin & Hui (1998) examined simple schemes to
approximate the e†ect of gas pressure. One such scheme
that has fractional errors at the 10% level for overdensities

is to Ðlter the density perturbations in the linear[10
regime as and treat the system as colli-*db2 \ f

b
2(k/k

F
)*dc2sionless baryonic particles. Their best Ðt is obtained with

the Ðlter

f
b
\ 1

2
C
e~x2 ] 1

(1] 4x2)1@4
D

, (43)

and Gnedin (1998) suggests h Mpc~1 as a rea-k
F
\ 34)

m
1@2

sonable choice for the thermal historyÈdependent Ðltering
scale.

The results of applying the nonlinear scaling relation of
equation (42) to the Ðltered linear power spectrum are
shown in Figure 4. Note that the dilation in wavenumber
takes the Ðltering scale deep into the nonlinear regime. The
calculations should not be trusted beyond this scale, since
the nonlinear scaling breaks down for spectra with a sharp
cuto† ; indeed, we have taken the local slope of the
unÐltered spectrum rather than the Ðltered spectrum when
evaluating the Peacock & Dodds (1996) formulae. Still, the
result displayed in Figure 6 imply that the gas-traces-CDM
assumption is reasonable in the arcminute regime l[ 104.

To give a more model-independent quantiÐcation of this
e†ect, let us also consider a baryonic power spectrum given
by

*db2 (k) \ *dc2 (k) exp ([*dc2 /*
F
2) . (44)

The results for several values of are given in Figure 7 and*
Fshow that only if the baryons fail to trace the dark matter

out to can nonlinear e†ects be ignored.*
F
D 10
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FIG. 6.ÈPreÐltering the dark matter spectrum. PreÐltering the power
spectrum to account for gas pressure, as in Fig. 4, cuts o† the anisotropies
at lD 104 for the "CDM model.

Our analysis shows that the kinetic SZ e†ect should be an
important contributor to small-angle anisotropies. On arc-
minute scales and above, the assumption that the gas traces
the dark matter is reasonable, given our current under-
standing of the thermal history of adiabatic CDM models.
The amplitude of the e†ect at subarcminute scales will
depend on the details of thermal history through its e†ect
on the clustering of the gas. Observations in this regime
may open a new window on the physics of this regime.
Isolation of this e†ect from foregrounds (e.g., radio and
infrared point sources) and other secondary anisotropies
(e.g., the inhomogeneous reionization signal considered in
° 6) will be the main obstacle to overcome.

4. POLARIZATION FROM HOMOGENEOUS SCATTERING

In this section we consider the origin of quadrupole
anisotropies and the linear polarization they generate

FIG. 7.ÈPostÐltering the dark matter spectrum. Filtering the CDM
power spectrum with eq. (44) introduces a smooth cuto† at small angles
and shows that nonlinearities are important as long as the gas traces the
dark matter out to *

F
D 10.

through Thomson scattering in a homogeneous medium.
The quadrupole anisotropies fall into three broad classes :
the primordial quadrupole from the projection of Sachs-
Wolfe temperature anisotropies, the intrinsic quadrupole
from scattering (° 4.1), and the kinematic quadrupole from
the second-order Doppler e†ect (° 4.2).

4.1. Primordial and Intrinsic Quadrupoles
A large-scale temperature inhomogeneity at the recombi-

nation epoch (zD 103) from the Sachs-Wolfe gravitational
redshift e†ect, # \ ['/3, becomes a quadrupole anisot-
ropy at low redshifts by simple projection. In other words,
the spherical harmonic decomposition of the plane wave
Ñuctuation,

[ '
3

exp (ik Æ x) ] ['
3

j
l

A k
H0

D
B
Y

l
0 , (45)

yields a spectrum of anisotropies, and in particular a quad-
rupole anisotropy given by

Q(0)\ [J5
'
3

j2
A k
H0

D
*
B

. (46)

Here and we have assumed that spatial cur-D
*

\Drec [ D,
vature can be neglected at reionization. Curvature correc-
tions can be included by replacing the spherical Bessel
function with the hyperspherical Bessel function (seej2 '2lAppendix).

The logarithmic power spectrum of the quadrupole can
therefore be expressed in terms of that of the potential as

*
Q
2 (0)\ 5
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H0
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A k
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D
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, (47)

where the second line employs equation (7) and again
assumes matter domination at D. We show the results of
numerically calculating the quadrupole power spectrum
from a cosmological Boltzmann code (White & Scott 1996)
in Figure 8. Note that the spectrum peaks at large scales,
corresponding to the horizon at the reionization epoch,

On smaller scales, the projection (eq. [45])k DH0/D*
.

carries the power to higher angular moments.
The rms is the integral over the power spectrum,

Qrms2 \
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H0)1~n!SW(n) , (48)

where

!SW(n) \ 3Jn
![(3 [ n)/2]
![(4 [ n)/2]

![(3] n)/2]
![(9[ n)/2]

. (49)

For reference, note that For our ÐducialQrms2 \ 5C2##/4n.
"CDM model, (1] z)G\ 1.24, andd

H
\ 4.2] 10~5,

we obtain kK.!SW(1)\ 1, Qrms TCMB\ 16
There are two e†ects that modify this result slightly. The

Ðrst is that the universe may not be completely matter
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FIG. 8.ÈPower spectrum of the present-day quadrupole from the pro-
jection of primordial temperature inhomogeneities and the kinematic
Doppler e†ect in the "CDM model. The primordial quadrupole has been
calculated numerically with a Boltzmann code.

dominated at the time of scattering. Additional anisotropies
are then created as the gravitational potential decays. At
high redshifts, the e†ect of the radiation energy density
pushes the quadrupole anisotropy up via the ““ early ÏÏ inte-
grated Sachs-Wolfe e†ect (Hu & Sugiyama 1995) ; corre-
spondingly, at low redshifts the e†ect of the cosmological
constant or curvature again pushes the quadrupole up via
the ““ late ÏÏ integrated Sachs-Wolfe e†ect (Kofman & Star-
obinskii 1985). These e†ects are clearly visible in Figure 9,
where we plot the evolution of the rms quadrupole from
numerical calculations.

The second e†ect is that scattering itself can produce
quadrupole anisotropies through projection of the Doppler
e†ect, and can also destroy the primordial quadrupole
through isotropization. We call the net e†ect the contribu-
tion of the intrinsic quadrupole. This e†ect is suppressed
both by the assumed optically thin conditions and by the
fact that the Doppler e†ect is cancelled except on scales
near the horizon, where the velocity itself is small. In Figure

FIG. 9.ÈTime evolution of the rms quadrupole in the "CDM model.
Upper curves : Various linear theory e†ects (see text) for three di†erent
ionization histories from numerical calculations. L ower curve : The kine-
matic e†ect.

9, this e†ect is barely visible as a blip near the redshift of
reionization.

The hallmark of all these e†ects is that they create only
m\ 0 type quadrupoles, because they come from (l\ 0,
m\ 0) gravitational potential perturbations and (l\ 1,
m\ 0) potential Ñows. They therefore generate only E-
parity polarization. The polarizations from these sources
are not slowly varying across a wavelength of the horizon-
sized perturbations, and hence the approximation devel-
oped in the Appendix cannot be used to calculate these
e†ects. They are, however, automatically included in
cosmological Boltzmann codes. We show the resulting
polarization in Figure 2 for the "CDM model as calculated
with CMBFast. As is well known, the secondary polariza-
tions from these e†ects are conÐned to the lowest l, since the
quadrupole sources contribute mainly on horizon scales at
last scattering.

4.2. Kinematic Quadrupole
As pointed out by Sunyaev & Zeldovich (1980), in the rest

frame of the scatterers, an isotropic CMB gains a quadru-
pole anisotropy from the quadratic Doppler e†ect,

# \ J1 [ v
b
2

1 [ nü Æ ¿
b
[ 1 B nü Æ ¿
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] (nü Æ ¿

b
)2[ 1

2
v
b
2 , (50)

that induces a polarization in the CMB by Thomson scat-
tering. In real space, the quadrupole moment is simply

Q(0)(x) \ 2

3J5
v
b
2(x) (51)

in the basis aligned with the velocity in Fouriereü 3 p¿
b
(x) ;

space with a basis the expression is more involved ;eü 3 pkü ,
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where The logarithmic power spectrumY 12\ Y 1~2 \ 0.
becomes
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where the mode-coupling integrals are given by
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Here the angular arguments are

a(B2) \ 38y12(1[ k2)2 ,

a(B1) \ 38(1[ 2ky1)2(1[ k2) ,

a(0)\ 14[2k [ y1(3k2[ 1)]2 , (55)

and it is useful to deÐne the auxiliary quantity

a(f ) \ 14(1[ k2) . (56)

The polarization power spectrum then follows from
inserting equation (53) into equation (24). The result for the
"CDM cosmology is shown in Figure 10.
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FIG. 10.ÈPower spectra of E- and B-parity polarization from the kine-
matic quadrupole in the "CDM model.

The rms quadrupole follows simply from the relation

;
m/~2

2
a(m)\ y22 [ a(f ) , (57)

with a change of variables to for the integration of thek2Ðrst term,
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For the "CDM model, This expression isfkin\ 0.16.
smaller than the naive expectation implied by the real-space
relation given in equation (51), 4Sv

b
4T/45 \ 12vrms4 /45,

because the quadrupole is oriented and not simply a scalar
Gaussian random Ðeld. The main e†ect can be understood
as the contribution from the variance of v

b
2, Sv

b
4T

since its mean value comes from contri-[ Sv
b
2T2 \ 2vrms4 ,

butions that cancel out in orientation for the quadrupole.
The kinematic quadrupole is not negligible compared to

the primordial quadrupole for "CDM, or indeed any model
that Ðts the observations. Large-angle anisotropies are
observed today at 10~5, while the velocity Ðeld reaches
10~3. As shown in Figure 9, for "CDM it is approximately

the primordial one in amplitude today. Furthermore,14equation (53) implies that it generates comparable power in
all Ðve m-modes of the quadrupole, and hence comparable
E- and B-parity polarization. One might naively assume
that the kinematic e†ect generates as much B-parity polar-
ization as the primordial quadrupole generates E. This
would then be an obstacle for detecting gravity waves
through the B-parity polarization.

There are, however, two reasons why the polarization is
much smaller than implied by these arguments. The Ðrst is
that declines as (1] z)~1 in the matter-dominatedvrms2
epoch, whereas the primordial quadrupole remains con-
stant. The second is that in the "CDM model the coherence
of the velocity Ðeld is over 2 orders of magnitude smaller
than that of the primordial quadrupole, and hence gener-
ates polarization at lD 400. Recall that the rule of thumb
for projected sources is that the angular power spectrum is
reduced by 1 factor of l from the spatial power spectrum.

This produces another order-of-magnitude suppression of
the polarization (see Fig. 10). The polarization generated by
the B-parity is signiÐcantly smaller than that generated by
gravitational lensing of the primary polarization
(Zaldarriaga & Seljak 1998). This e†ect is therefore unlikely
to be detectable in "CDM models.

It is worth emphasizing that the amplitude of this e†ect is
highly model dependent and scales in power as vrms4 j

v
,

where is the coherence scale of the velocity Ðeld. Upperj
vlimits on the B-polarization can therefore constrain the

amplitude and coherence of the velocity Ðeld. For example,
consider a velocity Ðeld with an rms of D700 km s~1 on a
top-hat scale of 150 h~1 Mpc, suggested by the data of
Lauer & Postman (1994). If we model that Ðeld by the
"CDM velocity power spectrum but increase the coherence
length by a factor of 10 and the rms velocity by 1.55, we
boost the polarization power by 1.554] 10 \ 58 and the
angular scale by 10 (l D 40). The power would be even
larger in an open universe, where the velocity amplitude
actually grows substantially with redshift before declining.
It is also worth bearing in mind that e†ects such as these
warn against blindly taking even a large-angle detection of
B-polarization as a model-independent detection of gravity
waves or vorticity.

Finally, note that the correlation between primary and
secondary temperature anisotropies and the kinematic
polarization is suppressed, since it involves the three-point
function of the density Ðeld and hence vanishes in the linear
regime.

5. DENSITY-MODULATED POLARIZATION

Here we consider the polarization generated from the
density modulation of the quadrupole anisotropies con-
sidered in the last section. Again, these are separated by the
nature of the quadrupole source : the primordial quadru-
pole is discussed in ° 5.1, the kinematic quadrupole in ° 5.2,
and the intrinsic quadrupole in ° 5.3.

5.1. Primordial Quadrupole
For the modulation of the primordial quadrupole by

density Ñuctuations, we have

Q
g
(m)(k) \

P d3k1
(2n)3 Q(m)(k1)db(k2) . (59)

Scalar perturbations in linear theory only generate m\ 0
quadrupoles in the basis, i.e., where bk1 Q(0)(k1)Y 20(b, a)
and a are the polar and azimuthal angles deÐning in thisnü
basis. One can project this onto the basis with thee3 p k
help of the angular addition relation (see Hu & White 1997,
eq. [7]),

Y 20(b, a) \
S4n

5
;
m

Y 2m*(k1)Y 2m(nü ) , (60)

such that

Q
g
(m)(k) \

S4n
5
P d3k1

(2n)3 Q(0)(k1)Y 2m*(kü1)db
(k2) . (61)

Since the quadrupole source peaks on the scale ofQ(0)(k1)the horizon, whereas the density perturbations rise to small
scales in adiabatic CDM models, the correlation decouples
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as

*
Qg
2 (m)\ 15*db2 Qrms2 , (62)

where we have again used the orthogonality of spherical
harmonics, and is taken from numerical calculations,Qrms2
as in Figure 9. Inserting equation (62) into equation (24), we
obtain
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50l3
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dDD
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g2*db2 Qrms2 . (63)

As shown in Figure 11, even for the gas-traces-CDM
assumption, the polarization generated by this e†ect in a
"CDM model is small, much smaller than the polarization
generated by lensing (cf. Fig. 2).

The cross-correlation between multipole moments of the
Vishniac e†ect and the polarization vanishes whenC

l
#E

averaged over the sky, as a result of the di†erent angular
dependence of the underlying dipole and quadrupole
sources. Mathematically, this can be seen in the source
equations (61) and (28) ; the orthogonality of the spherical
harmonics guarantees that these terms will integrate to zero
when summing over the directions of each k-mode.

Note, however, that there will be a strong correlation
between the amplitude of the polarization and the ampli-
tude of the temperature Ñuctuations, and this may provide a
means for pulling out the signal in models where it is some-
what stronger.

5.2. Kinematic Quadrupole
The kinematic quadrupole is also modulated by the

density Ðeld. Its e†ect is identical to the primordial quadru-
pole (except eq. [58]) for the kinetic quadrupole used in
equation (63),
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375l3
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dDg2D
A

*db2 (1[ fkin)vrms4 , (64)

where recall that is a small correction due to the direc-fkintionality of the quadrupole moments. The ratio integrands
between the modulated Doppler and cosmic polarizations
is

8
45

(1[ fkin)
vrms4
Qrms2 . (65)

Since observationally, andvrmsD (1 ] z)~1@210~3 QrmsDthe e†ect from the primordial quadrupole is typically10~5,

FIG. 11.ÈDensity-modulated polarization in each parity type E\ B
for the "CDM model. Here we assume that the gas traces the dark matter.

larger. We show the results for the Ðducial "CDM model in
Figure 2.

5.3. Intrinsic Quadrupole
The quadrupole anisotropy generated by the Vishniac

e†ect during reionization produces a linear polarization
intrinsic to the Vishniac e†ect. This e†ect is doubly sup-
pressed by cancellation : both the quadrupole source itself
and its contributions to the polarization cancel when inte-
grating along the line of sight.

The quadrupole moment generated by the Vishniac e†ect
is given by equation (A6),
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and thus the power per logarithmic interval is
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The polarization power spectrum becomes
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where since only m\ ^1 contributes to the Vish-C
l
EE \ 0,

niac e†ect. The integrand in this equation is reduced by a
factor of
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compared to the temperature anisotropies, and is thus
highly suppressed at high l D 103 from an amplitude that is
already reduced by the low optical depth, in theq[ 10~1,
reionized universe. Finally, there is no cross-correlation
between the temperature and intrinsic polarization, since
the polarization is purely of B-parity.

6. PATCHY REIONIZATION

Inhomogeneities in the ionization fraction create modu-
lated Doppler anisotropies and polarization of the CMB
just as they create inhomogeneities in the density. The tech-
niques used in the calculation of density-modulated e†ects
thus can be carried over here with little modiÐcation.

For the modulated Doppler e†ect, one takes of equa-¿
gtion (20) to be where is the Ñuctuation in the ion-¿

b
d
X
, d

Xization fraction. Once the power spectrum of this quantity is
known, the anisotropies follow directly from equation (17).

Unfortunately, even the crude form of the power spec-
trum is not known, since this requires not only an under-
standing of the Ðrst baryonic objects in the universe but also
full three-dimensional radiative transfer in an inhomoge-
neous medium. Thus, even though we would expect the
ionizing sources to be associated with the peaks in the
density Ðeld, it may be that the radiation escapes into and
ionizes the low-density medium, where the recombination
rates are the lowest (Miralde-Escude, Haehnelt, & Rees
1999). The techniques introduced here are therefore more
useful for the inverse problem. If such a signal is detected in
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FIG. 12.ÈIonization-modulation e†ect. A patch size of 5 Mpc and a
duration of patchiness of in the "CDM model aredz

i
/(1 ] z

i
)\ 0.25

assumed.

the CMB, we will want to use these relations to invert it in
order to uncover the power spectrum of the ionization frac-
tion and hence learn about the manner in which the uni-
verse was ionized.

Nevertheless, it is useful to have a concrete model to
illustrate these e†ects. Gruzinov & Hu (1998) introduced a
toy model in which the universe is reionized in uncorrelated
spherical patches of a characteristic size R in a redshift
interval *z around A distribution in R, such as the onez

i
.

considered by Aghanim et al. (1996), can of course be con-
structed by superimposing simple sources. It is important to
bear in mind that in a more realistic scenario there are likely
to be correlations between the ionized regions ; Knox, Scoc-
cimarro, & Dodelson (1998) work out the consequences of
ionized regions tracing the peaks in the density Ðeld. In the
simple uncorrelated model, the correlation fuction of the
ionization fraction can be modeled as (Gruzinov & Hu
1998)

SdX(x1)dX(x2)T \ (X [ X2)e~*(x1~x2)2@2R2+ , (70)

where X(D) now is the mean ionization. This form is chosen
to have the right asymptotic behavior in time and the right
scaling with R ; other forms can be chosen that essentially
correspond to a redeÐnition of the patch size R (e.g., the
top-hat spheres of Knox et al. 1998)

With this Ansatz, the logarithmic power spectrum
becomes

X2*dX2 \
S2

n
(kR)3e~k2R2@2(X [ X2) . (71)

The angular power spectrum that results is simply that of
equation (38), with the density power spectrum replaced by
the ionization power spectrum,
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where h0\H0R/D
A
.

Following Gruzinov & Hu (1998), we take a mean ioniza-
tion fraction that grows linearly from zero at up to unityD
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Assuming that reionization occurs promptly (dD
i
/D

i
> 1),

the other quantities can be taken out of the integral, leaving
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Likewise, the polarization follows from equation (63),
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where is either the primordial quadrupole of equationQrms(48) or the kinematic quadrupole of equation (58). For adia-
batic CDM models, the former typically dominates the
latter even more than for the density-modulated e†ect. This
is because one is no longer weighted toward low redshifts
and larger velocities by the growth of density perturbations.
An example of the temperature and polarization signals for
a speciÐc choice of parameters is given in Figure 12.

7. DISCUSSION

We have explored the role of mildly nonlinear density
Ñuctuations in generating secondary CMB anisotropies and
a host of contributions to the secondary polarization. In
adiabatic CDM models, the Doppler e†ect from scattering
o† of nonlinear baryonic clumps in a large-scale bulk Ñow is
a natural extension of the Vishniac e†ect. In the small-scale
limit, the Vishniac e†ect simpliÐes to the corresponding
e†ect for linear density perturbations. For this class of
models, the nonlinear contributions out to overdensities of
D10 are comparable to or greater than the linear contribu-
tions, depending on the redshift of reionization. If the gas
traces the dark matter to much higher overdensities, then
up to an order of magnitude increase in the subarcminute
anisotropy would result. Likewise, small-scale patchiness in
the ionization can greatly increase the anisotropy in this
regime. Calculations of the clumpiness of the ionized gas are
difficult and unreliable, even with state-of-the-art numerical
simulations. An observational study of subarcminute-scale
anisotropies therefore o†ers an opportunity to discover
aspects of reionization that are intractable to theoretical
analysis today.

The secondary polarization from reionization is, as
expected, extremely small in the context of adiabatic CDM
models for structure formation and unlikely to inhibit
extraction of even subtle e†ects such as the B-parity polar-
ization from gravitational lensing or gravitational waves. It
is worthwhile to note that these mechanisms generically
predict comparable power in E- and B-parity polarization,
and they may be important outside of the adiabatic CDM
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model context. For example, in a model with a coherent
1500 km s~1 velocity Ðeld on the 100 h~1 Mpc scale, the
kinematically induced quadrupole generates a B-parity
polarization at the 0.1 kK level for reasonable optical
depths, qD 0.1È0.3. Likewise, if the velocity Ðeld fell o† less
rapidly than (1 ] z)~1@2 out to redshifts of order 10 or more,
then the e†ect might also be enhanced to this level. In these
models, the density and ionization modulation of the scat-
tering produce even larger signals in the arcminute regime
that may be observable. Thus, even a null detection of B-
parity polarization can be interesting. The tools that we
have introduced in the text and Appendix are quite general
and have applications beyond the adiabatic CDM model.

Even in the adiabatic CDM class of models, signiÐcant
uncertainties remain, especially in the contribution from
inhomogeneities in the ionization and the small-scale
behavior of the gas. These questions will ultimately be
answered by the observations themselves as CMB experi-
ments probe the arcminute regime with higher and higher
sensitivity.

I would like to thank D. J. Eisenstein, M. White, and M.
Zaldarriaga for useful conversations. W. H. is supported by
the Keck Foundation, a Sloan Fellowship, and NSF grant
95-13835.

APPENDIX A

GENERALIZING THE LIMBER EQUATION

The Limber (1954) equation describes the two-point statistics of a Ðeld that is the two-dimensional projection on the sky of
a three-dimensional source Ðeld whose statistical properties vary slowly along the line of sight. Kaiser (1992, 1998) expressed
the result as a relation between the two- and three-dimensional power spectra of the Ðelds. Hu & White (1996) generalized
these Ñat-sky approximations in an all-sky approach for spatially Ñat cosmologies.

Here we extend the techniques in three ways. We generalize them to open cosmologies where Fourier analysis on the
three-dimensional Ðeld is invalid, we allow for an arbitrary angular dependence in the source, and Ðnally, we treat tensor Ðelds
on the sky in addition to the usual scalar Ðelds.

A1. TOTAL ANGULAR MOMENTUM METHOD

A general Ðeld X that depends both on position x and direction n at x can be expanded into a complete set of modes
denoted (see Hu et al. 1998),

s
G

j
m

X(x, n) \
P d3q

(2n)3 ;
lm

X
l
(m)

s
G

l
m , (A1)

where the spin index s \ 0,^ 2 for scalar and tensor Ðelds on the sky, and (l, m) describe the multipole moments of the local
angular dependence. In Ñat space, these modes are simply the product of plane waves and spin-spherical harmonics (Goldberg
1967),

s
G

l
m \ ([i)l

S 4n
2l ] 1 s

Y
l
m(nü ) exp (iq Æ x) . (A2)

Note that the ordinary spherical harmonics. The angular power spectrum of the Ðeld is deÐned as0 Y
l
m \Y

l
m,

C
l
XX \ 4n

P d3q
(2n)3 ;

m

X
l
(m)*X

l
(m)

(2l ] 1)2 . (A3)

Let us suppose that the Ðeld on the sky, X, is generated by the line-of-sight integral of another positionally and directionally
dependent Ðeld, S, evaluated at a x \Dnü :

X(x, n)\
P

dDS(x, n) \
P

dD
P d3q

(2n)3 ;
jm

S
j
(m)

s
G

j
m . (A4)

The normal modes can be rewritten in spherical coordinates as

s
G

j
m \;

l
([i)lJ4n(2l ] 1) a

sj,l(m)
s
Y

l
m , (A5)

where we have used the spherical harmonic decomposition of a plane wave to combine the local and plane-wave angular
dependence terms into the total angular dependence as seen by the observer at the origin. Here are linear combinations ofa

sj,l(m)
spherical Bessel functions with weights given by Clebsch-Gordan coefficients, as we shall see. The moments of the Ðeld are
then

X
l
(m)\

P
dD (2l ] 1) ;

j
S
j
(m) a

sj,l(m) . (A6)
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For open geometries, the expressions in spherical coordinates take the same form, except that the radial functions area
sj,l(m)

linear combinations of the hyperspherical Bessel functions (Hu et al. 1998). They depend independently on radial distance,'
l
l

s \ )
K
1@2 D , (A7)

and wavenumber,

l\ q
H0 )

K
1@2 , (A8)

which itself di†ers from the usual eigenvalue k of the Laplacian near the curvature scale,

q \ Jk2[ ( om o] 1)H02)
K

. (A9)

Useful radial functions include
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for s \ 0, and
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for s \ 2. Note that primes are derivatives with respect to s and a
sj,l(~m)\ a

sj,l(m)p.

A2. WEAK-COUPLING APPROXIMATION

The weak-coupling approximation was introduced in Hu & White (1996) as a means of evaluating equation (A6) in the limit
that the source varies in distance D only on a much larger scale than the wavelength, q~1. In this case, the source can beS

j
(m)

taken out of the integral and evaluated at
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The remaining integral over becomesa
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where the correction due to spatial curvature is given by
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and the weights follow from the radial functions given in equations (A10) and (A11) :W
sj
(m)
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for the spin-zero Ðelds, and
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W
B22(2) \ 1

4
S 1

(l2] 4)(l2 ] 1)
[(1 [ l2] 2coth2 s) ^ 4il coth s] , (A16)

where

cschs \ l
l ] 1/2

. (A17)

Where there are zero entries in these equations, a term of order exists and can be taken into account throughS0
j
(m)H0/qintegration by parts.

Note that the real part is the contribution to the E-parity of the tensor Ðeld, and the imaginary part is the B-parity
contribution. The Ñat limit is recovered as l] O, s ] 0, and We have numerically veriÐed that the underlyingls ] kD/H0.expression for / dD is good to D1% for lº 2 using the code of Kosowsky (1998).'

l
l

A3. LIMBER FORMULATION

The weak-coupling approximation is a generalization of the familiar Limber equation, as noted by Ja†e & Kamionkowski
(1998). In the weak-coupling approximation, we are left with a power spectrum deÐned as the integral over wavenumber q in
equation (A3). If we change variables to distance D using the projection relation (eq. [A12]), we obtain
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for a source with a single type of angular dependence and logarithmic power spectrum The weighting in l isS
j
(m) *

S
2 (jm).
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The Ðnal approximation is for l? 1, where contributing modes are well below the curvature scale for reasonable cosmologies
(l? 1). In this same limit, the weights also simplify :
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Note that for the spin-2 case, m\ 0,^ 2 produces a pure E-parity Ðeld, and m\ ^1 produces a pure B-parity Ðeld, in
contrast to the tight-coupling (delta function source approximation), in which the power ratios between B and E are 0, 6, and
8/13 for m\ 0,^ 1,^ 2, respectively (Hu & White 1997). For a simple source S with no angular dependence ( j\ 0, m\ 0)
and a scalar Ðeld (s \ 0) on the sky, equation (A18) reduces to

C
l
XX \ 2

n2
l3
P

dDD
A

*
S
2 , (A21)

which is the Fourier Limber equation as derived by Kaiser (1992, 1998).
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