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Abstract. We present a pedagogical derivation of the Sachs-
Wolfe effect, specifically the factor 1

3 relating the temperature
fluctuations to gravitational potentials. The result arises from a
cancellation between gravitational redshifts and intrinsic tem-
perature fluctuations which can be derived from a coordinate
transformation of the background.

Key words: cosmic microwave background – cosmology: the-
ory

1. Introduction

On large scales, cosmic microwave background (CMB)
anisotropies are related to density fluctuations by the Sachs-
Wolfe (1967) effect. The gravitational effects of density pertur-
bations on the potential Φ generates temperature fluctuations

∆T

T
= −1

3
Φ , (1)

in the simplest case of adiabatic fluctuations in a matter domi-
nated universe.

In this note we present an intuitive, but mathematically
rigorous, derivation of this formula and its generalizations.
While the effect is well known, a simple but rigorous dis-
cussion does not appear to have been presented before. The
factor 1

3 is easily derived from relativistic perturbation the-
ory (RPT, see e.g. Mukhanov, Feldman & Brandenberger 1992,
Stebbins 1993, White, Scott & Silk 1994, Stoeger, Ellis & Xu
1994, Hu 1995), but that requires quite a high level of sophis-
tication on the part of the reader. Liddle & Lyth (1993) give
a derivation based on Doppler shifts of photons. However the
RPT derivations exemplify the use of coordinate transforma-
tions (Bardeen 1980, Kodama & Sasaki 1984) to expose the
simple underlying physics. A very brief discussion along these
lines is given by Peacock (1991), but given the importance of the
result for normalizing large-scale structure models to COBE,
we feel a pedagogical introduction using these ideas is worth-
while.

2. Derivation

Following Sachs and Wolfe (1967), we start from the geodesic
equation for photons propagating in a metric perturbed by a
gravitational potential Φ. The resulting frequency shifts for the
CMB photons lead to a temperature perturbation

∆T

T

∣∣∣∣
f

=
∆T

T

∣∣∣∣
i

− Φi , (2)

where i and f refer to “initial” and “final” states. We have
dropped the term due to the local gravitational potential (Φf )
which gives an isotropic temperature shift. We also neglect the
Doppler shift from the relative motion of the emitter and receiver
and other small scale effects, and assume that the potentials are
constant on large scales. We return to these assumptions later.

The interpretation of Eq. (2) is straightforward. The first
term on the right-hand side is the “intrinsic” temperature per-
turbation at early times. The second term indicates the energy
lost when the photon climbs out of a potential well. In this limit
the Sachs-Wolfe effect is simply an expression of energy con-
servation.

In order to rederive Eq. (1), we consider the case of adiabatic
fluctuations in a critical density, matter dominated universe. For
adiabatic fluctuations an overdensity, or potential well, repre-
sents a larger than average number of photons or an intrinsic
hot spot. We thus expect the two terms in Eq. (2) to partially
cancel (see e.g. Stebbins 1993). By comparison with Eq. (1),
we expect ∆T/T |i = 2

3Φ.
The derivation proceeds by moving to the rest frame of the

cosmological fluid (photons, baryons, dark matter . . . ) which is
known as the “comoving” or “velocity orthogonal isotropic”
gauge (Bardeen 1980, Kodama & Sasaki 1984). Here den-
sity fluctuations vanish and proper time coincides with coor-
dinate time at large scales. The intrinsic term is negligible,
which follows from the Poisson equation: ∇2Φ = 4πGδρ or
k2Φ = 4πGa2 δρ as k → 0. Here a(t) is the scale factor. That
proper time and coordinate time coincide follows from the fact
that we are in the rest frame of the fluid. It is also in this frame
that computation of fluctuations from inflation takes on its sim-
plest form (Mukhanov et al. 1992, Liddle & Lyth 1993).

However we wish to work in a frame where our Newtonian
intuition makes sense, the so called Newtonian gauge. To get
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from our rest frame to the Newtonian frame requires us to per-
form a shift of time coordinate. (The spatial metric is isotropic
in both the Newtonian frame and the rest frame which does not
allow us to make a redefinition of the space coordinates.) Recall
that in a gravitational potential clocks run slow

ds =
√

1− 2Φ dt ' (1− Φ)dt . (3)

Since the background temperature is redshifting as aT =
constant, in making a shift of time coordinate t→ t+dt (known
also as a gauge transformation see Bardeen 1980 and Kodama
& Sasaki 1984), we induce a temperature fluctuation. If the
equation of state is p = wρ, then a ∼ t2/3(1+w) and
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Φ , (4)

where we have used Eq. (3) in the last step. For a matter dom-
inated universe w = 0, using Eq. (2) gives the factor of 1

3 in
Eq. (1). More generally, the 1

3 is replaced by (1 + 3w)/(3 + 3w).
There is another way to look at these two terms. If the former

discussion is the “fluid” picture, this is the “metric” picture. In
this picture, the second term in Eq. (2) comes from the time-
time part of the metric. Time dilation changes the frequency
and hence the energy of oscillators (see e.g. Weinberg 1972).
By contrast, the intrinsic term is generated when we change
from the rest frame to the Newtonian frame. In so doing we
change the definition of the spatial hypersurfaces and thus the
“volume element” or space-space part of the metric ∝ a2. This
induces a redshift just as the normal expansion of the universe
induces a redshift∼ a−1(t). The change in the spatial curvature
in changing frames reproduces Eq. (4).

3. Isocurvature

Note that our argument works for isocurvature fluctuations also.
In this case, there are no initial curvature or metric perturbations,
so the frames coincide initially. There are thus no initial pertur-
bations in the temperature at large scales. Since the potentials
do not vanish today, our assumption of constant potentials needs
to be relaxed. This adds a third term to Eq. (2): if the potential
changes while the photon is crossing it, a net temperature shift
remains between the infall blueshift and the outclimb redshift.
A potential stretches space so the accompanying changes in the
length scale, and hence wavelength, doubles the effect. The ex-
tra term is thus −2

∫
Φ̇. Integrating from some early time until

the present, one obtains ∆T/T = −2Φ. As an aside, in the met-
ric picture this term arises since the Lagrangian L ∝ gµν ẋ

µẋν

depends on time. Since t is not a cyclic coordinate, energy is
not conserved along the photon trajectory. The redshift goes as
a(t) plus the “extra” time dependence from Φ(t) (e.g. White et
al. 1994).

4. Conclusions

We have presented a pedagogical derivation of the coefficient
which relates the large-angle CMB temperature fluctuations to

the gravitational potential. For adiabatic fluctuations, this comes
about by a partial cancellation of two terms – the intrinsic tem-
perature perturbation and the gravitational redshift from climb-
ing out of a potential. The latter wins, meaning photon over-
densities are CMB cold spots. This cancellation, which cannot
be present in models with isocurvature initial conditions, is cru-
cial to the success of the inflationary cold dark matter model
in predicting small CMB fluctuations for a given amount of
large-scale structure (e.g. White & Scott 1996).
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