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ABSTRACT

Upcoming weak lensing surveys on wide fields will provide the opportunity to reconstruct the structure along
the line of sight tomographically by employing photometric redshift information about the source distribution.
We define power spectrum statistics (including cross-correlation between redshift bins), quantify the improvement
that redshift information can make in cosmological parameter estimation, and discuss ways to optimize the redshift
binning. We find that within the adiabatic cold dark matter class of models, crude tomography using two or three
redshift bins is sufficient to extract most of the information and improve, by up to an order of magnitude, the
measurements of cosmological parameters that determine the growth rate of structure.

Subject headings: cosmology: theory — gravitational lensing — large-scale structure of universe

1. INTRODUCTION

With new instruments such as MEGACAM at the Canada-
France-Hawaii Telescope (Boulade et al. 1998) and the VLT
Survey Telescope at the European Southern Observatory (Ar-
naboldi et al. 1998), wide-field surveys that detect the weak
lensing of faint galaxies by large-scale structure will soon be-
come a reality (see Mellier 1999 for a recent review). Weak
lensing by large-scale structure produces a correlated distortion
in the ellipticities of the galaxies on the percent level (Blandford
et al. 1991; Miralda-Escude 1991; Kaiser 1992), which can be
used to measure a two-dimensional projection of the interven-
ing mass distribution (Tyson, Valdes, & Wenk 1990; Kaiser &
Squires 1993).

If the redshift of the source galaxies are known, then more
information can be extracted out of weak lensing by tomog-
raphy, i.e., differencing the two-dimensional projected images
to recover the three-dimensional distribution. In the absence of
spectroscopy, approximate redshifts for the faint galaxies can
be determined through photometric techniques (see, e.g., Hogg
et al. 1998 and references therein) and with the large number
of galaxies at (∼105 deg22), the properties of the dis-R & 25
tribution can be known to good accuracy (Seljak 1998). Indeed,
the weak lensing surveys already plan to use photometric red-
shift information at least on a small subsample to measure the
low-order moments of the distribution such as its mean. These
are important for determining the cosmological implications of
the data (Smail et al. 1995a; Fort, Mellier, & Dantel-Fort 1997;
Luppino & Kaiser 1997).

The potential of tomographic techniques, especially in the
wide-field limit where the cosmological information is com-
pletely contained in the two-point functions or power spectra,
remains largely unexplored. Indeed, most studies of weak lens-
ing (e.g., Jain & Seljak 1997; Kaiser 1998; Hu & Tegmark
1999) simply assume a d-function distribution of galaxies, mak-
ing tomography impossible.

In this Letter, we study the prospects for weak lensing to-
mography within the framework of the adiabatic cold dark
matter (CDM) class of models for structure formation. We
begin by defining the power spectrum statistics for an arbitrary
set of galaxy redshift distributions. These are the power spec-
trum of the convergence map for each distribution and the
cross-correlation between the maps. We then quantify how
much additional information can be extracted by subdividing
a single magnitude-limited sample into bins in redshift and

analyzing their joint power spectra and cross-correlation. We
conclude with a discussion of how errors in photometric red-
shifts might affect tomographic techniques.

2. POWER SPECTRA

Generalizing the results of Kaiser (1992, 1998), we define
the angular power spectra and cross-correlation of sky maps
of the convergence based on a series of galaxy redshift distri-
butions ni(z) (see also Seljak 1998):

1
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where are the spherical harmonic coefficients of the maps.a(øm)i

Here is the dimensionless comoving distancezD 5 (H /H)dz∫0 0

and

21/2 1/2D (D) 5 Q sinh (Q D) (2)A K K

is the dimensionless angular diameter distance, where Q 5K

is the effective density in spatial curvature in units1 2 O Qi i

of the critical density. The efficiency with which gravitational
potential fluctuations F, as measured by their dimensionless
power per logarithmic interval , lens the given2 3 2D { k P /2pF F

galaxy distribution ni is described by

` ′dz D (D 2 D)A′ ′g (D) 5 D (D) dD n (D ) . (3)i A E i[ ] ′dD D (D )D A

Note that ni is normalized so that . Finally,` dz n (z) 5 1∫0 i

is the wavenumber that projects onto the an-k 5 øH /D (D)ø 0 A

gular scale at distance D. For small fields of view, the spher-ø
ical harmonics of order can be replaced by Fourier modesø
with angular frequency q.

We use the Peacock & Dodds (1994) scaling relations to
evaluate in the nonlinear density regime. Equation (1) as-2DF

sumes that the redshift distributions are sufficiently wide to
encompass many wavelengths of the relevant fluctuations
( ) along the line of sight so that the Limber equation holds2p/kø

even tomographically (see Kaiser 1998).
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Fig. 1.—Subdividing the source population. Partitioning the galaxies by the
median redshift (or distance D) yields lensing efficiencies with strong overlap.

Fig. 2.—Power spectra and cross-correlation for a subdivision in two across
the median redshift and errors for a survey of 57 on the side,z 5 1median

, and deg22. Note the strong correlation between2 1/2 5¯Ag S 5 0.4 n 5 2 # 10 Rint ij

the two power spectra make the combination of the power spectra less con-
straining than a naive interpretation of the individual errors would imply.These power spectra define the cosmic signal. The intrinsic

ellipticity of the galaxies adds white noise to the cosmic signal,
making the observed power spectra

k 2 ¯C (ø) 5 P (ø) 1 Ag Sd /n , (4)ij ij int ij i

where is the rms intrinsic shear in each component and2 1/2Ag Sint

is the number density of the galaxies per steradian on then̄i

sky in the whole distribution .n (z)i

The distributions ni(z) need not be physically distinct galaxy
populations. Consider a total distribution n(z) with

dz
a bn (D) ∝ D exp [2(D/D ) ], (5)∗[ ]dD

which roughly approximates that of a magnitude-limited sur-
vey, and take , for definiteness (assumed through-a 5 1 b 5 4
out unless otherwise stated). One can subdivide the sample into
redshift bins to define the distributions ni(z). The power spectra
for cruder partitions can always be constructed out of finer
ones: if the j and k bins are combined, then

2 k 2 k k 2 k¯ ¯ ¯ ¯ ¯n P 5 n P 1 2n n P 1 n P ,j1k ( j1k)( j1k) j jj j k jk k kk

k k k¯ ¯ ¯n P 5 n P 1 n P . (6)j1k i( j1k) j ij k ik

In Figure 1, we show an example in which the galaxies with
are binned into n1 and the rest into n2. Here andz ! zmedian

throughout we take our fiducial cosmology as an adiabatic
CDM model with matter density , dimensionlessQ 5 0.35m

Hubble constant , baryon density , cosmo-h 5 0.65 Q 5 0.05b

logical constant , neutrino mass eV, initialQ 5 0.65 m 5 0.7L n

potential power spectrum amplitude A normalized by the COBE
detection, and tilt .n 5 1S

We also plot in Figure 1 the lensing efficiency function gi(D).
Despite having nonoverlapping source distributions (top), the
lensing efficiencies strongly overlap (bottom), implying that
the resulting convergence maps will have a correspondingly
large cross-correlation. This is of course because the high- and
low-redshift galaxies alike are lensed by low-redshift structures.
Also for this reason, there will be always be a stronger signal

in the high-redshift bins. This fact will be important for signal-
to-noise ratio considerations in choosing the bins.

All of these properties can be seen in Figure 2, where we
plot the resultant power spectra and their cross-correlation for
the equal binning of Figure 1.

3. REDSHIFT BINNING AND PARAMETER ESTIMATION

While subdividing the sample into finer bins always increases
the amount of information, there are two limiting factors. The
first is the shot noise from the intrinsic ellipticities of the gal-
axies. Once the number density per bin is so small that shotn̄i

noise surpasses the signal in equation (4), further subdivision
no longer helps.

Second, if the lensing signal does not change significantly
across the redshift range of the whole distribution, then sub-
division will not add information. These considerations can be
quantified by considering the correlation coefficient between
the power spectra of the subdivisions: . Fork k k 1/2R 5 P /(P P )ij ij ii jj

the model of Figure 2, the power spectra are highly correlated
( ), even with only two subdivisions. Thus, evenR ∼ 0.812

though there is a large enough signal-to-noise ratio to subdivide
the sample further, one gains little information by doing so.

One can combine these two considerations by diagonalizing
the covariance matrix and considering the signal-to-noise ratio
in the diagonal basis. The appropriate strategy for subdivision
depends on the true redshift distribution of the galaxies and
the model for structure formation. One should therefore per-
form this test on the actual data to decide how to subdivide
the sample.

Nevertheless, to make these considerations more concrete,
let us consider the specific goal of measuring the cosmological
parameters pa assuming that the underlying adiabatic CDM
cosmology described above is correct. The Fisher information
matrix can be used to quantify the effect of subdivision. It is
defined as

2 ln L
F 5 2 , (7)G Hab

p p xa b
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TABLE 1
Parameter Estimation for zmedian 5 1

1/2j fa sky
Error Improvement

pa 1 2( )1
2 2( )1

4 2( )1
8 3( )1

3 3( )1
4 3( )1

8

QL . . . . . . . . 0.040 6.5 6.9 5.7 7.2 7.7 6.9
QK . . . . . . . . 0.023 2.9 3.1 2.9 3.3 3.5 3.2
mn . . . . . . . . 0.044 1.7 2.0 2.1 2.1 2.2 2.2

. . . . . .ln A 0.064 1.7 2.0 2.0 2.1 2.2 2.1

Fig. 3.—Tomographic error improvements on QL for . Top: Im-z 5 1median

provement as a function of the fraction of galaxies in the upper redshift bin
for two bins vs. three bins (same fraction in upper two bins). Bottom: Redshift
corresponding to the upper division.

TABLE 2
Parameter Estimation for zmedian 5 2

1/2j fa sky
Error Improvement

pa 1 2( )1
2 2( )1

4 2( )1
8 3( )1

4 3( )1
8

QL . . . . . . . . 0.063 19 21 20 24 24
QK . . . . . . . . 0.030 6.7 7.7 8.0 8.9 9.1
mn . . . . . . . . 0.027 2.3 2.9 3.0 3.2 3.4

. . . . . .ln A 0.040 2.1 2.6 2.1 3.1 3.2

where L is the likelihood of observing a data set given thex
true parameters .p ) p1 a

Generalizing the results of Hu & Tegmark (1999) to multiple
correlated power spectra, we obtain1

ømax

21 21F 5 (ø 1 1/2)f tr[C C C C ] (8)Oab sky ,a ,b
ø52

under the assumption of Gaussian signal and noise, where fsky

is fraction of sky covered by the survey (∼0.001–0.01 for cur-
rently planned surveys), the covariance matrix was definedC
in equation (4), and commas denote partial derivatives with
respect to the cosmological parameters pa. We take ø 5max

to approximate the increased covariance due to the non-3000
linearities producing non-Gaussianity in the signal (Scocci-
marro, Zaldarriaga, & Hui 1999). Note that the lensing signal
is approximately Gaussian even in the nonlinear density regime
since it arises from many independent structures along the line
of sight. Since the variance of an unbiased estimator of a pa-
rameter pa cannot be less than , the Fisher2 21j (p ) 5 (F )a aa

matrix quantifies the best statistical errors on parameters pos-
sible with a given data set.

For the purposes of this work, the absolute errors on param-
eters are less relevant than the improvement in errors from
subdividing the data (see Hu & Tegmark for the former). We
therefore test a four-dimensional subset of the adiabatic CDM
parameter space to see how subdivision can help separate initial
power (A) from the various contributors to the redshift-depen-
dent evolution of power (QL, QK, mn). For reference, the standard
errors ja for this parameter space without subdivision are given
in Table 1. Errors in the full parameter space would be in-
creased, but note that the neglected parameters (Qmh2, Qbh

2, and
nS) are exactly those that the cosmic microwave background
satellite experiments should constrain precisely (see, e.g., Jung-
man et al. 1996; Eisenstein, Hu, & Tegmark 1999).

As an example, we take a sample with andz 5 1median

deg22 as appropriate for a magnitude limit5n̄ 5 2 # 10
of (see Smail et al. 1995b). The signal-to-noise ratioR ∼ 25
(S/N) in the full sample is quite high, e.g., at ,ø 5 100

. Thus we expect that subdividing the sample shouldS/N ∼ 25
improve parameter estimation.

As shown in Table 1, subdividing this sample in equal halves,
denoted as 2( ), improves the errors ja by a factor of 2–7.1

2

Since the signal in the lower redshift bin is smaller than in the
higher redshift bin, it suffers comparatively more from the
intrinsic noise variance. One can optimize the binning to correct
for this effect. Dividing the sample so as to isolate the upper
quarter [2( )] improves the errors modestly, whereas isolating1

4

the upper eighth deproves them. We plot the full range as a
function of the fraction of galaxies in the upper bin in Fig-
ure 3. Notice that although the improvement factor is roughly

1 It is ni(z), not , that is held fixed when taking derivatives.[n (z)dz/dD]i

flat from 0.15 to 0.5, it drops rapidly when noise dominates
either the upper or lower fraction. If the signal were the same
in both bins, this would occur at 0.04 and 0.96 for .ø 5 100
The fact that the true improvement is skewed to smaller upper
fractions reflects the fact that the signal increases to higher
redshifts.

Moving to three divisions makes only a small improvement
over two. In Table 1, we take three bins with an equal number
of galaxies in the upper two bins, e.g., [3( )] represents a1

4

division by number of ( , , ).1 1 1
2 4 4

We conclude that for a redshift distribution of the form given
by equation (5) with , , and , crude par-z 5 1 a 5 1 b 5 4median

titioning suffices to regain most of the redshift information in
adiabatic CDM models in which the change in the growth rate
across the distribution is slow and controlled by a small number
of cosmological parameters.

How robust are these conclusions against changes in the
distribution and model? A wider redshift distribution offers
greater opportunities for tomography. For example, with b 5

in equation (5), the gains by simply halving the distribution2
are a factor of 9.7 for QL; going to a 3( ) scheme raises this1

4

to 12.
These considerations are also relevant for deeper surveys.

Consider a survey with and deg22.5¯z 5 2 n 5 3.6 # 10median

The parameter estimation results are given in Table 2. Not only
is the overall improvement from subdivision larger (up to a
factor of 24 for three bins), but the relative improvements be-
tween parameters also changes. This is because even within
the adiabatic CDM paradigm the importance of the different
parameters in determining the growth of structure depends on
redshift.
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Perhaps more importantly, tomography has the ability to
falsify the underlying adiabatic CDM model. For this reason,
it is wise to examine the power spectra from the redshift bins
directly, since these are the observables, rather than directly
model the data with adiabatic CDM parameters. For example,
tomography may show that the missing energy is not the cos-
mological constant or may call into question the fundamental
assumption that structure forms through the gravitational in-
stability of CDM.

4. DISCUSSION

The precision with which cosmological parameters can be
measured from a weak lensing survey can be significantly en-
hanced by redshift tomography. Crude redshift binning of the
sources can recover most of the statistical information con-
tained in the redshifts. For example, most of the gain for a
magnitude-limited survey with , under the adiabaticz 5 1median

CDM paradigm, comes from separating out the upper and lower
redshift halves of the distribution. For wider distributions and
stronger rates of change in the growth of structure, more in-
formation can be extracted by finer binning, especially of the
higher redshift portion of the sample in which the signal is
greater. The appropriate number of bins can be empirically
determined by examining the correlation between bins and the
noise properties of the data.

We have been assuming that the individual redshifts of the
galaxies will be known sufficiently precisely to determine the
redshift distribution of the subsamples. Realistically, the red-

shift information will be limited by the accuracy of photometric
redshift techniques, which currently show errors of Dz ∼ 0.1
(68% confidence limit) per galaxy for (Hogg et0.4 & z & 1.4
al. 1998). While the resulting statistical errors are negligible,
systematic errors may cause problems. It is beyond the scope
of this Letter to test these issues fully. To give some feel for
their effect, let us consider the median redshift zmedian as an
additional parameter with a prior uncertainty from photometric
redshifts of the full individual error 0.1. Including this uncer-
tainty degrades the precision in the parameters by 3% in the
worst case.

While this effect is negligible, more worrying is a bias that
is a function of redshift, especially in the largely untested re-
gime . Isolating the few percent of galaxies at1.4 & z & 2

, where the techniques are tested, yields gains that arez * 2.5
comparable to the optimal division (see Fig. 3, bottom), but
the compactness of such galaxies poses an obstacle for mea-
suring the lensing distortion from the ground (Steidel et al.
1996). Despite these caveats, this study shows that tomography
with weak lensing is both possible and would substantially
improve the precision with which we can measure the growth
of structure in the universe.
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