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We study the general properties of the CMB temperature four-point function, specifically its
harmonic analogue the angular trispectrum, and illustrate its utility in finding optimal quadratic
statistics through the weak gravitational lensing effect. We determine the general form of the trispec-
trum, under the assumptions of rotational, permutation, and parity invariance, its estimators on the
sky, and their Gaussian noise properties. The signal-to-noise in the trispectrum can be highly con-
figuration dependent and any quadratic statistic used to compress the information to a manageable
two-point level must be carefully chosen. Through a systematic study, we determine that for the case
of lensing a specific statistic, the divergence of a filtered temperature-weighted temperature-gradient
map, contains the maximal signal-to-noise and reduces the variance of estimates of the large-scale
convergence power spectrum by over an order of magnitude over previous gradient-gradient tech-
niques. The total signal-to-noise for lensing with the Planck satellite is of order 60 for a ΛCDM
cosmology.

I. INTRODUCTION

The power spectra or two-point correlations of Cosmic Microwave Background (CMB) temperature and polarization
anisotropies are widely recognized as a gold mine of information on cosmology. These spectra in fact contain all of
the information embedded in the CMB if the underlying fluctuations are Gaussian distributed. Nonetheless even if
the initial density fluctuations are Gaussian, non-Gaussianity in the CMB temperature fluctuations will be generated
by non-linear processes. These generally are associated with the secondary anisotropies that are imprinted as the
photons propagate through the large-scale structure of the Universe from the epoch of recombination.

Secondary signatures in the three-point correlation of temperature anisotropies have recently received much at-
tention [1–3] following early pioneering work on intrinsic correlations in the initial conditions [4,5]. The four-point
correlation and its harmonic analogue the trispectrum has received considerably less attention despite the fact that
it directly controls the noise properties of estimators of the power spectrum. In particular, an all-sky treatment of
the trispectrum that incorporates the full rotational symmetry properties of the trispectrum has been lacking in the
literature (c.f. [6]). Exploitation of the symmetry properties can assist in the isolation of the physical mechanisms
underlying the generation of the trispectrum as we shall see.

In this paper, we establish the framework needed to study the trispectrum on the full sky. We begin in §II with a
discussion of the symmetry properties of the n-point function on the sky, with an emphasis on the 4-point function,
and their implications for the general form of the harmonic spectra. We consider estimators of the trispectrum and
their noise properties in §III, and the trispectrum-based power spectra of quadratic statistics in §IV. Calculational
techniques and relationships to the flat-sky formalism are given in two Appendices. In §V, we consider the specific
case of the trispectrum generated by weak gravitational lensing of CMB photons by the large-scale structure of the
Universe and show that there exists a quadratic statistic that optimally recovers the projected gravitational potential
power spectrum (or convergence) on large scales. We conclude §VI.

II. SYMMETRIES

In this section, we derive the requirements that rotational, permutation, and parity symmetry impose on the
n = (2, 3, 4)-point correlation functions on the sphere and their spherical harmonic analogues: the power spectrum,
bispectrum and trispectrum. We begin with general considerations for the n-point function in §II A, review the
implications for the power spectrum and bispectrum in §II B, and derive the consequences for the trispectrum in
§II C. In §II D, we show how to construct trispectra with the required symmetry properties.

A. General Considerations

We begin by requiring statistical isotropy of the n-point correlation function on the sphere and its harmonic analogue
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〈Θ(n̂1) . . . Θ(n̂n)〉 =
∑

l1...ln

∑

m1...mn

〈Θl1m1
. . . Θlnmn

〉Y m1

l1
(n̂1) . . . Y mn

ln
(n̂n) . (1)

Statistical isotropy demands that the n-point function is invariant under an arbitrary rotation R whose action on a
spherical harmonic is expressed in terms of the Wigner-D function

R[Y m
l (n̂)] =

∑

m′

Dl
m′m(α, β, γ)Y

m′

l (n̂) , (2)

where α, β and γ are the Euler angles of the rotation. To obey rotational invariance the harmonics must obey the
relation

〈Θl1m1
. . . Θlnmn

〉 =
∑

m′

1
...m′

n

〈Θl1m′

1
. . . Θlnm′

n
〉Dl1

m1m′

1

. . . Dln
mnm′

n
, (3)

for all α, β, and γ. The reduction of this relation proceeds as follows. Each pair of rotation matrices may be coupled
into a single rotation via the group multiplication property (or equivalently the addition of angular momentum)

Dl1
m1m′

1

Dl2
m2m′

2

=
∑

LMM ′

(

l1 l2 L
m1 m2 −M

) (

l1 l2 L
m′

1 m′
2 −M ′

)

(2L + 1)(−1)M+M ′

DL
MM ′ . (4)

When the product is reduced a pair of D matrices, one seeks the form of the harmonic n-point function that reduces
the pair to the orthogonality condition for rotations

∑

m

(−1)m2−mDl1
m1mDl1

−m2−m = δm1m2
, (5)

which is valid for an arbitrary rotation. The indices can then be permuted to find alternate orderings of the pairings.
Invariance under a parity transformation which takes n̂ → −n̂

Y m
l → (−1)lY m

l , (6)

would require that

n
∑

i=1

li = even. (7)

Reality of the underlying Θ field and the fact that

Y m∗
l = (−1)mY −m

l , (8)

requires that

Θm∗
l = (−1)mΘ−m

l . (9)

B. Power Spectrum and Bispectrum

For the 2-point function there is only one step. The reduction of equation (5) requires the form

〈Θl1m1
Θl2m2

〉 = δl1l2δm1−m2
(−1)m1Cl1 . (10)

For the 3-point function one first collapses one product of rotation matrices leaving

〈Θl1m1
. . .Θl3m3

〉 =
∑

m′

1
...m′

3

〈Θl1m′

1
. . . Θl3m′

3
〉

∑

LMM ′

(2L + 1)(−1)M+M ′

(11)

×
(

l1 l2 L
m1 m2 −M

) (

l1 l2 L
m′

1 m′
2 −M ′

)

DL
MM ′Dl3

m3m′

3

.
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In order to reduce this relation to the orthogonality condition Eqn. (5), the sum over m′ of the three-point function
must be proportional to δLl3δM ′−m′

3
. Recalling the identity

∑

m1m2

(

l1 l2 L
m1 m2 M

) (

l1 l2 L′

m1 m2 M ′

)

=
δLL′δMM ′

2L + 1
, (12)

we can obtain the desired relation if the m dependence of the 3-point function obeys

〈Θl1m1
. . . Θl3m3

〉 =

(

l1 l2 l3
m1 m2 m3

)

Bl1l2l3 . (13)

C. Trispectrum

The form of the 4-point function follows the same steps except that we use the group multiplication properties to
pair say (l1,l2) and (l3,l4) leading to the condition

〈Θl1m1
. . .Θl4m4

〉 =
∑

m′

1
...m′

4

∑

L12M12M ′

12

(2L12 + 1)(−1)M12+M ′

12

(

l1 l2 L12

m1 m2 −M12

) (

l1 l2 L12

m′
1 m′

2 −M ′
12

)

DL12

M12M ′

12

(14)

×
∑

L34M34M ′

34

(2L34 + 1)(−1)M34+M ′

34

(

l3 l4 L34

m3 m4 −M34

) (

l3 l4 L34

m′
3 m′

4 −M ′
34

)

DL34

M34M ′

34

〈Θl1m′

1
. . .Θl4m′

4
〉 .

The same reasoning that led to the choice of the form of the three-point function implies that the following form is a
solution

〈Θl1m1
. . . Θl4m4

〉 =
∑

LM

(

l1 l2 L
m1 m2 −M

) (

l3 l4 L
m3 m4 M

)

(−1)MQl1l2
l3l4

(L) . (15)

Geometrically, Ql1l2
l3l4

(L) represents a quadrilateral composed of sides with length l1 . . . l4. The index L represents one
of the diagonals of the quadrilateral and is also the shared third side of the two triangles formed by the corresponding
pairs of sides. The Wigner-3j symbols in Eqn. (15) ensure that the triangle inequalities are satisfied. For this reason
we will often refer to a set (l1, l2, l3, l4, L) as a given “configuration” of the quadrilateral.

The two other unique pairings of the indices, (l1, l3) and (l1, l4), yield alternate representations of the 4-point
function. These are not independent since all three couplings yield complete sets according to the theory of the
addition of angular momenta. The alternate representations are constructed as linear combinations of the (l1, l2)
representation with weights given by the Wigner-6j recoupling coefficients (see Appendix)

Ql1l3
l2l4

(L) =
∑

L′

(−1)l2+l3(2L + 1)

{

l1 l2 L′

l4 l3 L

}

Ql1l2
l3l4

(L′) ,

Ql1l4
l3l2

(L) =
∑

L′

(−1)L+L′

(2L + 1)

{

l1 l2 L′

l3 l4 L

}

Ql1l2
l3l4

(L′) , (16)

where we have used Eqn. (A4) to project one coupling scheme onto another.
Symmetry with respect to the 4!/3 = 8 remaining permutations (2 orderings of the pairs, 4 orderings within the

pairs) requires that

Ql1l2
l3l4

(L) = (−1)ΣU Ql2l1
l3l4

(L) = (−1)ΣLQl1l2
l4l3

(L) = Ql3l4
l1l2

(L) , (17)

where ΣU = l1 + l2 + L and ΣL = l3 + l4 + L. If the four-point function is parity invariant then

Ql1l2
l3l4

(L) = Ql2l1
l4l3

(L) . (18)

We shall show how to construct trispectra that obey these properties in the next section.
Finally it is useful to separate the contributions from the unconnected or Gaussian piece and the connected or

trispectrum piece

Ql1l2
l3l4

(L) = Gl1l2
l3l4

(L) + T l1l2
l3l4

(L) , (19)

where

Gl1l2
l3l4

(L) = (−1)l1+l3
√

(2l1 + 1)(2l3 + 1)Cl1Cl3δl1l2δl3l4δL0 + (2L + 1)Cl1Cl2

[

(−1)l2+l3+Lδl1l3δl2l4 + δl1l4δl2l3

]

. (20)
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D. Enforcing Symmetries

The symmetries of the trispectrum described above may be enforced by the following construction. First describe
the four-point function by a form that is explicitly symmetric in the three unique pairings

〈Θl1m1
. . . Θl4m4

〉c =
∑

LM

P l1l2
l3l4

(L)

(

l1 l2 L
m1 m2 −M

) (

l3 l4 L
m3 m4 M

)

(−1)M + (l2 ↔ l3) + (l2 ↔ l4) , (21)

where c denotes the fact that we have removed the Gaussian piece of Eqn. (20). The two latter pairings can be
projected onto the (l1, l2) basis with the help of the Wigner-6j symbol to give

T l1l2
l3l4

(L) = P l1l2
l3l4

(L) + (2L + 1)
∑

L′

[

(−1)l2+l3

{

l1 l2 L
l4 l3 L′

}

P l1l3
l2l4

(L′) + (−1)L+L′

{

l1 l2 L
l3 l4 L′

}

P l1l4
l3l2

(L′)

]

. (22)

Within the three unique pairings, there are 4 permutations of the ordering implying that P is constructed as

P l1l2
l3l4

(L) = T l1l2
l3l4

+ (−1)ΣUT l2l1
l3l4

+ (−1)ΣLT l1l2
l4l3

+ (−1)ΣU+ΣLT l2l1
l4l3

. (23)

The reduced function T underlying the trispectrum is an arbitrary function of its arguments except that it must be
symmetric against exchange of its upper and lower indices

T l1l2
l3l4

(L) = T l3l4
l1l2

(L) , (24)

and if parity invariant obeys

T l1l2
l3l4

(L) = T l2l1
l4l3

(L) . (25)

This then completes the enforcing of the rotation, permutation and parity symmetries of the trispectrum.

III. ESTIMATORS AND SIGNAL-TO-NOISE

We show in §III A that the fundamental estimator of the trispectrum involves a weighted sum over the multipole
moments in a given quadruplet of harmonics. These estimators have well defined noise properties as derived in §III B
which can be used to calculate the theoretical signal-to-noise in the trispectrum. A non-vanishing trispectrum can on
the other hand decrease the signal-to-noise in the power spectrum by introducing a covariance between its estimators
as shown in §III C.

A. Estimators

From the orthogonality properties of the Wigner-3j symbol, one can invert the relationship for the four-point
spectrum to form the estimator

T̂ l1l2
l3l4

(L) = (2L + 1)
∑

m1m2m3m4M

(−1)M

(

l1 l2 L
m1 m2 M

) (

l3 l4 L
m3 m4 −M

)

〈Θl1m1
. . .Θl4m4

〉 − Ĝl1l2
l3l4

, (26)

where the estimator for the Gaussian piece is constructed out of those for the power spectrum. Note that for
configurations whose l sides are not equal in pairs, the Gaussian piece vanishes and the sum over m’s of the spherical
harmonic coefficients is an unbiased estimator of the trispectrum.

We can alternately form an estimator of particular configurations of the trispectrum directly from the sky map
itself without an explicit expansion in spherical harmonics. Following Spergel & Goldberg [8], let us define a new set
of sky maps weighted in rings centered around a point q̂:

el(q̂) =

√

2l + 1

4π

∫

dn̂Θ(n̂)Pl(n̂ · q̂) . (27)

Expanding the Wigner-3j symbols in terms of spherical harmonics and using the addition theorem, we obtain
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(

l1 l2 L
0 0 0

) (

l3 l4 L
0 0 0

)

[

T̂ l1l2
l3l4

(L) + Ĝl1l2
l3l4

(L)
]

=

(2L + 1)

∫

dq̂a

4π

∫

dq̂b

4π
el1(q̂a)el2(q̂a)el3(q̂b)el4(q̂b)PL(q̂a · q̂b) . (28)

Since the Wigner-3j symbol vanishes if l1 + l2 + L = odd, this expression can only be used to estimate even terms.
To measure all configurations of the trispectrum is, needless to say, a daunting task. Aside from the computational

expense, one must also treat complications associated with estimators of harmonics on a fraction of the sky. Even for
an all-sky CMB experiment, the removal of galactic foregrounds will limit the data to a smaller fraction of the sky
fsky.

B. Signal-to-Noise

Returning to the estimator of Eqn. (26), one can calculate the Gaussian noise variance of the estimator,

〈T̂ l1l2∗
l3l4

(L)T̂ l1l2
l3l4

(L′)〉 = (2L + 1)δLL′Ctot
l1 Ctot

l2 Ctot
l3 Ctot

l4 , (29)

if no two l’s are equal. Here Ctot
l is the sum of all contributions to the power spectrum including the intrinsic CMB

fluctuations, instrumental noise and residual foreground contamination.
From the permutation properties of Q (or T ) in Eqn. (16), the full covariance of the estimators then becomes

〈T̂ l1l2∗
l3l4

(L)T̂
l′
1
l′
2

l′
3
l′
4

(L′)〉
(2L + 1)Ctot

l1
Ctot

l2
Ctot

l3
Ctot

l4

= δLL′δ12
34 + (2L′ + 1)

[

(−1)l2+l3

{

l1 l2 L
l4 l3 L′

}

δ13
24 + (−1)L+L′

{

l1 l2 L
l3 l4 L′

}

δ14
32

]

, (30)

if no two l’s in the primed and unprimed sets are equal. Here

δab
cd = [δl1laδl2lb + (−1)ΣU δl1lbδl2la ][δl3lcδl4ld + (−1)ΣLδl3ldδl4lc ] + [a ↔ c][b ↔ d] , (31)

accounts for the permutations within the three fundamental pairings. Recall that ΣU = l1+l2+L and ΣL = l3+l4+L
The two terms involving the Wigner-6j symbol reflect the fact that alternate pairings of the indices supply redundant
information in both the signal and the noise.

If any two l’s are equal, then the covariance has extra terms associated with the internal pairings in the primed
and unprimed sets. Based on the fundamental relation

〈T̂ l1l1
l3l4

(L)T̂
l′
1
l′
1

l′
3
l′
4

(L′)〉 = (−1)l1+l′
1δL0δL′0

√

(2l1 + 1)(2l′1 + 1)[δl3l′
3
δl4l′

4
+ (−1)ΣLδl3l′

4
δl4l′

3
]Cl1Cl′

1
Cl3Cl4 , (32)

other pairings can be found through the permutation properties of Q (or T ). No fundamentally new terms are
introduced if three or four l’s are equal but each set of possible internal pairings in the primed and unprimed sets
must be separately accounted for.

The total signal-to-noise for each L in the four-point spectrum is

(

S

N

)2

≡
∑

l1l2l3l4L

∑

l′
1
l′
2
l′
3
l′
4
L′

〈T̂ l1l2∗
l3l4

(L)〉 [Cov−1]〈T l′
1
l′
2

l′
3
l′
4

(L′)〉

≈
∑

L

∑

l1>l2>l3>l4

1

2L + 1

|T̂ l1l2
l3l4

(L)|2
Ctot

l1
Ctot

l2
Ctot

l3
Ctot

l4

, (33)

where “Cov−1” indicates the matrix inverse, with elements labelled by their configuration (l1, l2, l3, l4, L), of the
covariance in Eqn. (30). In the second line, the restricted sum eliminates the 4!=24 redundant permutations above
and neglects the signal-to-noise contributed when the the l’s are equal. In the high signal-to-noise regime, one must
also include the sample variance of the signal. On a cut-sky, the considerations of Appendix B imply that the overall
(S/N)2 is reduced by a factor of fsky.

Note that if the sum in Eqn. (33) is not restricted the covariance supplied by the alternate pair orderings in Eqn. (16)
necessarily contains off diagonal terms that mix L and L′. The covariance is distributed across many L’s and can
lead to overestimates of the signal-to-noise in 4-point related statistics by a factor of

√
3.
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C. Power Spectrum Covariance

The trispectrum can affect two-point or power spectrum statistics by introducing a covariance between the estima-
tors. The covariance of power spectrum estimators averaged over m is given by

[Cov]l1l2 =
1

2l1 + 1

1

2l2 + 1

∑

m1m2

〈Θl1m1
Θ∗

l1m1
Θl2m2

Θ∗
l2m2

〉 − 〈Ĉl1〉〈Ĉl2 〉

=
1√

2l1 + 1

1√
2l2 + 1

(−1)l1+l2Ql1l1
l2l2

(0) − 〈Ĉl1〉〈Ĉl2 〉 . (34)

The expression for the covariance can be further broken into its Gaussian and non-Gaussian pieces

[Cov]l1l2 =
2

2l1 + 1
C2

l1δl1l2

+
(−1)l1+l2

√

(2l1 + 1)(2l2 + 1)



P l1l1
l2l2

(0) +
2

√

(2l1 + 1)(2l2 + 1)

l1+l2
∑

L=|l1−l2|

(−1)LP l1l2
l1l2

(L)



 . (35)

The effect of covariance for the signal-to-noise for the estimation of a set of underlying cosmological parameters pi

can be calculated through the Fisher matrix

Fij =
∑

l1l2

∂Cl1

∂pi
[Cov−1]

∂Cl2

∂pj
, (36)

where “Cov−1” indicates the matrix inverse of the covariance in Eqn. (35). In particular, if the only parameter of
interest is the overall amplitude A of a known template shape, then FAA = (S/N)2 (see [3]).

IV. POWER SPECTRA OF QUADRATIC STATISTICS

Measuring all of the configurations of the trispectrum or four-point function is a daunting challenge. In this section
we consider statistics based on the identification of points in pairs in the four-point function. These quadratic statistics
may be optimized in signal-to-noise for their power spectra by filtering the original temperature field. We begin with
general definitions for the quadratic fields in harmonic space (§II A) and continue through a discussion of filters (§IVB)
to a consideration of specific quadratic statistics (§IVC-IVH) and related cubic statistics (§IV I). The specific statistic
and filter set that optimizes the signal-to-noise will depend on the configuration dependence of the trispectrum signal
that is to be extracted.

A. General Definitions

To probe various aspects of the trispectrum, we can form the two-point or power spectrum statistics of a quadratic
combination of the underlying field. To enhance the signal-to-noise, we begin by filtering the fields before collapsing
the configuration,

Θa(n̂) =
∑

lm

Θlmfa
l Y m

l (n̂) , (37)

where the index a = 1, 4 to allow for 4 independent filters on the fields. In general, the identification of points in
pairs implies that each pair (ab) involves a quadratic combination of the filtered field which in turn involves a mode
coupling sum of the harmonic coefficients

xab
LM = (−1)M

∑

l1m1

∑

l2m2

xab
l1l2(L)Θl1m1

Θl2m2

√

2L + 1

4π

(

l1 l2 L
m1 m2 −M

)

, (38)

where
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xab
l1l2(L) = fa

l1f
b
l2

√

(2l1 + 1)(2l2 + 1)xl1l2(L) , (39)

and xl1l2(L) represents different weights for different statistics x as specified below. The power spectra statistics
relating two general quadratic statistics x and x̃ may be separated into the non-Gaussian signal and Gaussian noise
as

〈x12∗
LM x̃34

L′M ′〉 = δLL′δMM ′(Cxx̃
L + Nxx̃

L ) , (40)

where

Cxx̃
L =

1

4π

1

2L + 1

∑

l1l2l3l4

x12∗
l1l2(L)x̃34

l3l4(L)(−1)l1+l2+LT l1l2
l3l4

(L) , (41)

and the Gaussian noise is

Nxx̃
L =

1

4π

∑

l1l2

x12∗
l1l2(L)

[

x̃34
l1l2(L) + (−1)l1+l2+Lx̃34

l2l1(L)
]

Ctot
l1 Ctot

l2 . (42)

It will be useful in the following discussion of noise variance to also define the following two auxiliary power spectra,

V
xx̃(12)
L =

1

4π

∑

l1l2

x12∗
l1l2(L)

[

x̃12
l1l2(L) + (−1)l1+l2+Lx̃12

l2l1(L)
]

Ctot
l1 Ctot

l2 ,

V
xx̃(34)
L =

1

4π

∑

l1l2

x34∗
l1l2(L)

[

x̃34
l1l2(L) + (−1)l1+l2+Lx̃34

l2l1(L)
]

Ctot
l1 Ctot

l2 . (43)

The signal-to-noise ratio in this power spectrum statistic can be calculated from equation (30) for the covariance
of the trispectrum,

〈Ĉxx̃
L Ĉx′x̃′

L 〉 ≈ 1

2L + 1

[

〈V xx′(12)
L 〉〈V x̃x̃′(34)

L 〉 + 〈Nxx̃′

L 〉〈N x̃x′

L 〉
]

, (44)

such that

(

S

N

)2

≈
∑

Lxx̃x′x̃′

〈Cxx̃
L 〉〈Cx′x̃′

L 〉
〈Ĉxx̃

L Ĉx′x̃′

L 〉
. (45)

Strictly speaking, this is an inequality since we have neglected the covariance between L’s dictated by the trispectrum
covariance Eqn. (30). Since the trispectrum covariance is distributed broadly in the allowed L’s, this signal-to-noise
estimate is reasonable if we restrict the range of interest in L to a small fraction of the allowed range. The covariance
can at most reduce the total signal-to-noise by a factor of

√
3 for the 3 unique pairings in the trispectrum.

B. Filters

The filters and specific form of the statistic x can be chosen to eliminate Gaussian noise bias and/or maximize
the signal-to-noise. If (f1

l , f2
l ) and (f3

l , f4
l ) do not overlap in l, then the Gaussian noise bias of Eqn. (42) vanishes.

Furthermore, trispectrum covariance between differing L’s is identically zero and Eqn. (45) becomes a strict equality.
For example the two filters may be band limited in mutually exclusive bands or parity limited

Θe(n̂) ≡ 1

2
[Θ(n̂) + Θ(−n̂)] ,

f1
l = f2

l ≡
{

1, l =even ,
0, l =odd ,

(46)

Θo(n̂) ≡ 1

2
[Θ(n̂) − Θ(−n̂)] ,

f3
l = f4

l ≡
{

0, l =even ,
1, l =odd .

(47)
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This choice does not eliminate the auxiliary variance power spectra in Eqn. (43) and more generally does not maximize
the total signal-to-noise. Only if the filters are equal in pairs f1

l = f3
l and f2

l = f4
l are the noise and auxiliary variance

power spectra equal such that

〈Ĉxx̃
L Ĉx′x̃′

L 〉 ≈ 1

2L + 1

(

〈Nxx′

L 〉〈N x̃x̃′

L 〉 + 〈Nxx̃′

L 〉〈N x̃x′

L 〉
)

, (48)

becomes the familiar form for the variance of the power spectra of a set of Gaussian random fields x.
A comparison of the signal-to-noise in the full trispectrum Eqn. (33) and in a particular quadratic statistic x

Eqn. (45) shows that the latter approaches the former if

x12
l1l2(L)x34

l3l4(L) → w(L)
T l1l2

l3l4
(L)

Ctot
l1

Ctot
l2

Ctot
l3

Ctot
l4

, (49)

where w(L) is an arbitrary function of L. To the extent that the right hand side is factorable in la, a = 1, 4 the filter
functions fa

l can by chosen construct this optimal statistic. Since the trispectrum is in general not factorable, we will
next consider a wide range of choices for the quadratic x-statistic which can be used to construct optimal statistics
for various types of trispectrum signals.

C. Temperature-Temperature

The simplest quadratic statistic that we can form is the product of the filtered temperature field itself,

Θa(n̂)Θb(n̂) ≡ sab(n̂) =
∑

LM

sab
LMY M

L (n̂) , (50)

where sab
LM is given by the general prescription of Eqn. (38) with x = s and the weighting

sl1l2(L) =

(

l1 l2 L
0 0 0

)

, even . (51)

“Even” denotes the fact that s selects out l1 + l2 + L =even by virtue of the Wigner-3j symbol. The non-Gaussian
power spectrum Css

L is then given by Eqn. (41) in terms of the trispectrum. The total signal-to-noise of this statistic
can be estimated by retaining just the x = x′ = x̃ = x̃′ = s terms in Eqn. (45).

D. Temperature-Gradient

The product of the filtered temperature field and the gradient of the filtered temperature field probes another aspect
the trispectrum. This product is a vector field on the sky and may be broken up into components as

Θa(n̂)∇iΘ
b(n̂) ≡

∑

±

1√
2
[α1 ± iα2]

ab(n̂)
1√
2
(êφ ∓ êθ)i . (52)

The components α1 ± iα2 are spin-1 objects that can be decomposed in the spin-1 spherical harmonics [9],

[α1 ± iα2]
ab

(n̂) =
∑

LM

(c ± ig)ab
LM ±1Y

M
L (n̂) , (53)

where c and g are the multipole analogues of the curl and gradient pieces. These quadratic statistics again follow the
general form of Eqn. (38) with x = c, g and weightings

cl1l2(L) ≡ −
√

l2(l2 + 1)

(

l1 l2 L
0 −1 1

)

, odd , (54)

gl1l2(L) ≡ i
√

l2(l2 + 1)

(

l1 l2 L
0 −1 1

)

, even . (55)

Here and below “even” (“odd”) denotes the fact that the expression holds for l1 + l2 + L =even (odd) and vanishes
otherwise. If the trispectrum is parity invariant (zero if l1 + l2 + l3 + l4 =odd), the cross power spectra Cgc

L = 0 = Csc
L

vanish. The remaining power spectra and their covariance are described by the general forms of Eqn. (41), (42), and
(44).
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E. Gradient-Gradient

The product of temperature gradients can in general be decomposed into three quadratic statistics

[∇iΘa(n̂)] [∇jΘb(n̂)] ≡ tab(n̂)gij(n̂) +
∑

±

[q ± iu]ab(n̂)σ±
ij(n̂) + v(n̂)ǫij(n̂) , (56)

where gij is the metric on the 2-sphere,

σ±
ij(n̂) =

1

2
(êθ ∓ êφ)i(êθ ∓ êφ)j , (57)

gives the basis for a trace-free symmetric tensor field on the sky, and

ǫij(n̂) = (eθ)j(eφ)i − (eθ)i(eφ)j (58)

gives the basis for a trace-free antisymmetric tensor field on the sky. The flat-sky versions of these statistics were first
employed by [10] for CMB lensing and note that q, u, v are analogous to the similarly named Stokes parameters for
polarization.

As is the case for the CMB polarization, these three fields may be decomposed into multipole moments of the
spherical harmonics and spin-2 spherical harmonics [9],

tab(n̂) =
∑

LM

tab
LMY M

L (n̂) ,

vab(n̂) =
∑

LM

vab
LMY M

L (n̂) ,

[q ± iu]
ab

(n̂) =
∑

LM

(e ± ib)ab
LM ±2Y

M
L (n̂) , (59)

where the moments follow the general prescription of Eqn. (38) with x = t, e, b, v and weights

tl1l2(L) ≡ −1

2

√

l1(l1 + 1)
√

l2(l2 + 1)

(

l1 l2 L
−1 1 0

)

, even ,

vl1l2(L) ≡ i

2

√

l1(l1 + 1)
√

l2(l2 + 1)

(

l1 l2 L
−1 1 0

)

, odd ,

el1l2(L) ≡ 1

2

√

l1(l1 + 1)
√

l2(l2 + 1)

(

l1 l2 L
−1 −1 2

)

, even ,

bl1l2(L) ≡ − i

2

√

l1(l1 + 1)
√

l2(l2 + 1)

(

l1 l2 L
−1 −1 2

)

, odd . (60)

If the trispectrum is parity invariant, cross power spectra exist only among (t, e, g, s) and (β,v,c). These power
spectra and their covariance again are described by the general forms of Eqn. (41), (42), and (44).

F. Temperature-Hessian

Similarly to the gradient-gradient case, the product of the temperature and the second derivatives or Hessian of
the temperature field can be decomposed into three quadratic statistics

Θa(n̂)∇i∇jΘ
b(n̂) ≡ hab(n̂)gij(n̂) +

∑

±

[η1 ± iη2]
ab(n̂)σ±

ij(n̂) , (61)

which themselves may be decomposed into multipole moments of the spherical harmonics and spin-2 spherical har-
monics,

hab(n̂) =
∑

LM

hab
LMY M

L (n̂) ,

[η1 + iη2]
ab

(n̂) =
∑

LM

(ǫ + iβ)ab
LM ±2Y

M
L (n̂) , (62)

9



where the moments follow the general prescription of Eqn. (38) with x = h, ǫ, β and weights

hl1l2(L) ≡ −1

2
l2(l2 + 1)

(

l1 l2 L
0 0 0

)

, even ,

= −1

2
l2(l2 + 1)sl1l2 ,

ǫl1l2(L) ≡ 1

2

√

(l2 + 2)!

(l2 − 2)!

(

l1 l2 L
0 −2 2

)

, even ,

βl1l2(L) ≡ − i

2

√

(l2 + 2)!

(l2 − 2)!

(

l1 l2 L
0 −2 2

)

, odd , (63)

Again parity invariance requires that power spectra exist only between (h, ǫ, t, e, s) and (β,b,v,c). Likewise the
general formula for power spectra and their covariance again apply.

G. Temperature-Temperature Hessian

Auxiliary two-point statistics can be formed from the fundamental ones above. For example

∇i∇j [Θ
a(n̂)Θb(n̂)] ≡ t̃ab(n̂)gij(n̂) +

∑

±

[q̃ ± iũ]ab(n̂)σ±
ij(n̂) , (64)

and

t̃ab(n̂) =
∑

LM

t̃ab
LMY M

L (n̂) ,

[q̃ + iũ]
ab

(n̂) =
∑

LM

(ẽ + ib̃)ab
LM ±2Y

M
L (n̂) , (65)

imply that

t̃l1l2 = tl1l2 + tl2l1 + hl1l2 + hl2l1 = −L(L + 1)

2

(

l1 l2 L
0 0 0

)

,

ẽl1l2 = el1l2 + el2l1 + ǫl1l2 + ǫl2l1 =
1

2

√

(L + 2)!

(L − 2)!

(

l1 l2 L
0 0 0

)

,

b̃l1l2 = bl1l2 + bl2l1 + βl1l2 + βl2l1 = 0 .

Again power spectra follow from the general relations.

H. Temperature-Gradient Divergence

The divergence of the temperature-gradient field of §IVD is also an auxiliary statistic

∇i[Θa(n̂)∇iΘ
b(n̂)] ≡ dab(n̂)Y M

L (n̂) , (66)

with

dab(n̂) =
∑

LM

dab
LMY M

L (n̂) . (67)

The weights are related to the others as

dl1l2 =
√

L(L + 1)l2(l2 + 1)

(

l1 l2 L
0 −1 1

)

, even ,

= −i
√

L(L + 1)gl1l2 = 2tl1l2 + 2hl1l2 . (68)

Again power spectra follow from the general relations.
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I. Cubic Statistics

Finally the cross correlation of cubic statistics with linear statistics are also related to the quadratic statistics
introduced above. For example

〈Θ1(n̂1)Θ
2(n̂1)Θ

3(n̂1)Θ4(n̂2)〉 =
∑

lm

(−1)m[C
ss(3)
l + N

ss(3)
l ]Y −m

l (n̂1)Y
m
l (n̂2) . (69)

More generally, the cubic power spectra corresponding to the various x-statistics are given by

C
xx̃(3)
l =

∑

l1l2l3L

1

4π

1

2L + 1
x12∗

l1l2(L)x̃34
l3l(L)(−1)l1+l2+LT l1l2

l3l (L) , (70)

with Gaussian noise bias

N
xx̃(3)
l =

1

4π

∑

l1L

x12∗
l1l (L)

[

x̃34
l1l(L) + (−1)l1+l2+Lx̃34

ll1 (L)
]

Ctot
l1 Ctot

l . (71)

and auxiliary noise variance

V
xx̃(3,12)
l =

1

4π

∑

l1L

x12∗
l1l (L)

[

x̃12
l1l(L) + (−1)l1+l2+Lx̃12

ll1(L)
]

Ctot
l1 Ctot

l ,

V
xx̃(3,34)
l =

1

4π

∑

l1L

x34∗
l1l (L)

[

x̃34
l1l(L) + (−1)l1+l2+Lx̃34

ll1(L)
]

Ctot
l1 Ctot

l , (72)

i.e. the multipole index of the power spectra is no longer the diagonal of the trispectrum configuration but rather one
of its sides. These cubic statistics thus probe a different projection of the trispectrum information but are based on
the same set of filters and employ the same statistical formalism.

V. CMB LENSING

In this section, we consider the trispectrum signal generated by the weak gravitational lensing of the CMB tem-
perature anisotropies by the large-scale structure in the Universe. In §VA we derive the full trispectrum for lensing
and relate it to the underlying deflection (or convergence) power spectrum. Zaldarriaga [6] previously considered
the lensing trispectrum in the small-scale or flat-sky approximation. The gravitational lensing effect is known to be
dominated by potential fluctuations on the largest scales where an all-sky treatment of the trispectrum is desirable
[7]. In §VB, we show that the signal-to-noise in the trispectrum is both large and highly configuration dependent for
experiments that can resolve multipole moments l >∼ 1000. The divergence statistic introduced in §IVH is shown in
§VC to be optimal for measuring the underlying deflection power spectrum at its peak at low multipoles. It benefits
from substantially higher signal-to-noise as compared with the gradient-gradient quadratic statistics introduced by
Zaldarriaga & Seljak [10]. Finally we consider tests for the robustness of the divergence statistic with differing filter
sets in §VD and the degradation in power spectrum estimation from lensing covariance in §VE.

A. General Trispectrum

We begin by briefly reviewing the effect of gravitational lensing on the harmonics of the CMB temperature field and
refer the reader to [7] for details of its calculation in a given cosmology. For reference, we employ the same ΛCDM
cosmology used there, with parameters Ωm = 0.35, ΩΛ = 0.65, h = 0.65, n = 1 and δH = 4.2 × 10−5.

Weak lensing of the CMB remaps the primary anisotropy according to the deflection angle ∇φ(n̂)

Θ(n̂) = Θ̃(n̂ + ∇φ)

= Θ̃(n̂) + ∇iφ(n̂)∇iΘ̃(n̂) + . . . , (73)

where the tilde represents the unlensed field and . . . represent higher order terms in the Taylor expansion. The lensing
potential field φ(n̂) is a lensing-probability weighted projection of the Newtonian potential along the line of sight [see
[7], Eqn. (21)].
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FIG. 1. The power spectrum of the deflection angle in the fiducial ΛCDM model. Errors boxes represent the 1σ errors from
Gaussian noise on the divergence statistic binned in the bands shown. The divergence estimator of Eqn. (80)-(81) is optimal
for the low multipoles and reduces the variance in the power spectrum estimation by more than an order of magnitude as
compared with the gradient-gradient statistics of [10].

The spherical harmonic coefficients of the lensed CMB temperature field become

Θlm ≈ Θ̃lm +

∫

dn̂Y m∗
l (n̂)∇iφ(n̂)∇iΘ̃(n̂) + . . .

= Θ̃lm +
∑

LM

∑

l′m′

φLM Θ̃l′m′(−1)m

(

l l′ L
m −m′ −M

)

FlLl′ + . . . , (74)

where
√

4π

(2l + 1)(2l′ + 1)(2L + 1)
FlLl′ =

1

2
[L(L + 1) + l′(l′ + 1) − l(l + 1)]

(

l l′ L
0 0 0

)

,

= −
√

L(L + 1)l′(l′ + 1)

(

l l′ L
0 −1 1

)

, even , (75)

where recall that “even” denotes the fact that only l+ l′ +L=even is non-vanishing. Gravitational lensing generates a
change in the power spectrum that has been well studied [11–13,7]. It produces two changes to the 4 point function.
The first is that the unlensed C̃l in the Gaussian 4-point contribution must be replaced with the lensed Cl. The
second is that it generates a trispectrum an underlying reduced form [see Eqn. (23)] of

T l1l2
l3l4

(L) = Cφφ
L C̃l2C̃l4Fl1Ll2Fl3Ll4 . (76)

Note the geometric interpretation: the lensing generates a trispectrum or quadrilateral configuration of l1 . . . l4 where
one of the diagonals is supported by the lensing potential power spectrum Cφφ

L . Note that the power spectrum of

the deflection field is given by L(L + 1)Cφφ
L and is the fundamental quantity of interest. It is plotted in Fig. 1 for

the fiducial ΛCDM cosmology. It is important to note that most of the power in the deflections is coming from
a rather large scale or low multipole L ≈ 50. Contrast this with the more familiar convergence power spectrum
Cκκ

L = [L(L + 1)/2]2Cφφ
L which peaks at much smaller angular scales.

B. Total Signal-to-Noise

From the considerations of §III B, we can calculate the total signal-to-noise in the trispectrum for lensing in the
full-sky formalism. Flat-sky estimates of the total signal-to-noise have been calculated in [6] (see also Appendix B).
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FIG. 2. Contributions to the (S/N)2 from trispectra configurations with a fixed diagonal L and maximum side length l1,
summed over the remaining three sides. Solid lines represent the full calculation of the trispectrum terms; dashed lines represent
the pairwise approximation of Eqn. (77). The signal-to-noise in the low L trispectrum is highly dependent on the configuration.

The all-sky expressions are cumbersome to calculate due to the presence of the Wigner-6j symbol that expresses
the alternate recouplings of the trispectrum l’s. We use the recursion technique outlined in Appendix A for these
calculations.

In Figure 2, we show the signal-to-noise contributions in a given mode L = 50 of the trispectrum from a given l1
(summed over l2, l3, l4) assuming an ideal experiment Ctot

l = Cl. The signal-to-noise is quite high and approaches
unity per l1 mode and L mode at l1 ≈ 2000. Moreover, the contributions as a function of l1 show striking features.
These features can be understood by approximating the trispectrum by its fundamental pairing (l1, l2), (l3,l4) in
Eqn. (23)

T l1l2
l3l4

(L) ≈ P l1l2
l3l4

= Cφφ
L

(

C̃l2Fl1Ll2 + C̃l1Fl2Ll1

)(

C̃l4Fl3Ll4 + C̃l3Fl4Ll3

)

. (77)

Figure 2 (dashed lines) verifies that this is a very good approximation for the range of interest l1 ≫ L. The reason is
that these configurations represent flattenned quadrilaterals where one diagonal is much greater than the other. Since
lensing effects peak at low L, the other pairings are correspondingly suppressed. These properties are hidden in the
real-space 4-point function and highlights the benefit of considering harmonic-space statistics.

To the extent that C̃l is constant, the two terms within each set of parenthesis in Eqn. (77) cancel. Thus, the
trispectrum picks out features in the underlying unlensed power spectrum, specifically those due to the acoustic peaks
in the power spectrum. Note that the effects on the power spectrum itself exhibits the same effect: lensing acts to
smooth the acoustic features in the spectrum. This structure implies that optimizing the l-range of filters in the
quadratic statistics is important for maximizing the signal-to-noise.

The cumulative signal-to-noise integrating out to l1 = lmax as a function of L in an ideal experiment is shown in
Fig. 3. The approximation of Eqn. (77) begins to break down as L approaches lmax but always in the sense that it
underestimates the total signal-to-noise (dashed lines vs. points). This breakdown occurs since the two diagonals of
a trispectrum quadrilateral become comparable and either can be supported by the lensing power in Eqn. (76). We
also show in Fig. 3 (solid lines) the cumulative signal-to-noise for the Planck satellite [14] with Ctot

l taken from [3].
Planck approximates an ideal experiment with lmax ≈ 1600.

Finally, under the approximation of Eqn. (77) which slightly underestimates the total signal-to-noise, we can plot
the cumulative signal-to-noise summed over all L as a function of lmax (see Fig. 4). Again an lmax ≈ 1600 approximates
the Planck experiment whose total (S/N)2 ≈ 3100.
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FIG. 3. Cumulative signal to noise in the trispectra configurations with the diagonal L summed over l1 . . . l4. Dashed lines
represent an ideal experiment where Cl = Ctot

l out to a maximum l = lmax ; solid lines represent the Planck experiment. Lines
represent the approximation of Eqn. (77); points represent the calculation using the full trispectrum for an ideal experiment.

C. Divergence Statistic

The structure in the signal-to-noise curves imply that it is important to select a quadratic statistic that captures
this structure. Following the considerations of §IVA, we can search for the quadratic statistic that optimizes the
signal-to-noise ratio in the power spectrum of the deflection. Recall that in general the multipole moments of the
quadratic statistic with filters fa

l and f b
l

xab
LM = (−1)M

∑

l1m1

∑

l2m2

xab
l1l2(L)Θl1m1

Θl2m2

√

2L + 1

4π

(

l1 l2 L
m1 m2 −M

)

, (78)

are defined in terms of the weight function xab
l1l2

. Under the approximation for the trispectrum of Eqn. (77), Eqn. (49)
gives the optimal weights as

x12
l1l2 ∝ C̃l2Fl1Ll2 + C̃l1Fl2Ll1

Ctot
l1

Ctot
l2

. (79)

Since the lensing trispectrum is symmetric in l1 ↔ l2, the temperature-gradient divergence statistic whose weights are

x12
l1l2 =

1

2
(d12

l1l2 + d12
l2l1) ,

d12
l1l2 = f1

l1f
2
l2Fl1Ll2

√

4π

2L + 1
, (80)

is optimal if the underlying temperature field is first filtered with

f1
l = f3

l = − A

Ctot
l

,

f2
l = f4

l =
C̃l

Ctot
l

. (81)

We choose the proportionality constant to return the properly normalized deflection power spectrum

A =
√

L(L + 1)(2L + 1)

[

∑

l1l2

(C̃l2Fl1Ll2 + C̃l1Fl2Ll1)
2

2Ctot
l1

Ctot
l2

]−1

. (82)
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FIG. 4. Approximate total (S/N)2 in the trispectrum for an ideal experiment out to l = lmax and the Planck experiment.
The Planck experiment approximates an ideal experiment of l ≈ 1600 with a (S/N)2 ∼ 3100.

The signal-to-noise in this statistic is maximal under the assumption that the trispectrum can be approximated as
Eqn. (77) as is the case for L <∼ several hundred. The total signal-to-noise as calculated from Eqn. (45) for Planck is
formally (S/N)2 ≈ 4050. Compare this with the gradient-gradient statistic of [10]; for the unfiltered eab(n̂) ≡ E(n̂)
the (S/N)2 ≈ 135.

The total signal-to-noise is allowed to exceed the maximum estimate of the previous section since the latter is
strictly a lower limit. However the underlying approximation that the estimates at all L’s are independent breaks
down when integrating over a wide range in L causing a small reduction in the number of independent modes (see
§IVA).

The divergence statistic may also be used as a direct estimator of the deflection (or equivalently the convergence)
field itself. Generalizing the argument of [10], one can think of the quadratic statistic x in Eqn. (78) as averaging
over many independent (high-l or small-scale) realizations of the unlensed CMB field with a fixed realization of the
large-scale deflection field

〈xab
LM 〉CMB = φLM

√

1

4π(2L + 1)

∑

l1l2

xab
l1l2

(

C̃l1Fl2Ll1 + C̃l2Fl1Ll2

)

, (L > 0) . (83)

For the divergence statistic filtered as in Eqn. (81) all contributions add coherently so that,

〈dab
LM 〉CMB =

φLM

(2L + 1)

∑

l1l2

A

2Ctot
l Ctot

l

(

C̃l1Fl2Ll1 + C̃l2Fl1Ll2

)2

=
√

L(L + 1)φLM . (84)

From the multipole moments one can reconstruct the deflection or convergence map [15]. Of course the fact that we
average over only a finite number of independent modes of the primary anisotropy means that the resulting map will
be noisy, with noise properties given by the Gaussian noise power spectra.

D. Robustness Tests

The divergence statistic contains enough signal-to-noise for Planck that the data may be further subdivided to
check for robustness of the statistic. Especially worrying is the possibility that galactic and extragalactic foregrounds
and systematic effects might generate a false signal. Even if these contaminants contribute only Gaussian noise, one
must subtract out the noise bias from the power spectrum estimators with the filters defined in Eqn. (81),
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FIG. 5. Degradation in the total (S/N)2 in the power spectrum due to covariance from gravitational lensing. The degradation
is minimal for the Planck experiment or any that is cosmic variance limited only out to l ∼ 2000.

Recalling the discussion of the filters in §IVB, we can eliminate Gaussian noise bias as well as noise-correlation
between differing L by defining non-overlapping filters sets (f1

l , f2
l ) and (f3

l , f4
l ). The resulting estimates of the

deflection field d12
LM and d34

LM would then have statistically independent Gaussian noise properties such that the noise
bias is eliminated in their cross correlation. Furthermore, if the signal is really due to lensing the various estimates of
the deflection power spectrum must agree within their errors.

The price of dividing up the sample in this way is the signal-to-noise in any given set. For example, by band-limiting
the filters of Eqn. (81) to 500 < l < 1400 for the (12) set and l > 1400 for the (34) set, the total signal-to-noise
is reduced by ∼

√
2 and correspondingly the errors in Fig. 1 are increased by ∼

√
2. Note that in this case, the

underlying filtered temperature maps contain no power in the multipoles of interest L ∼ 100. Such a scheme would
still yield a highly significant detection and help protect against contaminants. Filtered versions of other quadratic
statistics can also serve as consistency checks. For example, even the simple temperature-temperature s statistic of
§IVC, yields a (S/N)2 ∼ 200 once it is is filtered according to the peaks in the Fig. 2.

E. Power Spectrum Covariance

One might worry that the high signal-to-noise in the trispectrum for lensing comes at the expense of degraded
signal to noise in the power spectrum due to covariance between the estimators. Fortunately this is not the case in
the l <∼ 1000 regime of the acoustic peaks. From Eqn. (34)-(36), we can calculate the degradation in the total (S/N)2.
This degradation is shown in Fig. 5 for the Planck satellite and an ideal experiment out to lmax.

VI. DISCUSSION

We have provided a systematic study of the angular trispectrum or four-point function of the CMB temperature
field. Symmetry considerations dictate the fundamental form of the trispectrum and govern the Gaussian noise
properties of its estimators. The large number of independent configurations of the trispectrum imply that even
subtle physical effects may be detectable when all of the information in the trispectrum is brought to bear.

In practice, extracting all of the information in the trispectrum will be a difficult computational task. We have
thus also conducted a systematic study of the power spectra of quadratic statistics which probe different aspects of
the trispectrum. Techniques developed for extracting power spectrum statistics from large data sets can then be
brought to bear on the four-point function. The drawback is that this compression of information is in general a lossy
procedure. We have therefore examined a wide range of quadratic statistics and prefiltering schemes. Given a target
form for the trispectrum signal, these statistics can be optimized in their signal-to-noise for the power spectra.
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As an example, we have reconsidered the four-point correlation generated by weak lensing of the primary anisotropies
by large-scale structure in the Universe as a means of recovering the power spectrum of the deflection angles or
convergence [10]. CMB weak lensing provides a unique probe of the large-scale properties of the convergence field.
We identify a specific quadratic statistic, the divergence of the temperature-weighted gradient field, that achieves the
maximal signal-to-noise in this limit. For the Planck satellite, the total (S/N)2 ≈ 4000 and represents a reduction in
the noise variance on the convergence power spectrum by over an order of magnitude as compared with the gradient-
gradient estimators of [10]. There is sufficient signal-to-noise to conduct filtering tests to eliminate noise-bias and
check for consistency between multipole subsets of the data. We plan to explore further the properties of these
estimators and their use in extracting cosmological parameters in a separate work.

The lensing example illustrates the importance of examining the configuration properties of the trispectrum when
designing statistical estimators based on the four-point function. Extracting the wealth of information potentially
buried in the trispectrum will be a rich field for future studies.

Acknowledgments: I thank A.R. Cooray and M. Zaldarriaga for many useful discussions. This work was supported
by NASA ATP NAG5-10840 and a Sloan Foundation Fellowship.

APPENDIX A: WIGNER-6J SYMBOL

1. Useful Properties

The Wigner-6j symbol expresses the relationship between two distinct couplings of three angular momenta

Jd = Ja + Jb + Jc

= Je + Jc

= Ja + Jf , (A1)

such that the eigenstates of the (ec) coupling are related to the eigenstates of the (af) coupling as

|(ec)dγ〉 = |(af)dγ〉
√

(2e + 1)(2f + 1)(−1)Σ
{

a b e
c d f

}

, (A2)

where Σ ≡ a + b + c + d. Geometrically, the Wigner-6j represents a quadrilateral with sides (a,b,c,d) whose diagonals
form the triangles (a,d,f), (b, c, f), (c,d,e), (a, b, e) or the three dimensional tetrahedron composed of these four
triangles. It vanishes if the any of the triplets fail to satisfy the triangle rule. The symmetries are related to rotations
of the tetrahedron that interchange the vertices. The result is that the symbol is invariant under the interchange of
any two columns and under the interchange of the upper and lower arguments in any two columns.

The Wigner-6j symbol can thus be used to permute the pairings in a set of Wigner-3j symbols

∑

f

(2f + 1)(−1)Σ+f−e−α−γ

{

a b e
c d f

}(

b c f
β γ −φ

) (

a f d
α φ −δ

)

=

(

a b e
α β −ǫ

) (

e c d
ǫ γ −δ

)

, (A3)

or equivalently by the orthogonality relation of the Wigner-3j symbols

{

a b e
c d f

}

=
∑

αβγ

∑

δǫφ

(−1)e+f+ǫ+φ

(

a b e
α β ǫ

) (

c d e
γ δ −ǫ

) (

a d f
α δ −φ

) (

c b f
γ β φ

)

. (A4)

Finally, the Wigner-6j symbol obeys

∑

e

(2e + 1)

{

a b e
c d f

}{

a b e
c d g

}

=
δfg

2f + 1
, (A5)

and

∑

e

(−1)e+f+g(2e + 1)

{

a b e
c d f

}{

a b e
d c g

}

=

{

a c g
h d f

}

. (A6)

17



2. Evaluation

Closed form expressions exist for special cases of the arguments. For example,

{

a b e
c d 0

}

=
(−1)a+b+e

√

(2a + 1)(2b + 1)
δa,dδb,c . (A7)

More generally, they may be computed efficiently by a recursive algorithm introduced by [16]. Let us define

h(j1) =

{

j1 j2 j3
l1 l2 l3

}

. (A8)

The h(j1) satisfy the recursion

j1E(j1 + 1)h(j1 + 1) + F (j1)h(j1) + (j1 + 1)E(j1)h(j1 − 1) = 0 , (A9)

where

E(j1) =
{

[

j2
1 − (j2 − j3)

2
] [

(j2 + j3 + 1)2 − j2
1

] [

j2
1 − (l2 − l3)

2
] [

(l2 + l3 + 1)2 − j2
1

]

}1/2

F (j1) = (2j1 + 1)
{

j1(j1 + 1)[−j1(j1 + 1) + j2(j2 + 1) + j3(j3 + 1)]

+l2(l2 + 1)[j1(j1 + 1) + j2(j2 + 1) − j3(j3 + 1)]

+l3(l3 + 1)[j1(j1 + 1) − j2(j2 + 1) + j3(j3 + 1)]

−2j1(j1 + 1)l1(l1 + 1)
}

(A10)

For a stable recursion, one begins at both of the two ends j1min = max(|j2 − j3|, |l2 − l3|) j1max = min(j2 + j3, l2 + l3)
with the boundary conditions E(j1min) = 0 and E(j1max + 1) = 0 and matches the two in the middle.

The normalization is fixed by

∑

j1

(2j1 + 1)(2l1 + 1)[h(j1)]
2 = 1 ,

sgn[h(j1max)] = (−1)j2+j3+l2+l3 , (A11)

which follow from Eqn. (A5).

APPENDIX B: FLAT SKY APPROXIMATION

In the flat sky approximation, one decomposes the temperature field into Fourier harmonics

〈Θ(n̂1) . . .Θ(n̂n)〉 =

∫

d2l1
(2π)2

. . .

∫

d2ln
(2π)2

〈Θ(l1) . . . Θ(ln)〉eil·n̂1 . . . eil·n̂2 . (B1)

Statistical isotropy is enforced by demanding that the correlation function be invariant under an arbitrary translation
and rotation in the plane. Parity invariance is enforced by demanding symmetry under inversion of the coordinates
or reflection across one of the coordinate axes.

As usual translational symmetry n̂i → n̂i + C, where C is a constant vector, is enforced by the closure condition
that the n-point function is proportional to

(2π)2δ(l1 + . . . + ln) . (B2)

The wavevectors li thus form a geometric figure of n, possibly intersecting sides. Rotational invariance for the two-
point function and rotational and parity invariance for the three-point function imply that the corresponding harmonic
spectra are functions only of the lengths of the sides:

〈Θ(l1)Θ(l2)〉 = (2π)2δ(l12)C(l1) ,

〈Θ(l1)Θ(l2)Θ(l3)〉 = (2π)2δ(l123)B(l1,l2,l3) , (B3)
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where li...j ≡ li + . . . + lj and B should be symmetric against permutations of its arguments. For the four-point
function, rotational and parity invariance implies that the quadrilateral formed by the four wavevectors is a function
of the lengths of the sides and the lengths of the two diagonals,

〈Θ(l1) . . . Θ(l4)〉 = (2π)4 [δ(l12)δ(l34)Cl1Cl2 + δ(l13)δ(l24)Cl1Cl3 + δ(l14)δ(l23)Cl1Cl4 ]

+(2π)2δ(l1234)T
(l1,l2)
(l3,l4)

(l12, l13) . (B4)

To parallel our treatment of the all-sky four-point function let us break Q into its three distinct pairings and demand
symmetry with respect to permutation of the arguments

T
(l1,l2)
(l3,l4) = P

(l1,l2)
(l3,l4) (l12) + P

(l1,l3)
(l2,l4)

(l13) + P
(l1,l4)
(l3,l2)

(l14) . (B5)

Note that l14 is a function of the other two diagonals. P is symmetric under interchange of its upper and lower
arguments as well as ordering within them.

The relationship between the all sky and flat sky spectra can be obtained by noting that [7]

Θlm = im
√

2l + 1

4π

∫

dφl

2π
eimφlΘ(l) ,

δ(li...j) =

∫

dn̂

(2π)2
eili...j ·n̂ ,

eil·n̂ =

√

2π

l

∑

m

imY m
l (n̂)eimφl , (B6)

where φl is the polar angle of l. It is a straightforward exercise to show that

Cl = C(l) ,

Bl1l2l3 =

(

l1 l2 l3
0 0 0

)

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π
B(l1,l2,l3) . (B7)

For the trispectrum, we begin with the general correspondence

〈Θl1m1
. . . Θl4m4

〉c =





∏

i=1,4

√

l1
2π

∫

dφli

2π
e−imiφli



 (2π)2δ(l1234)T
(l1,l2)
(l3,l4)

(l12) , (B8)

where “c” denotes the subtraction of the Gaussian piece in Eqn. (B4). We then exploit the pair symmetry of the
trispectrum exhibited in Eqn. (B5) by breaking the delta function into the corresponding pairs. For the (12), (34)
pairing,

δ(l1234) =

∫

d2L δ(l1 + l2 + L)δ(l3 + l4 − L) , (B9)

such that L = l12. Expanding the delta functions in spherical harmonics,

δ(l1234) =
1

(2π)2

∑

m1...m4

∑

LM





∏

i=1,4

√

2π

li
eimiφli





2L + 1

4π

×
√

(2l1 + 1) . . . (2l4 + 1)

(

l1 l2 L
0 0 0

) (

l3 l4 L
0 0 0

)

×(−1)M

(

l1 l2 L
m1 m2 M

) (

l3 l4 L
m3 m4 −M

)

. (B10)

Substituting back in and integrating over the polar angles, we obtain the general correspondence

P l1l2
l3l4

(L) =
2L + 1

4π

√

(2l1 + 1) . . . (2l4 + 1)

(

l1 l2 L
0 0 0

) (

l3 l4 L
0 0 0

)

P
(l1,l2)
(l3,l4)

(L) , (B11)
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from which we can construct the relation for T l1l2
l3l4

.
We can now also make the correspondence between the signal-to-noise in the all-sky and flat-sky formalisms. The

weighting of four-point terms that maximizes the signal to noise is [6]

(

S

N

)2

tot

=
fsky

π

1

24

1

(2π)4

∫

d2l1

∫

d2l2

∫

d2l3

∫

d2l4δ(l1234)
|T (l1,l2)

(l3,l4)
|2

Ctot
l1

Ctot
l2

Ctot
l3

Ctot
l4

, (B12)

where fsky is the fraction of sky covered by the sample.
The square of T in this expression contains cross term in the P pairings.

(

S

N

)2

tot

=

(

S

N

)2

(12,12)

+

(

S

N

)2

(13,13)

+

(

S

N

)2

(14,14)

+ 2

(

S

N

)2

(12,13)

+ 2

(

S

N

)2

(12,14)

+ 2

(

S

N

)2

(13,14)

. (B13)

The correspondence with the all-sky expression Eqn. (33) can be established by considering the terms pair-by-pair.
For example for the (12,13) term, one expands the delta function in the (12), (34) pairing as above and inserts an
additional delta function

πδ(l1234) = π

∫

d2L13δ(l1 + l3 − L13)δ(l2 + l4 + L13) , (B14)

with the understanding that δ(0) = V/(2π)2 = 1/π. Expanding the delta functions in spherical harmonics we can
integrate over azimuthal angles to obtain

(

S

N

)2

(12,13)

=
fsky

24

∑

l1m1...l4m4

∑

L12M12

∑

L13M13

(−1)M12+M13

(

l1 l2 L12

m1 m2 M12

) (

l3 l4 L12

m3 m4 −M12

)

×
(

l1 l3 L13

m1 m3 M13

) (

l2 l4 L13

m2 m4 −M13

)

P l1l2∗
l3l4

(L12)P
l1l3
l2l4

(L13)

Ctot
l1

Ctot
l2

Ctot
l3

Ctot
l4

,

=
fsky

24

∑

l1...l4

∑

L12L13

(−1)l2+l3

{

l1 l2 L12

l4 l3 L13

}

P l1l2∗
l3l4

(L12)P
l1l3
l2l4

(L13)

Ctot
l1

Ctot
l2

Ctot
l3

Ctot
l4

, (B15)

where we have used Eqn. (A4) to rewrite the sum over the Wigner-3j symbols in terms of the 6j-symbol. Proceeding
similarly for all terms in the signal-to-noise expression, we obtain

(

S

N

)2

tot

=
fsky

24

∑

L

∑

l1l2l3l4

1

2L + 1

|T l1l2
l3l4

(L)|2
Ctot

l1
Ctot

l2
Ctot

l3
Ctot

l4

, (B16)

where we have employed Eqn. (A6) to reexpress the (13, 14) term. The factor of 24 comes from the 4! permutations
of each quadruplet in the all-sky expression. The fsky term is the reduction in signal-to-noise due to incomplete sky
coverage.
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