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ABSTRACT
We present a general statistical framework for describing the effect of sample variance in the number

counts of virialized objects and examine its effect on cosmological parameter estimation. Specifically, we
consider effects of sample variance on the power spectrum normalization and properties of dark energy
extracted from current and future local and high-redshift samples of clusters. We show that for future
surveys that probe ever lower cluster masses and temperatures, sample variance is generally comparable
to or greater than shot noise and thus cannot be neglected in deriving precision cosmological constraints.
For example, sample variance is usually more important than shot variance in constraints on the equation
of state of the dark energy from z < 1 clusters. Although we found that effects of sample variance on
the σ8−Ωm constraints from the current flux and temperature limited X-ray surveys are not significant,
they may be important for future studies utilizing the shape of the temperature function to break the
σ8 − Ωm degeneracy. We also present numerical tests clarifying the definition of cluster mass employed
in cosmological modelling and accurate fitting formula for the conversion between different definitions
of halo mass (e.g., virial vs. fixed overdensity).
Subject headings:

1. INTRODUCTION

Clusters of galaxies are the most massive and rare viri-
alized objects in the universe. At the high mass end, their
local abundance depends exponentially on the rms of mat-
ter fluctuations and is thus a very sensitive probe of the
power spectrum normalization and matter density in the
universe (e.g., Evrard 1989; Frenk et al. 1990; Henry & Ar-
naud 1991; Lilje 1992; White et al. 1993; Eke et al. 1996;
Viana & Liddle 1996; Henry 2000; Pierpaoli et al. 2001).
Large cluster masses and high intracluster gas tempera-
tures make galaxy clusters observable in X-rays out to rel-
atively high redshifts (z ∼< 1). Moreover, future Sunyaev-
Zeldovich (SZ) surveys will provide homogeneous cluster
samples with relatively simple selection functions out to
z ∼ 3 (e.g., Holder et al. 2000). The SZ surveys can
therefore be used to study evolution of cluster abundance
over an unprecedented range of redshifts. The abundance
of clusters above a certain mass in a given area of the sky
as a function of redshift is very sensitive to the amplitude
and growth rate of perturbations as well as the comoving
volume per unit redshift and solid angle. These, in turn,
are sensitive to the cosmological parameters (e.g., Haiman
et al. 2001). Therefore, strong constraints on the cluster
normalization, matter content, and the equation of state
of the Universe can, in principle, be obtained from large
cluster surveys (Holder et al. 2001; Weller et al. 2001).
The potential of future cluster surveys, however, can

only be realized after careful studies of all possible sources
of theoretical and observational errors and biases. First
and foremost, it is critical to understand the relation be-
tween observed and theoretical measures of cluster mass
The mass-observable relations depend on the processes
that shape the bulk properties of the intracluster medium
(ICM). Extensive simulations of cluster formation have
shed light onto the role of non-gravitational processes such
as galactic feedback (e.g., Metzler & Evrard 1994; Navarro
et al. 1995; Bialek et al. 2001; Holder & Carlstrom 2001)

and radiative cooling (e.g., Muanwong et al. 2001). Both
feedback and cooling appear to bring the predicted scaling
relations between cluster X-ray luminosity, temperature,
and mass in closer agreement with observations. However,
both processes are notoriously difficult to incorporate into
simulations and further numerical effort and detailed com-
parisons with new high-quality Chandra, XMM-Newton,
and SZ observations will be needed to test whether these
processes alone can explain various properties of the clus-
ter ICM and its evolution. As was recently emphasized by
Seljak (2002) and Ikebe et al. (2001), even the error budget
on the local abundance is dominated by the uncertainties
in conversion from theoretical to observable measures of
mass.
Next in importance is the relationship between the clus-

ter abundance in mass and cosmology. Recently, the use of
very large volume cosmological simulations has led to sig-
nificant improvements in our knowledge of the theoretical
cluster mass function (Sheth & Tormen 1999; Jenkins et al.
2001; Evrard et al. 2002; Zheng et al. 2002). In particular,
Jenkins et al. (2001) found that the mass function at clus-
ter scales can be described by a universal analytic fit for
all cosmologies and redshifts to an accuracy of ∼< 10−20%
in amplitude; this result was confirmed by Evrard et al.
(2002) and Zheng et al. (2002). While there is reason-
able hope that further studies will result in even more
accurate parameterizations of the mass function, even the
current uncertainty is not the principle remaining com-
ponent of the error budget in cosmological constraints.
Evrard et al. (2002) found that it is dominated by the
uncertainties in conversion in mass definitions and sample
(cosmic) variance. Indeed, the proliferation of different
cluster mass definitions in theoretical analyses may be a
source of considerable confusion and error in comparing
predictions to observations (White 2001). Finally, unlike
the other sources of errors discussed above, sample vari-
ance is usually neglected in theoretical and observational
analyses.
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In this paper, we present a statistical framework for de-
scribing the sample variance for a cosmological population
of virialized objects identified at a single epoch or over a
range of redshifts. We apply this formalism to evaluate
the effects of the sample variance on the current and fu-
ture cosmological constraints, focusing on the specific cases
of constraints from the local cluster temperature function
and the evolution of the cluster abundance in future SZ
surveys (e.g., Holder et al. 2000). We show that uncertain-
ties due to sample variance are comparable to or greater
than the Poisson errors in many cases of future interest.
Therefore, the variance should not be neglected in anal-
yses aiming to derive precision cosmological constraints.
Although we found that effects of sample variance are not
significant in the interpretation of the local cluster abun-
dance from the current flux and temperature limited X-ray
surveys to determine the power spectrum normalization,
it may be important for future studies based on the shape
of the temperature function (Ikebe et al. 2001). We also
present discussion and numerical tests clarifying the def-
inition of mass in theoretical analyses and provide useful
fitting formulas for conversions between different mass def-
initions.
The paper is organized as follows. In §2 we introduce

the statistical formalism needed to describe sample vari-
ance and its effect on cosmological parameter estimation.
We discuss cluster scaling relations and survey selection
in §3. In §4 and §5, we discuss the impact of sample vari-
ance on the interpretation of the local cluster abundance
and future high redshift surveys dedicated to studying the
properties of the dark energy. Finally, in a series of Ap-
pendices, we give details of survey window calculations,
numerical tests of the cluster mass function and bias and
convenient fitting formulas for conversion between differ-
ent mass definitions.

2. STATISTICAL FORMALISM

2.1. Sample Covariance

Consider the general case of a population of objects se-
lected for some property, for definiteness say their massM
in some range dM and assume that their number density
fluctuation is related to the underlying linear mass field by
a linear bias parameter

δn(M) = n̄(M)b(M)δ . (1)

The average number density within a set of windows
Wi(xi) becomes

ni =
∫
d3xiWi(xi)[n̄+ δni] , (2)

where we assume that the windows are normalized so that∫
d3xWi = 1. The sample covariance of these estimates of
the true number density becomes

〈ninj〉 − n̄2
n̄2

= b2
∫
d3xi

∫
d3xjWi(xi)Wj(xj)

×〈δ(xi)δ(xj)〉 (3)

= b2
∫

d3k

(2π)3
Wi(k)W ∗j (k)P (k) .

Note that the large-scale structure of the universe makes
the number density even in non-overlapping volumes co-
vary. On top of this sample covariance one adds the usual
shot noise variance which goes as 1/n̄V fractionally.
This expression is easily generalized to the two cases of

interest where one wishes to extract cosmological informa-
tion from the number density as a function of mass and/or
redshift. In this general case, consider the covariance to
be between windows at distinct redshifts and the selection
to be for distinct masses, ni(Mi, zi) and nj(Mj , zj). Then

〈ninj〉 − n̄in̄j
n̄in̄j

= b(Mi, zi)b(Mj , zj)D(zi)D(zj)

×
∫

d3k

(2π)3
Wi(k)W ∗j (k)P (k) , (4)

where D is the linear growth rate and we have again as-
sumed a deterministic linear bias.
We will assume the following meaning of the terms sam-

ple covariance, sample variance and cosmic variance. For
a given sample of objects, we will call the covariance be-
tween its subsamples (e.g. Eqn. [4] for subsamples of clus-
ters in different mass or redshift bins) sample covariance.
We will call the net effect of the covariance on a quantity of
interest (e.g. a cosmological parameter) sample variance.
Finally, for a sample that encompasses the entire observ-
able universe, sample variance becomes cosmic variance.

2.2. Survey Windows

The calculation of the sample covariance relies on the
description of the survey windows and the choice of bin-
ning in redshift and in mass. A few simple cases are of
interest for estimation purposes. Since in the considera-
tion of windows, the distinction in Eqn. (4) of redshift and
mass bins does not enter, we will consider the notationally
simpler case of a single redshift and mass range in Eqn. (4)
without loss of essential generality.
For local surveys which cover a large fraction of the sky,

it is often a reasonable approximation to take the window
as a single spherically symmetric top hat volume of radius
R. Then the variance in Eqn. (4) becomes

σ2n ≡
〈n2〉 − n̄2

n̄2
= b2σ2R , (5)

where σR is the familiar top-hat rms of linear density fluc-
tuations field. This quantity is plotted for the fiducial
ΛCDM cosmology of §3.1 in Fig. 1. Also plotted is the
scaling of a white (or shot) noise power spectrum. Because
the linear power spectrum is nearly flat for R ≈ 100h−1
Mpc, sample variance and shot variance scale with volume
in a similar fashion for typical volumes. The sampling er-
rors on this scale exceeds 10% for a typical bias of a few.
This basic example is readily generalized to the partially

overlapping multiple spherical windows of a flux or mag-
nitude limited selection and serves as a useful and simple
order of magnitude estimate of sampling effects.
For surveys confined to a smaller section of sky but ex-

tending to cosmological distances, the windows can be di-
vided up into slices in redshift. Consider a series of slices in
redshift at comoving distance ri and width δri with a field
of radius Θs in radians in the small angle approximation
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Fig. 1.— Root mean square fluctuation in the linear density
field σR in the fiducial ΛCDM cosmology (§3.1) as a function of top
hat radius and the corresponding enclosed mass M = (4π/3)ρmR3.
Because of the flatness of the linear power spectrum around R =
100h−1Mpc, the rms scales in the same way as shot noise, V −1/2 ∝
R−3/2 in this regime. The mass M∗ at which σR = 1.69 controls
the relative strength of all effects (see Figure 4).

and a flat spatial geometry:

Wi(k) = 2eik‖ri
sin k‖δri/2
k‖δri/2

J1(k⊥riΘs)
k⊥riΘs

. (6)

In the limit of slices that are thick compared with the
coherence,

〈ninj〉 − n̄2
n̄2

= δijb2
1

δrir2i

∫
d2l

(2π)2

(
2
J1(lΘs)
lΘs

)2

P (l/ri) .

(7)
Note that the angular window in the parenthesis goes to
unity for lΘs 	 1.
Eqn. (7) is closely related to the Limber equation in

Fourier space (e.g., Kaiser 1992) in that there is no covari-
ance between distinct redshift bins and only modes per-
pendicular to the line-of-sight enter into the variance. We
give a more general consideration of the survey window in-
cluding sky curvature and a non-trivial angular mask and
radial selection in the Appendix A (see Eqn. [A4]).

2.3. Statistical Forecasts

While the calculation of the covariance in the previous
sections can tell us about the relative importance of sam-
ple and shot noise variance for various choices of mass
and redshift binning, it does not directly translate into
the relative importance on cosmological parameter esti-
mation where the weighting of the bins reflects parameter
sensitivity.
Holder et al. (2001) introduced a useful Fisher matrix

approximation to a Poisson likelihood analysis which es-
sentially propagates the errors in the bins to the covariance
of more fundamental parameters. Here we generalize the
technique to include sample covariance. Define the Fisher

matrix in the parameter space of interest pα as

Fαβ =
∑
ij

∂n̄i
∂pα

(C−1)ij
∂n̄j
∂pβ

, (8)

where the covariance matrix includes both sample covari-
ance and shot variance

Cij = 〈ninj〉 − n̄in̄j + δij n̄i/Vi . (9)

Then an estimate of the covariance matrix of the param-
eters follows as

Cαβ ≈ (F−1)αβ . (10)

The Fisher approximation allows a rapid exploration of the
parameter space(s) and the effect of survey specifications
on statistical errors. It has been shown to be a reason-
able approximation for most cosmological parameters of
interest (Holder et al. 2001). Note that the parameter
set can include “nuisance parameters”, e.g. an amplitude
and a power law index for an observable vs. mass relation.
Utilizing the Fisher matrix approximation, these param-
eters would be marginalized at the expense of increasing
the errors

σα = (Cαα)1/2 (11)

on the parameters of interest. Marginalization can be off-
set by prior knowledge in the form of an inverse covariance
weighted sum of the information

Ctot = (C−1 +C−1prior)
−1, (12)

or loosely speaking by summing the Fisher matrices from
individual sources. Because an infinitely sharp prior on all
parameters save an m element subset corresponds to con-
sidering the reduced m×m Fisher sub-matrix, we term the
corresponding errors on the parameters the “unmarginal-
ized errors”. In the case of m = 1 parameter, the un-
marginalized error is simply 1/

√
Fαα.

Finally, for the construction of priors and the interpre-
tation of errors it is useful to note that under a re-para-
meterization of the space to the set πµ(pα), the covariance
matrix transforms as

Cµν =
∑
αβ

∂πµ
∂pα

Cαβ
∂πν
∂pβ

. (13)

We will use this relation to evaluate the covariance matrix
involving parameters that depend on the fundamental set,
e.g. σ8 and the Hubble constant.

3. CLUSTER SURVEYS

We now specialize the sample variance considerations to
cluster surveys in the context of spatially flat CDM mod-
els with dark energy. In §3.1, we define the cosmological
framework and the parameters of interest that underly it.
We provide further tests of the critical ingredients: the
cluster mass function, mass definition, and bias prescrip-
tion in Appendix B. In §3.2, we relate cluster observables
to halo mass, providing convenient conversion formulae
between different definitions of halo mass in Appendix C.
These relations are used to define common selection crite-
ria in §3.3.
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Fig. 2.—Mass function and bias in the fiducial ΛCDM cosmology
[see Eqns. (14) and (15)] . Although the bias increases for M >
M∗ and enhances sample errors, the exponential suppression of the
number densities rapidly makes shot errors dominate at M �M∗.

3.1. Cosmological Model

We now specialize these considerations to cluster sur-
veys. We associate galaxy clusters with dark matter halos
of the same mass. The mean differential comoving num-
ber density of dark matter halos (Jenkins et al. 2001, Eqn
B31)

dn

d lnM
= 0.301

ρm
M

d lnσ−1

d lnM
exp[−| lnσ−1 + 0.64|3.82] .

(14)
and the linear bias (Mo & White 1997; Sheth & Tormen
1999)

b(M) = 1 +
aδ2c/σ

2 − 1
δc

+
2p

δc[1 + (aδ2c/σ2)p]
(15)

are modeled from fits to cosmological simulations with
a = 0.75 and p = 0.3 (the values are modified to match
the mass function for clusters in the Hubble volume simu-
lations, R. Sheth, private communication). Here δc = 1.69
is the threshold overdensity of spherical collapse in a mat-
ter dominated universe; we will ignore the weak scaling of
δc with cosmology. σ2(M, z) is the variance in the den-
sity field smoothed with a top hat that encloses a massM
at the mean matter density today (or equivalently the co-
moving density) ρm. The correspondence in the adopted
mass function and bias is to the mass enclosed in a region
where the density is 180 times the mean matter density, as
demonstrated in Appendix B. The main cosmological scal-
ing of both the number density and bias comes through σ.
It is useful then to scale the mass to σ(M∗) = δc. M∗(z)
is shown in Fig. 3.
We consider the fiducial cosmology to be spatially flat

and defined by 6 independent parameters: the dark en-
1We adopt the fit to the unsmoothed mass function of the halo

catalogs with masses defined using the spherical overdensity of 180
with respect to mean density. This fit describes the actual abun-
dance of clusters in simulations; smoothing artificially increases the
amplitude of the mass function by ∼ 5 − 20% (Jenkins et al 2001)
and is unwarranted at the high cluster masses that we consider here.

M
*

(h
–
1

M
)

1010

1011

1012

1013

1014

0 1 2 3

z, s8

M
*
(z=0,s8)

M
*
(z,s8=0.92)

Fig. 3.— M∗ controls the relative importance of sample and shot
variance due to steeply declining number densities above M∗. It
is a strong function of redshift and an even stronger function of
normalization. The fiducial ΛCDM model assumes σ8 = 0.92 at
z = 0 and hence M∗(z = 0) = 1.2 × 1013h−1Mpc. In conjunction
with Eqn. (21), this figure can be used to determine the relative
importance of sample variance for cases not explicitly explored here.

ergy density ΩDE = 0.65, equation of state w = −1,
physical matter density Ωmh2 = 0.148, physical baryon
density Ωbh2 = 0.02, tilt ns = 1, and the initial normal-
ization of the curvature fluctuations δζ = 4.79 × 10−5 at
k = 0.01 Mpc−1 to match the COBE detection. The non-
standard definition of the normalization δζ is given explic-
itly in Hu (2001) and removes the cosmological parameter
dependence of the more traditional choices. For the fidu-
cial model, it converts to δH = 4.42× 10−5, σ8 = 0.92, or
M∗ = 1.2×1013h−1M�. We shall see that all results are a
strong function of the assumed normalization but can be
rescaled through M∗ (see Fig. 3 and Eqn. (21)).

3.2. Scaling Relations

The mass of a cluster is usually not measured directly,
but estimated from models of its X-ray luminosity, emis-
sion weighted temperature TX , velocity dispersion, or, in
the future, its Sunyaev-Zel’dovich integrated flux.
Following Ikebe et al. (2001), we will assume an LX−TX

relation of

LX = 1.23× 1037
(
TX
6keV

)2.5

h−2Wm−2 . (16)

Here LX is the X-ray luminosity in the energy range of
[0.1− 2.4] keV and TX is emission-weighted temperature
of the intracluster gas.
The connection between theoretical predictions and ob-

servations is provided by the virial mass - temperature
relation Mv − TX , which we parameterize as(

Mv

1015h−1M�

)
=
[

β

(1 + z)(Ωm∆v)1/3
TX
1keV

]3/2
,(17)

where ∆v is the virial overdensity with respect to the mean
matter density (see Eqn. C6). β parameterizes the scaling
and in general may be a function of TX and cosmology.
Numerical simulations by various groups give β ≈ 0.75

(e.g. Evrard et al. 1996; Eke et al. 1998; Bryan & Nor-
man 1998; also Pierpaoli et al. 2001 for a tabulation of
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results), roughly independent of temperature and cos-
mology. Observations favor a lower normalization β ≈
0.54(TX/6keV)0.24 (Finoguenov et al. 2001) making the
observed cluster sample less massive. Here we have con-
verted from the mass at a much higher overdensity of 500
times the critical density M500/Ωm to Mv. The observed
relation consequently indicates a lower normalization σ8 in
a fixed cosmology (Seljak 2002). We will employ the the-
oretical Mv − TX relation to be consistent with our choice
of cosmology; we will discuss effects of different Mv − TX
relation in §6. Since the Jenkins mass function is defined
at ∆ = 180, not at ∆v, the virialMv−TX relation must be
further converted to an M180−TX relation to match with
the mass function. These conversions can be done using
simple but accurate fitting formulae for the general inter-
conversion of mass definitions assuming an NFW (Navarro
et al. 1997) profile given in Appendix C.
The relationship betweenMv and ourM can be approx-

imately parameterized as(
M

1015h−1M�

)
= (1 + b1)

(
Mv

1015h−1M�

)1+b2

(18)

for 14 < log(M/h−1M�) < 16 and halo concentrations of
the fiducial model with b1 = 0.168x+ 0.373x4 and b2 =
0.0113x+ 0.0176x4 and x ≡ 1 − Ωm(z). Note that in the
matter-dominated limit the two mass definitions coincide.
For the fiducial Ωm = 0.35 cosmology the M − TX rela-

tion becomes(
M

1015h−1M�

)
=
[

1.113β
(1 + z)(Ωm∆v)1/3

TX
1keV

]1.516
.

(19)
Because this 10% correction in temperature will propagate
into a 50% correction of a flux-limited survey volume at
a fixed mass, this seemingly small correction is required.
Note however that the difference between simulation re-
sults for β is at least comparable to this shift and the
discrepancy between the theoretical fits toM−TX in sim-
ulations and observed relation (Hjorth et al. 1998; Horner
et al. 1999; Nevalainen et al. 2000; Finoguenov et al. 2001;
Allen et al. 2001) is more substantial still.

3.3. Survey Selection

The survey selection is a critical element in determining
the importance of sample variance. Even ignoring errors
in the conversion of observables to mass, which always
decreases the relative importance of sample variance, the
underlying cluster scaling relationships enter into the con-
sideration of the survey selection and hence the survey
window. A survey may be limited by X-ray flux, SZ flux,
and/or temperature as well as volume or redshift and we
will consider these as the relevant selection criteria.
For the present purpose of determining the ultimate lim-

itation sample variance places on cluster surveys, we take
the scaling relations (16) and (19) with β = 0.75 to be both
correct and deterministic. In reality one should include in
the final error budget the intrinsic scatter, measurement,
and modeling uncertainties in the observables and their
relation to mass.
TheM−TX relation allows us to convert a temperature

threshold, typically TX ∼> 1− 3keV into a mass threshold
M > Mth. The combined M − TX and LX − TX relations

convert mass to X-ray luminosity. For sample with a flux
limit flim , the effective radius of the volume probed by the
survey is

R =
dL
1 + z

=
1

1 + z

√
LX(M)
4πflim

, (20)

which implies that the survey window in mass bins will be
overlapping concentric spheres or sky-wedges that increase
in radius with the mass. The sample variance calculation
must then properly account for the covariance between
the mass bins. Note that the survey volume V (M) ∝
β−15/4 and hence strongly depends on theM−TX relation
adopted. This flux limit is typically placed on top of a
volume (redshift) limit that defines, for example, a local
sample of clusters.
For SZ cluster surveys a flux decrement limit corre-

sponds to d−2A TSZM ≈ const for a sufficiently large an-
gular diameter distance dA such that the cluster is within
the effective field of view (Holder & Carlstrom 2001). Un-
der the assumption that the gas density weighted electron
temperature TSZ ≈ TX , and the M − TX relation above,
an SZ flux limit corresponds to a mass threshold that is
roughly constant with redshift and scales as Mth ∝ β3/5

for different M − TX relations. Note that clusters of a
given mass are detectable to all relevant redshifts despite
the flux limit and details of the M − TX and TX − TSZ
relations are much less important than in a flux limited X-
ray survey. Nonetheless, the M −TX relation has a severe
effect on survey yields if the underlying power spectrum is
normalized to an incorrect value by a misinterpretation of
the local X-ray cluster abundance (see §6).

4. LOCAL ABUNDANCE

We consider here the effect of sample variance compared
to shot noise and cosmological parameter degeneracy on
the interpretation of the local cluster abundance in the
classic σ8 − Ωm plane (Evrard 1989; Frenk et al. 1990;
Henry & Arnaud 1991; Lilje 1992; White et al. 1993). We
begin with the idealized case of a volume and temperature
limited survey and then consider the more realistic X-ray
flux, volume and temperature limited case.

4.1. Volume Limited Survey

Let us start with a toy model to develop intuition for
the effects of sample variance. Consider a volume limited
local survey with a radius R that detects all clusters above
a limiting mass Mth determined by a temperature limit
and the M − TX relation.
First consider binning the clusters into a single mass bin

M > Mth. There is then only one window to consider and
we can directly compare the sample and shot noise errors
on number density determinations. Note that sample vari-
ance which is equal to shot variance leads to a

√
2 ≈ 1.4

increase in the errors.
In Fig. 4, we show the sample and shot errors for R =

100, 200, 300 h−1Mpc. As noted in §2.2, in the R = 100h−1
Mpc range both errors scale as V −1/2 and we have removed
this dependence by multiplying by (R/250h−1Mpc)3/2.
The corresponding fiducial volume is 6.5× 107 h−3 Mpc3,
comparable to the volume of actual local surveys. No-
tice that the two errors cross at Mth ≈ 4 × 1014h−1M�
or Mth/M∗ ≈ 30 with sample variance dominating at the



6

1013 1014 1015 1016

Mth (h–1 M )

0.1

1

0.1

0.01

1 10 100 1000
M/M

*

s
n

¥
(R

/2
5
0

h
–

1
M

p
c)

3
/2 shot

sample

R (h–1Mpc) = 100, 200, 300

Fig. 4.— Sample vs. shot errors in number counts as a func-
tion of threshold mass for a local survey. Sampling errors dominate
at M < 30M∗ ≈ 4 × 1014h−1M�. Errors have been scaled by

(R/250h−1Mpc)3/2 to reflect the local volume and the coincidence

of the curves shows that both scale V −1/2. Approximate results for
alternate cosmologies or redshifts can be estimated by the scaling
with M∗ (see Fig. 3 and Eqn. (21)).

lower masses. This crossing mainly reflects the exponen-
tial suppression of the number densities for Mth/M∗  1
and hence the dramatic increase in shot noise. For small
changes in redshifts, normalizations, and cosmologies these
qualitative statement remain true but require rescaling.
Roughly,

Mth

M∗ ∼
< 31

(
M∗
M∗fid

)−1/2( Ωm
0.35

)1/2(40σ200
σ8

)
, (21)

for sample to dominate shot variance, where recallM∗fid =
1.2× 1013h−1M�. For a low Γ = Ωmh cosmology, the en-
hancement of sample variance from the excess large scale
power (at typical scales of R = 200h−1 Mpc) from the
shape of the power spectrum dominates and can substan-
tially increase the importance of sample variance. In con-
junction with Fig. 3, this scaling may be used as a rough
check to determine whether sample variance is relevant to
a given problem. For surveys that reach this limitingMth,
sample variance will dominate over shot noise in the total
number density and lead to a substantial increase in the
statistical errors.
Now consider a survey that can also bin in masses, for

example from individual temperature measurements. The
relative contribution of sample variance will depend on
what range of masses is most relevant to the question at
hand. This sensitivity in turn can be a function of survey
selection and cosmology. Here the Fisher matrix technique
of §2.3 is useful since it automatically folds in these factors
in a minimum variance weighting.
As a simple example, consider the estimation of a single

parameter pα with all others fixed by prior knowledge. The
minimum variance weighting of the i mass bins is given by

wi =
1
Fαα

∑
j

∂n̄i
∂pα

(C−1)ij
∂n̄j
∂pα

. (22)

1014 1015 1016

M (h–1 M )

TX (keV)
103

0

1

2

6

w
ei

g
h

t volume

limit

flux+volume

limit

shot+sample

shot

Fig. 5.— Mass range sensitivity of the normalization determi-
nation for surveys with a volume limit of zmax and mass thresh-
old of M = 1014h−1M� with and without an additional X-ray
flux limit of flim = 2 × 10−14 W m2. With shot noise only, the
normalization constraint gets its most significant contribution for
3−4×1014h−1M� (∼ 3 keV) for the volume limit and 1015h−1M�
(∼ 6 − 7 keV) for the additional flux limit. Correspondingly sam-
pling errors are substantially more important for the former than
the latter, also altering the optimal mass weighting (solid vs. dashed
lines).

For a diagonal covariance matrix as in the case of shot
noise, this simply reduces to an inverse variance weighting
of mass bins.
For illustrative purposes, let us take a volume limit of

z = 0.09 (R = 270h−1Mpc) and an all sky survey. We
bin the masses from log(M/h−1M�) = 14 to 16 in 40
steps of 0.05. The predicted mass function is sufficiently
smooth that this binning more than suffices to recover all
the information contained in its shape. Consider the pa-
rameter of interest to be the power spectrum normaliza-
tion δζ or σ8. In Fig. 5, we show the weights assuming
shot noise only (dashed lines) and shot plus sample co-
variance (solid lines). The mass sensitivity peaks at about
3 − 4× 1014h−1M� for shot noise only implying that the
inclusion of sampling errors would produce a substantial
change in the error budget. Indeed the Fisher approxima-
tion yields a factor of 2 degradation in the errors on σ8
or sample variance that is 3 times more important than
shot variance. Other parameters, when also considered
individually (unmarginalized) show similar error degrada-
tions. Note that the optimal weighting in the presence of
sample covariance shifts to higher masses and can have
negative contributions due to the covariance of the bins
so that neglect of sample covariance in the analysis can
degrade errors even further.

4.2. Flux Limited Sample

More realistically, the sample of local clusters will be
X-ray flux as well as volume and temperature limited so
that low mass clusters are found only nearby. In this case,
the mass sensitivity shifts to higher masses and sample
variance becomes less important.
For illustrative purposes, let us take a flux limit of

flim = 2 × 10−14 W m−2 in addition to the volume limit
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Fig. 6.— σ8 − Ωm constraints from a local X-ray flux and vol-
ume limited survey at 65% CL (zmax = 0.09, flim = 2 × 10−14

W m2). Unshaded ellipses denote full shot and sampling errors
while shaded ellipses denote shot errors only. Outer ellipses show
marginalization over other parameters (except w) with very weak
priors, inner ellipses show the unmarginalized constraints. The four
sets of Mth correspond to TX = 1.25,1.83,2.67, 3.9 keV with the
fiducialM − TX relation. The three higher choices of Mth have el-
lipses shifted in steps of 0.2 in the y-direction for clarity. The effect
of sample variance decreases with increasing parameter degeneracies
and mass threshold.

of z = 0.09 and mass threshold of Mth = 1014h−1M�
(TX = 1.25 keV), parameters typical for the current flux-
limited samples of clusters with estimated X-ray tempera-
tures (e.g., Ikebe et al. 2001). The mass weighting for the
normalization parameter now peaks around 1015h−1M� or
temperatures around TX = 6−7keV with only a small dif-
ference if sample variance is included with shot variance.
The degradation in normalization errors is consequently
reduced to 20%. Different parameters have different sen-
sitivities. For the chosen parameter set (see §3.1), the
relative degradation in the flux limited case is largest for
ΩDE where it reaches 40%. Thus even for a flux limited
survey, sample variance can be equal to shot variance in
the statistical errors.
The overall importance of sample variance can decrease

due to other sources of errors in the estimation, includ-
ing degeneracies in the parameters and errors in mass es-
timation, especially at low masses or temperatures. To
illustrate these effects, consider the usual two dimensional
parameter space σ8−Ωm by transforming our fundamental
space as described in §2.3. In Fig. 6, we show the effect of
sample variance on the 68% confidence region in this plane
for several choices of the minimum mass (or temperature)
in log(Mth/h

−1M�) of the clusters employed, offset for the
higher minimum masses for clarity. Larger ellipses rep-
resent marginalization over other parameters (with very
weak priors of σΩbh2 = 0.01 and σns = 0.3 mainly to elim-
inate unphysical degeneracies) and smaller ellipses repre-
sent unmarginalized constraints or prior-fixing of the other
parameters. Both sets have a prior of σw = 0 since the
dark energy equation of state is highly degenerate with
Ωm.
Not surprisingly, sample variance becomes irrelevant as

the mass threshold is increased. Sample variance also de-
creases in importance when going between the fixed and

z

deep

sample

shotwide

s
n

0.03

0.1

0.3

310.3

Fig. 7.— Shot and sampling errors on the number density n as a
function of redshift for the deep (Mth = 10

14h−1 M�, 12 deg2) and
wide configurations (Mth = 2.5× 1014h−1M�, 4000 deg2). For the
deep survey, sampling errors dominate shot errors out to z ∼ 0.9,
whereas for the wide survey, they cross at z ∼ 0.2 − 0.3. The
importance of sample variance to cosmological constraints depends
on their sensitivity in redshift relative to these crossover points.
Approximate results for other cases of interest can be scaled from
Fig. 3 and Eqn. (21).

marginalized cases due to the dominance of parameter
degeneracies in the latter. For the Mth = 1014h−1M�
threshold, the increase in the errors on Ωm go from 40% in
the fixed case to 30% in the marginalized case. The effect
of marginalization mainly comes through parameters that
change the shape of the linear power spectrum. Realistic
current constraints on these parameters places reality ap-
proximately half-way in between the two extremes shown
in Figure 6. Finally, note that the errors in the direction
orthogonal to the degeneracy line increase negligibly with
the addition of sample variance and threshold mass Mth.
Since the local cluster abundance is usually used to con-
strain this direction (c.f. Ikebe et al. 2001 for use of the
degenerate direction), its cosmological interpretation is es-
sentially unmodified by sample variance or uncertainties at
the low mass end.

5. HIGH-Z SURVEYS

The number abundance of high redshift clusters is widely
recognized as being extraordinarily sensitive to cosmolog-
ical parameters due to the exponential cut off in the mass
function above M∗(z) (Bahcall & Fan 1998; Blanchard &
Bartlett 1998; Viana & Liddle 1999). Recently, its use
in constraining the density and equation of state of the
dark energy using planned Sunyaev-Zel’dovich (SZ) clus-
ter surveys has been the focus of several studies (Haiman
et al. 2001; Weller et al. 2001). These studies show that if
the shot noise of rare high redshift clusters were the only
source of uncertainty, the SZ effect can constrain the equa-
tion of state at the percent level. Here we consider the ef-
fects of additional uncertainties from sample variance and
parameter degeneracies for two classes of planned surveys:
a deep but narrow survey volume and a wide but shallower
survey.

5.1. Fiducial Surveys
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Fig. 8.— Dark energy constraints (68% CL) for the (a) deep and (b) wide high redshift cluster surveys. Panels right to left reflect the
addition of priors from the base set of weak conservative priors to the addition of a local cluster abundance constraint to the further addition
of sharp priors on all other parameters. Three different maximum redshifts are shown with and without the inclusion of sample variance
errors.

As discussed in §3.3, an SZ survey has the virtue of be-
ing able to detect clusters of a sufficiently high mass out to
all redshifts that they exist. In addition, the survey selec-
tion can be described by an effective threshold mass Mth

that depends only weakly on redshift (Holder et al. 2000).
Following Holder et al. (2001), we take as our fiducial sur-
veys a 12 deg2 survey with a step function mass selection
atMth = 1014h−1 Mpc (“deep”) and a 4000 deg2 survey to
Mth = 2.5× 1014h−1 Mpc (“wide”). We take a minimum
redshift of z = 0.09 to match the maximum redshift of the
local surveys of the previous section and bin in redshift to
∆z = 0.1. The evolution of the number abundance is suffi-
ciently smooth for the constant w models considered that
finer binning is not needed, as we find no significant degra-
dation of constraints when varying bin size up to ∆z = 0.1.
This is comfortably larger than the expected accuracy of
individual cluster redshifts estimated using photometric
redshifts of member galaxies (e.g. Fernández-Soto et al.
2002). We calculate the sample covariance under the win-
dow approximation of Eqn. (6) in both cases. Since the
redshift binning corresponds to scales of ∼ 3000∆zh−1
Mpc, the covariance is confined to a few neighboring red-
shift bins but still should not be neglected. Likewise, the
further Limber-like approximation of Eqn. (7) is not valid
for the wide survey since line-of-sight modes contribute
comparably to transverse modes for these large transverse
scales. In addition, sky curvature begins to play a role
for the wide survey and a more detailed analysis should
employ the general window expression (Eqn. [A4]) given
in Appendix A. We neglect this correction since we are
mainly interested in the relative effects of sampling errors.
In Fig. 7 we show the relative contribution of shot and

sample errors as a function of the redshift of the bin. Be-
cause of the low mass threshold of the deep survey, sam-

pling errors dominate all the way out to z ≈ 0.9. For the
wide survey, the crossing occurs at z ≈ 0.2−0.3 but sample
variance remains important at z ∼< 0.7. The crossing point
for other cases of interest may be scaled from Eqn. (21)
and Fig. 3. Whether sample variance affects cosmological
constraints depends on where in redshift the parameter
sensitivity is maximized.
Even though SZ surveys have no redshift limit, the selec-

tion may still be redshift limited for two reasons: redshift
followup and uncertainties in evolution. Since the SZ ef-
fect is redshift independent it also gives no intrinsic handle
on the redshift of clusters so discovered. Fortunately, the
relative crudeness of the binning required (∆z ≈ 0.1) im-
plies that photometric redshifts of cluster member galaxies
should be more than sufficient. Still, photometric redshifts
in the range 1 ∼< z ∼< 2.5 are difficult to obtain from optical
ground-based observations. We shall see that even if red-
shifts cannot be determined beyond a maximum redshift
zmax much of the cosmological information is recovered
simply by binning all such clusters into a single high red-
shift bin. More worrying is any evolution in cluster proper-
ties that changeMth (or more generally the mass selection
function) which cannot be accurately modeled from simu-
lations or detailed multi-wavelength observations. In this
case the clusters above a certain zmax may be unusable for
cosmological constraints.

5.2. Dark Energy Constraints

Let us now specialize these considerations to the ques-
tion of constraining the density (ΩDE) and equation of
state (w) of the dark energy. Constraints in this plane and
the relative importance of sample variance are far more
sensitive to prior assumptions on other cosmological pa-
rameters than the normalization from the local abundance.
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We choose three levels of prior knowledge: (1) Weak pri-
ors that reflect a conservative view of current cosmological
constraints σh = 0.065, σΩbh2 = 0.01, σns = 0.3, σln ζ = 2,
(2) Weak priors plus a local cluster abundance constraint
from §4 for the flux and volume limited case, and (3) Un-
marginalized errors with the addition of the local cluster
abundance constraint.
In Fig. 8, we show the resulting constraints for the deep

and wide surveys and maximum redshifts of zmax = 0.7,
1.0 and 3. For the deep surveys and weak priors, degra-
dations in the errors on (ΩDE, w) change slightly from
(1.3,1.3) to (1.4,1.4) to (1.4,1.3) as zmax increases. The
degradation decreases [(1.3,1.3) to (1.1,1.4) to (1.1,1.2)]
once the local abundance is added to a high zmax make
the constraints less dependent on the sample variance lim-
ited low redshift end. Fixing other parameters reduces the
effect still further. Note that the effect of priors on the ab-
solute errors is much larger than on the relative effect of
sample variance. For the wide survey the degradation de-
creases from (1.3,1.4) to (1.1,1.2) as zmax increases with
weak priors and changes to (1.2,1.2) to (1.2,1.1) with the
addition of the local abundance constraint. These smaller
degradation factors reflects the overall decrease in the im-
portance of sample variance with increasing mass thresh-
old. In summary, sample variance causes a 10-40% degra-
dation in dark energy constraints depending on the de-
tailed assumption made. Since 40% reflects equal shot and
sample variance contributions, sample variance cannot be
ignored in the statistical error budget of future surveys.
Moreover it can affect the optimal survey strategy given
fixed observing constraints, e.g. making it more important
to study rare high redshift clusters.
Let us further explore these issues in the context of the

wide survey, weak priors and the measurement of the equa-
tion of state parameter w. Both the absolute constraints
on w and the relative importance of sample variance are
very sensitive to three quantities: the maximum redshift
zmax, the mass thresholdMth, and the fiducial value of the
normalization σ8 (see Fig. 9). Note the sharp increase in
the errors for zmax < 1. If the maximum redshift simply
reflects a lack of followup redshift information beyond this
redshift, a fair fraction of the lost information can be re-
gained just by binning all such clusters into a single high
redshift bin. A low mass threshold at high redshift is also
critical for obtaining strong constraints on w and also in-
creases the relative importance of sample variance. Finally

the assumed normalization of the cosmological model has
a strong effect on the errors on w due to the lack of high
redshift clusters as the normalization decreases. A low-
ering of the normalization by a factor of 0.8 changes the
errors on w by nearly a factor of 3. Lowering the normal-
ization also reduces the importance of sample variance as
clusters become rarer, especially at high redshift.

6. DISCUSSION AND CONCLUSIONS

The analyses presented in the preceding sections showed
that for future surveys that probe ever lower cluster masses
and temperatures, sample variance is generally compara-
ble to or greater then the shot noise and thus cannot be ne-
glected in deriving precision cosmological constraints. For
example, sample variance typically doubles the statistical
uncertainty in constraints on the dark energy equation of
state in a SZ survey limited to zmax ∼< 1. Its relative im-
portance is very weakly dependent on survey volume and is
mainly a decreasing function of mass threshold of the sur-
vey, Mth, compared with the mass of a typical halo, M∗,
because of the rarity of high mass clusters. We emphasize
though that it is simply that the shot noise variance for
future surveys is impressively small, and the cosmological
prospects correspondingly bright, that the small absolute
effect of sample variance plays any role at all!
Although we found that effects of sample variance on the

σ8−Ωm constraints from the current flux and temperature
limited X-ray surveys of local clusters are not significant,
they may be important for future studies utilizing shape of
the temperature function to break the σ8−Ωm degeneracy,
where sample variance typically increases the statistical
variance by a factor of two.
We have studied the effects of sample variance under the

assumption that the fiducial ΛCDM cosmology is essen-
tially correct and, most importantly, its joint normaliza-
tion to the COBE results and cluster abundance assuming
the usual simulation-based conversion of X-ray tempera-
ture to mass. Recent improvements in the measurement
of the observed mass-temperature relation has called the
latter assumption into question (Finoguenov et al. 2001,
Ikebe et al. 2001). Because of the extraordinary sensitivity
of cluster survey yields to the normalization of the power
spectrum, these developments can significantly alter the
prospects of cluster surveys including the relative impor-
tance of sampling variance. Employing the observed rela-
tion from Finoguenov et al. (2001) and fixing the number
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of clusters at TX > 6 keV in our idealized flux and volume
limited surveys, we find that the normalization of the fidu-
cial cosmology would be lowered to σ8 = 0.75 from 0.92,
in agreement with conclusions of Seljak (2002).
This change has opposite consequences for the impor-

tance of sample variance for the local and high-redshift
surveys. For the local surveys, since the number density
in temperature is fixed, the decrease in the mass thresh-
old, Mth increases the importance of sample variance (see
Eqn. [21]). For example, degradation in the unmarginal-
ized errors on ΩDE increases from 1.4 to 1.6. Sample vari-
ance effects would be even larger if the model is also tilted
to match the COBE normalization. For the high-redshift
surveys, the weak scaling of mass threshold with the mass-
temperature relation (see § 3.3) and strong scaling of con-
straints with normalization (see Fig. 9) make sample vari-
ance less important compared to our analyses. More im-
portantly, the change in the normalization relation would
substantially degrade the ability of SZ surveys to measure
dark energy properties due to the increase in the rarity of
high redshift clusters. These relative changes2 remain true
if the mass-temperature change indicates a higher dark en-
ergy density ΩDE ≈ 0.75, Ωmh2 = 0.13, with a σ8 = 0.85
that then matches the COBE normalization as well as the
TX > 6 keV cluster abundance.
This current ambiguity in predictions reflects the gen-

eral point that until the mass-observable relationships for
clusters are well understood with new observations and
better simulations, the predicted cosmological yield of fu-
ture cluster surveys and the statistical error budgets con-
sidered here should be taken as highly uncertain. These re-
lationships therefore should be the primary focus of the fu-
ture modeling efforts and can be attacked in several ways.
First, the use of higher resolution and more sophisticated
cluster simulations together with new high-quality Chan-
dra and XMM-Newton observations should fuel progress
in our understanding of cluster scaling relations in the
near future. The search for causes of discrepancy be-
tween the observed and predicted M − TX relations that
currently compromises interpretation of the local cluster
abundances, is already the subject of substantial observa-
tional and modeling effort. At the same time, indepen-
dent constraints on mass-observable relations can, in prin-
ciple, be obtained from weak lensing analyses of large X-
ray selected cluster samples. In addition, power spectrum
normalization at cluster scales can be obtained indepen-
dently from studies of cosmic shear (e.g. Van Waerbeke
et al. 2002). Independent measurement of σ8 would al-
low use of local cluster temperature function to constrain
present-day M−TX relation. Although at higher redshifts
prospects are less promising for the immediate future, deep
X-ray and SZ follow-up observations to the SZ surveys
should provide a wealth of data on such cluster popula-
tions. These data will be critical for comparisons with
numerical simulations, tests of the scaling relations evo-
lution, and, ultimately, precision cosmological constraints
from cluster surveys.
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APPENDIX

WINDOW FUNCTION

We outline here the calculation in the case of a general
survey window. Consider a general radial selection Ri(r)
and angular mask Θ(θ, φ) such that the set of windows
satisfies the separability condition Wi(x) ≡ Ri(r)Θ(θ, φ).
The Fourier transform of the window then becomes

Wi(k) = 4π
∑
lm

(−i)lR̃i l(k)Θ̃lmY ml (θk, φk) (A1)

and (θk,φk) define the direction of k with respect to a
fiducial direction, e.g. the center of the window. Here the
spherical harmonic transform of the angular mask is

Θ̃lm =
∫
dΩY m∗l (θ, φ)Θ(θ, φ) , (A2)

and the spherical Bessel transform of the radial window is

R̃i l(k) =
∫
r2drjl(kr)Ri(r) . (A3)

The covariance becomes

〈ninj〉 − n̄2
n̄2

= b2
∑
lm

4π
∫
dk

k
R̃i l(k)R̃j l(k)|Θ̃lm|2

k3P (k)
2π2

.

(A4)
In the Limber approximation of a slowly varying P (k),

one can use the identity∫
k2dkjl(kr)jl(kr′) =

π

2r2
δ(r − r′) , (A5)

to show that the covariance is negligible

〈ninj〉 − n̄2
n̄2

= δijb2
∫
r2drR2

i (r)
∑
lm

|Θ̃lm|2P (l/r) .

(A6)
Further specializing to azimuthally symmetric windows
with a normalized radial tophat profile,

〈ninj〉 − n̄2
n̄2

= δijb2
1

r2i δri

∑
l

2l+ 1
4π

Θ̃2
l P (l/r) , (A7)

where the angular window is

Θ̃l = 2π
∫ 1

−1
d cos θPl(cos θ)Θ(θ) . (A8)

In the limit that l  1 this expression agrees with the
pillbox window Eqn. (7). Note that the angular windows
in both expressions are normalized to unity for lΘs 	 1,
where Θs is the typical angular dimension of the window.

NUMERICAL TESTS

During the past several years there has been significant
advances in our understanding of halo mass function and
bias from simulations (e.g., Mo & White 1996; Sheth &
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Fig. B10.— Cluster mass functions derived from the simulation
of a flat low-Ωm CDM cosmology (Ωm = 1 − ΩDE = Γ = 0.15;
h = 0.65; ns = 1; σ8 = 1.07) using masses defined by ∆180 and
∆ = 666.6. The error bars show 2σ Poisson errors. The solid line
shows the fit obtained by Jenkins et al. (2001, their Eqn. B3) while
the dotted line shows this fit with M180 converted to M666, as de-
scribed in the Appendix C. Agreement indicates that the Jenkins
et al. fit should be interpreted as M180, defined with respect to
the mean density and that the mass function is universal for this
definition of mass. The converted mass function fit matches both
our simulated mass function for ∆ = 666 and the fit of Evrard
et al. (2002, their Tab. 1) to the mass function from the Hubble
volume ΛCDM simulation with this definition of mass. The agree-
ment shows that conversion assuming an NFW profile adequately
accounts for the substantial differences between M180 and M666.

Tormen 1999; Jenkins et al. 2001). Nevertheless, there re-
mains a certain confusion about the meaning of mass in the
mass function expressions, sufficiently significant to make
analyses of cluster abundances ambiguous (White 2001).
Furthermore, bias models were extensively tested against
numerical simulations, but only for relatively small halo
masses, M ∼< 10−20M∗ (Mo et al. 1997; Jing 1999; Sheth
& Tormen 1999), which for our fiducial model corresponds
to masses ∼< 2.6 × 10

14h−1 M�. In cluster studies, espe-
cially those at high redshift, halo masses M > 20M∗ must
be interpreted and hence we test the bias model over the
whole range.
In this Appendix we use results of a large N -body simu-

lation to test the mass function and halo bias expressions
used in our analyses. The simulation followed evolution
of 2563 ≈ 1.6× 107 particles in the flat CDM model with
vacuum energy: Ωm = 1 − ΩDE = 0.15; h = 0.65; ns = 1;
σ8 = 1.068; Γ = 0.15; Lbox = 512h−1 M�. Here Γ is
the shape parameter in the adopted approximation of the
initial power spectrum (Bardeen et al. 1986). The sim-
ulation was run with the Adaptive Refinement Tree code
(Kravtsov et al. 1997) using 2563 zeroth level grid and five
levels of refinement. The power spectrum normalization,
σ8, was chosen to satisfy constraints from the local cluster
abundance (e.g., Pierpaoli et al. 2001).
The adopted cosmological model is sufficiently differ-

ent from the models studied by Jenkins et al. (2001)

to make our analysis a useful test of the universality of
the mass function fit advocated by these authors. In ad-
dition, differences between various common definitions of
halo mass increase for lower values of Ωm. For example,
consider the halo mass defined within the radius corre-
sponding to the fixed overdensity with respect to mean
density of the Universe, M180 = (4π/3)R3

180∆180ρm where
∆180 = 180 independent of cosmology. It is is equivalent
to the definition of mass with respect to the cosmology-
specific virial overdensity given by the spherical collapse
model, Mv = (4π/3)Rv∆vρm only for Ωm = 1 because
then ∆180 = ∆v (see Eqn. C6). For low Ωm, ∆180 and ∆v
are significantly different. For Ωm = 0.15, for example,
∆v ≈ 532. This translates into ≈ 30% difference in mass
for Mvir = 5 × 1014h−1 M� (see Appendix C). This cos-
mology provides a sharp test of the Jenkins et al. (2001)
assertion that the mass function of halos defined at ∆180

is independent of cosmology.
Figure B10 shows the halo mass functions derived from

the simulation using masses defined for ∆180 and ∆ =
666.6. The latter definition was used by Evrard et al.
(2002) to get fits to the mass functions in the Hubble vol-
ume simulations (it corresponds to their definition of mass
at the overdensity of 200 with respect to the critical den-
sity for Ωm = 0.3: 200/0.3 ≈ 666.6). The solid line shows
the fit obtained by Jenkins et al. (2001, their Eqn. B3 for
this definition of mass3), while the dotted line shows this
fit with M180 converted to M666, as described in the Ap-
pendix C. The figure clearly shows that halo mass in the
universal Jenkins et al. fit should be interpreted as M180,
where the overdensity of 180 is defined with respect to the
mean density. The converted mass function fit matches
both our simulated mass function for this overdensity and
the fit of Evrard et al. (their Table 1). While it is clear
that the differences in mass definition lead to substantial
differences in the amplitude and shape of the mass func-
tion, Fig. B10 shows that these differences can be taken
into account by the appropriate mass conversion.
Figure B11 compares the average bias for halos of mass

> M in simulations to the predictions of analytic mod-
els of Mo & White (1996) and Sheth & Tormen (1999).
The bias in these models in linear regime is given by
Eqn (15) with (p, a) = (0, 1) and (0.3, 0.75), respectively.
The analytic predictions were computed as a mass func-
tion weighted average of the linear bias predictions, with
the mass function fit of Jenkins et al. (2001). In the simu-
lation, the bias was estimated as the average ratio of halo-
mass and mass-mass correlation functions at linear scales:
〈b(> M)〉 = 〈ξhm/ξmm〉lin. Namely, we estimated ξmm(r)
and ξhm(r, > M) for halos with masses greater than M
(varying M over the entire probed range of masses; M
here is defined for ∆ = 180). The bias was estimated by
averaging ξhm/ξmm over 20 − 30h−1 Mpc where bias is
scale-independent. This gives us an estimate of the mass
function weighted bias as a function of halo mass. The
figure shows that both models reproduce the mass depen-
dence of halo bias for cluster masses. The value of the bias,
however, is much better matched by the model of Sheth
& Tormen (1999) in all but the highest mass bins. The
number of clusters in these bins is rather small (the last

3Eqn. B3 gives fit to the unsmoothed mass function which is
what we plot in Figure B10.
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Fig. B11.— The average bias for halos of mass > M180 pre-
dicted by the analytic models of Mo & White (1996, dashed line)
and Sheth & Tormen (1999, solid line), as averaged over the Jenkins
et al. (2001) mass function, and in the simulation (see Fig. B10),
estimated from the average ratio of halo-mass and mass-mass cor-
relation functions at linear scales: 〈b(> M )〉 = 〈ξhm/ξmm〉lin, as
described in the text. The 2σ error bars are the Poisson errors in
ξmm and ξhm propagated to b. Note the points are not indepen-
dent because they are derived from the same simulation and use
overlapping cluster catalogs.

mass bin contains only 3 clusters) and the deviations are
not significant. The figure shows that Eqn. (15) provides
an accurate description of bias for the cluster mass halos.

MASS CONVERSION

Various definitions of the mass of a halo can be con-
verted assuming a halo density profile. Here we provide a
fit to the general scaling function that converts definitions
under the assumption of a NFW profile (Navarro et al.
1997).
The NFW halo profile has the functional form

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
, (C1)

for which the mass enclosed at a radius rh is

Mh = 4πρsr3hf(rs/rh) , (C2)

where
f(x) = x3[ln(1 + x−1) − (1 + x)−1] . (C3)

The limiting behavior of this function is

lim
x→0

f(x) = −[1 + ln(x)]x3 ,

lim
x→∞

f(x) =
1
2
x− 2

3
, (C4)

which says that if rh  rs then up to a logarithmic cor-
rection, the mass converges to that enclosed near the scale
radius rs and if rh 	 rs the mass increases as r2h

A common baseline definition of mass for comparison is
the virial mass

Mv ≡
4πr3v
3
∆vρm ,

= 4πρsr3vf(1/c) , (C5)

where the concentration parameter c ≡ rv/rs and ∆v is
virial overdensity with respect to the mean matter density
(Bryan & Norman 1998)

∆v ≈
18π2 + 82x− 39x2

1 + x
, (C6)

where x ≡ Ωm(z) − 1. We will give the conversion from
an arbitrary definition of the halo mass to the virial mass
although the procedure is completely general.
Defining the halo mass as

Mh ≡
4πr3h
3
∆hρm , (C7)

where ∆h can depend on cosmology but not on Mh, we
relate the two radii as

f(rs/rh) =
∆h
∆v

f(1/c) , (C8)

so that

rs
rh
= x

(
fh =

∆h
∆v

f(1/c)
)
. (C9)

Converting between definitions of mass simply involves in-
verting f(x) of Eqn. (C3) to find x(f) and hence an ex-
plicit formula for the relationship between two different
definitions of rh or Mh

Mh

Mv
=
∆h
∆v

(
rh
crs

)3

. (C10)

The function f(x) is monotonic its single argument x
and it is simple to form a numerical lookup table for its
inverse. Nonetheless we here provide an accurate fitting
formula for the inversion

x(f) =

[
a1f

2p +
(
3
4

)2
]−1/2

+ 2f , (C11)

where p = a2 + a3 ln f + a4(ln f)2 and the 4 fitting
parameters are (a1, . . . , a4) = (0.5116,−0.4283,−3.13 ×
10−3,−3.52 × 10−5). This fit converts masses to better
than 1% accuracy across concentrations 0 < c < 400
(2.5 < Mv/h

−1M� < ∞ in the fiducial model; for galaxy
and cluster scales c < 20, the conversion has typical errors
of ∼ 0.3%). Note that the inversion is exact for c → 0
(f →∞) by construction.
An alternate form that is exact in the limit c→∞ can

be obtained via Taylor expansion as

Mh

Mv
= 1 + g(c, (∆h/∆v)1/3) , (C12)



13

where

g(x, y) = −3(x+ y)[x− xy + (1 + x)(x+ y) ln(1 + x)
−(1 + x)(x+ y) ln(1 + x/y)]
×[3(1 + x)(x+ y)2 ln(1 + x)
−x(x+ 4x2 + 6xy+ 3y2)]−1 , (C13)

and for order unity y exceeds the accuracy of Eqn. (C11)
for c > 10.
These formulas allow for a convenient mapping ofMv →

Mh once c(Mv) is specified. Following Bullock et al.
(2001), we take

c(Mv) = 9(1 + z)−1(Mv/M∗)−0.13 (C14)

where M∗ is evaluated at the present epoch z = 0.
These formula also provide an accurate inverse relation
Mh → Mv. Note that in the limit c(Mv) → ∞, the mass
correction is small and in the limit c(Mv) → 0, it is in-
dependent of c. Therefore, to obtain an accurate inverse
mapping one can utilize c(Mh) in the inversion equation
(C10) to obtain Mv(Mh) to ∼ 1% across all concentra-
tions. For better accuracy one can iterate the procedure
as c(Mv(Mh)).
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