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Abstract. We present a new, more powerful and accurate,
analytic treatment of cosmic microwave background (CMB)
anisotropies in the weakly coupled regime. Three applications
are presented: gravitational redshifts in a time dependent poten-
tial, the Doppler effect in reionized scenarios, and the Vishniac
effect. The Vishniac effect can dominate primary anisotropies at
small angles even in late and minimally reionized models in flat
dark-matter dominated universes with Harrison-Zel’dovich ini-
tial conditions. The techniques developed here refine previous
calculations yielding a larger coherence angle for the Vishniac
effect and moreover can be applied to non-trivial ionization his-
tories. These analytic expressions may be used to modify results
for the standard cold dark matter model to its cosmological con-
stant and reionized extensions without detailed and time con-
suming recalculation.

Key words: cosmic microwave background — Cosmology:
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1. Introduction

Damping processes in the limit that last scattering of cosmic
microwave background (CMB) photons lasted only a short du-
ration have been the subject of much recent interest (see e.g. Hu
& Sugiyama 1995a; Bond 1995) and require detailed infor-
mation on the microphysical interactions that govern photon-
baryon coupling (see e.g. Hu, Scott, Sugiyama, & White 1995).
Here we focus on the opposite limit of a very gradual decou-
pling of the photons from interactions with the matter. This
occurs for scattering effects in reionized models and gravita-
tional effects between last scattering and the present. We signif-
icantly improve previous analytic treatments of this case (Kaiser
1984, Efstathiou 1988, Hu & Sugiyama 1994) by calculating the
anisotropy directly rather than inferring it from the correspond-
ing inhomogeneity of the CMB at last scattering.

These more accurate calculational techniques are especially
important in the case of higher order effects which can dominate
on scales under the thickness of the last scattering surface. Here
linear contributions have been damped away and the anisotropy

cannot be obtained by the standard procedure of numerically
solving the linearized Boltzmann equation (Wilson & Silk 1982,
Bond & Efstathiou 1984, Vittorio & Silk 1984). The dominant
term is the second order Doppler contribution called the Vish-
niac effect (Ostriker & Vishniac 1986; Vishniac 1987). Because
it is second order, Vishniac contributions are strongly weighted
toward the present (Hu, Scott, & Silk 1994) and cannot be con-
sidered as a projection of temperature inhomogeneities at the
last scattering surface. Indeed, 50% of the signal in tempera-
ture fluctuations for a reionized cold dark matter (CDM) model
comes from redshifts of z < 5. This approaches the redshift at
which the universe must be reionized to satisfy Gunn-Peterson
constraints. Thus even minimally ionized CDM models can be
expected to have arcminute contributions to temperature fluctu-
ations from the Vishniac effect. The standard formalism (Efs-
tathiou & Bond 1987; Efstathiou 1988) cannot adequately treat
this important case in which last scattering does not occur on
a single well defined surface. We evaluate the amplitude and
detailed shape of the resultant minimal Vishniac anisotropy. Al-
though it may well be the dominant small scale effect, its pres-
ence is unlikely to confuse measurements of the sharp damping
tail of linear contributions. This has important implications for
the measurement of the geometry and/or thermal history of the
universe from small scale anisotropies.

To verify these new analytic techniques, we first develop
them on and apply them to first order contributions where com-
parisons with highly accurate numerical treatments are possible.
We present an analysis of first order Doppler effects on small
scales which improves upon previous analytic work (Kaiser
1984) especially in the late ionization limit. The weak cou-
pling approximation also accurately describes even the large
angle effects of gravitational potential decay in a cosmological
constant dominated universe. The resultant analytic formulae
greatly simplify previous treatments (Kofman & Starobinski
1985) without compromising accuracy and allow for a quick
and efficient calculation of this effect.
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2. First order effects

Let us first verify the weak coupling approximation in the case
of linear contributions which can be calculated precisely by
numerical methods. To first order in density fluctuations, the
Boltzmann equation in Fourier space for the evolution of photon
temperature perturbations AT /T = ©(k,~y,7) in a flat Qg +
QA = 1 universe has the formal solution

[0+ Tk, v,m) = [][(O0 + T+ vp)7 +2¥] (1
X e_Teik#(n, —n)dn’,

[see Hu & Sugiyama 1995b, eqn. (54)] where we have neglected
the small corrections from the angular dependence of Thomson
scattering and polarization. Here ©y is the isotropic tempera-
ture fluctuation, ¥ is the Newtonian gravitational potential, v,
is the baryon velocity with ¢ = 1, k - 7v = ku where ; are the
direction cosines of the photon momentum, and overdots rep-
resent derivatives with respect to conformal time = [ dt/a
where a is the scale factor normalized to the present. The dif-
ferential optical depth to Compton scattering is given explicitly
by 7 = z.n.ora, where z. is the ionization fraction, n. is the
electron number density, and o7 is the Thomson cross section.
From left to right, the linear contributions to the anisotropy in
the integrand are the intrinsic photon temperature at last scat-
tering (Peebles & Yu 1970), the gravitational redshift (Sachs &
Wolfe 1967), the Doppler effect (Sunyaev & Zel’dovich 1970),
and the differential gravitational redshift or integrated Sachs-
Wolfe (ISW) effect (Sachs & Wolfe 1967). The first three ef-
fects contribute at last scattering. Consequently, these sources
are multiplied by the differential visibility function 7e~" which
is the probability of last scattering in the interval dn at 7. The
ISW effect contributes between last scattering and the present
as the e™7 suppression at high optical depth shows.

Below the horizon but above the photon diffusion scale
at last scattering, the photons and baryons evolve adiabati-
cally leading to acoustic oscillations as photon pressure re-
sists gravitational compression (Peebles & Yu 1970). This
leads to strong contributions from the intrinsic photon temper-
ature and the “Doppler peak” structure of anisotropies from
standard recombination at z, = 1000 (see e.g. Bond & Ef-
stathiou 1987; Doroshkevich, Zel’dovich & Sunyaev 1978).
However if the universe is significantly reionized, last scat-
tering occurs much later. In this case, the Compton optical
depth 7 drops below unity only after the free electron den-
sity has been sufficiently decreased by the expansion z, =
100(Qh2/0.25)'3(x . h?/0.0125)=2/3. At this time, the dif-
fusion length approaches the horizon scale. Since diffusion
damps out intrinsic temperature fluctuations inthe CMB ase™7,
acoustic oscillations do not appear in the present day anisotropy
of strongly reionized models.

In the reionized case, the other sources in Eq. (1), which
arise from fluctuations in the matter, are important. These
sources can yield strong contributions if last scattering occurs
after the matter has been released from Compton drag. After
224 ~ 160(Qh*) Sz, /5 (Hu & Sugiyama 1996), perturba-
tions grow as in linear theory. Here the Hubble constant is given
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Fig. 1. Doppler effect in reionized CDM models (o = 1, h = 0.5,
n = 1). For late ionization models z; < z4, the analytic estimate which
involves the neglect of Compton drag is an excellent approximation to
the numerical results at small scales. For low £, h? models, the optical
depth between z;, at which the universe becomes fully ionized, and
the present is insufficient to erase completely the primary signal from
standard recombination. The total effect is thus described by adding
€27 of the standard recombination result to the Doppler effect. Here
and in Figs. 3,4,5 the relative normalization is fixed by the amplitude
of the matter power spectrum.

by Hy = 100h kms~! Mpc~!. Contributions well after z4 can be
analytically calculated, following Kaiser (1984), by iteratively
solving for the feedback of the Doppler term into the intrin-
sic temperature fluctuation at last scattering. Averaging Eq. (1)
over angles and keeping the leading order term, we obtain for
the first order effect

n
O+ ~ / Fe v k() — iy ~ iy /K, @
0

for scales below the horizon at n, kn > 1. Here diffusion and
cancellation reduces the contribution by a factor 7/k, the opti-
cal depth through a wavelength. The /th Legendre moment of
the temperature fluctuation ©, = i} _ll O Py(u)dy from the
secondary sources is now given by

1 ul .
Ok, m0) = o [—tvpT — tvpT + 2kV] 3)
Nd
xe T jelk(no —mldn, (€ >2)
which is valid for the Doppler term only under the horizon scale
at last scattering.

Atsufficiently small scales, the photon traverses many wave-
lengths of the fluctuation during the interval the sources in the in-
tegral of Eq. (3) contribute. In this case, opposing contributions
from crests and troughs tend to cancel and damp the anisotropy.

Mathematically, this can be seen from the rapid oscillation of
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the spherical Bessel function at high &k in Eq. (3). Taking the
slowly varyihg quantities out of the integral, noting that

= VL€ +1)/2]
|, o= S @
and expressing the anisotropy in the conventional form of

> dk
Co== | KOk, ), ®)
T Jo
we obtain
T+ 1)/21\° [dk K>

(1 _ -

= (F[(u >/1) | & Genore ©

x[Sp(ne) + Ssw(Me)* P(k),

where the matter power spectrum P(k) = |Ay(k, no)|? and the
Doppler and ISW sources,

Spn) = (D7 + D#) mge™", @)
D (D a .
Sisw(n) = 3H390; (5 - ;) ne™ 7,

are evaluated at the peak of the /fth Bessel function 7, =
no — (£ + 1/2)/k. Here we assume linear theory growth for
the density perturbations, as is appropriate after the drag epoch,
Ap(k,n) = D(m)Ap(k,mo) and we have employed the conti-
nuity and Poisson equations to relate this to the velocities and
potentials

kvp(k,m) = Apk = i DAy(k, no)k, ®)
3
kU (k,n) = —§<D/a)H§QoAb(k, o),

assuming the baryons follow the total matter. Note that in an
Qo = 1 universe, D = (n/m0)*. More generally, it is given by
D o H [da/(aH)?, where H is the time dependent Hubble
parameter.

The Doppler and ISW contributions have the same angular
scaling despite the fact that velocities dominate over potentials at
small scales (high k) from Eq. (8) (Hu & Sugiyama 1994). This
is because the Doppler contribution suffers severe crest-trough
cancellation due to the irrotational nature of linear theory flows
(Ostriker & Vishniac 1986). Crest-trough cancellation does not
occur if the plane wave oscillates in a direction perpendicular to
the line of sight k L ~y. However, since v; || k and the Doppler
effect arises from the velocity component along the line of sight,
it cannot escape cancellation through this mode. Thus ordinarily
negligible effects may dominate small scale anisotropies.

InFig. 1, we compare the analytic prediction for the Doppler
effect with full numerical results. These numerical results are
obtained by solving the full system of coupled perturbation
equations for all the fluids and includes polarization effects in
the CMB (see e.g. Hu et al. 1995). For late-ionized low Qh?
models, the optical depth between the reionization epoch and
the present is insufficient to damp completely the primary sig-
nal from standard recombination. To describe the full effect
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Fig. 2. Weak coupling approximation for the A ISW effect. The analytic
approximation based on crest-trough cancellation traces the full ISW
integral to high accuracy and accounts for the falling ISW spectrum.
As Qy increases, the relative contribution of the ISW effect decreases
in comparison to the Sachs-Wolfe (SW) effect, arbitrarily normalized
to unity. Here we have chosen a pure power law P(k) « k power
spectrum.

at small angles one adds this contribution in quadrature with
Eq. (6): CS* = CV + =27 CP"™  This simple expression may
be useful for post-processing standard recombination results to
account for reionization without detailed recalculation.

Note that if reionization occurs sufficiently before the drag
redshift and Q,h? is low such that z, ~ zg, the baryons will
not have completely fallen into the cold dark matter wells by
last scattering. In this case, Eq. (6) overestimates the amplitude
but not the angular dependence of the Doppler effect. Since
previous analytic treatments (e.g. Kaiser 1984, Hu et al. 1994)
also neglect Compton drag, we have improved the techniques
for all cases.

On the other hand, if g < 1 the ISW term contributes at
A-domination, 1+ zx = (4 /0)'/3, and the neglect of drag is
an excellent approximation for all reasonable €2y. Furthermore,
since the horizon at A domination is close to the present horizon
in size, the cancellation approximation is valid for all £’s rele-
vant to anisotropies. Thus the above approximation provides a
simple way of calculating the ISW contributions even at large
angles for flat A models. The combined Sachs-Wolfe and ISW
effects can be written as Cp = C'(SW) Cgsw) , where

dk s ’
oW =2 / . < |k, m)l) Jilk(mo =), )

CUSW) _ <F[(€ +1)/ 2]) / dk K*P(R) oo
¢ T[(¢+2)/2] (ko)

In Fig. 2, we show that the expression for C’gsw) in Eq. (9) is
an excellent approximation of the full ISW integral in Eq. (3).

1sw (Me)-
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Fig. 3. Analytic versus numerical results for A CDM. Comparison with
numerical integration (thick solid lines) shows that at large scales,
where A ISW and Sachs-Wolfe (SW) contributions dominate the
anisotropy, analytic formulae (thick dashed lines) adequately describe
the total anisotropy. At small scales, the curves depart from the pre-
diction due to the early ISW effect and acoustic contributions (Hu &
Sugiyama 1995a). Here we have chosen a high A = 1.0, low ©y = 0.1
model to minimize these effects. Also plotted in thin dotted lines is the
analytic prediction for a pure P(k) ox k power spectrum with the same
normalization at large scales.

For simple pure power law spectra P(k) = Ak™, the Sachs-
Wolfe integral can be evaluated analytically and the ISW term
can be well approximated by a closed form expression. In par-
ticular, for the n = 1 case the combined effect becomes

+DCy Ay isa T[e+1)/21\?
—— ~ 5 i [1+78.5 (—r[(e+2)/2]) (10)

x(1+0.08/0)~ (1 — 98.094)2.07} .

where we have approximated (Q9D./a.)? ~ Q}->* and the first
and second terms in square brackets represent the Sachs-Wolfe
and ISW effects respectively. For tilts up to £0.3 around n = 1,
the ISW integral is well fit by multiplying the n = 1 resultby [(¢+
1/2)/£,1"~", where the pivot multipole is £, = 74005 **h 1.
The Sachs-Wolfe result can be tilted by employing the standard
gamma function formula (see e.g. White, Scott, & Silk 1994,
Eq. 15).

Realistic models are somewhat more complicated if high
accuracy is required. Perfect agreement between numerical and
analytic calculations cannot be achieved here due to additional
effects from the recombination era such as the acoustic and early
ISW effects (Hu & Sugiyama 1995a). Though these dominate
at small angles, even for large angle anisotropies, the small but
coherent early ISW effect can alter the total anisotropy. Fur-
thermore, in the A CDM model of Fig. 3, processing of the

initial P(k) o k spectrum during radiation domination causes
the present power spectrum to turn down at small scales. The
error incurred by employing a power law approximation to the
spectrum instead of the true processed spectrum is small at the
quadrupole, but can be significant for somewhat smaller angles.
Notice that the discrepancy is larger for the ISW effect than
the Sachs-Wolfe effect since it is generated at later times when
small scales subtend larger angles on the sky. This clearly shows
the benefit of calculating anisotropies directly instead of via the
spatial distribution where the differences in projection would be
lost. We shall encounter this distinction again when we calculate
the Vishniac effect in the next section.

3. The Vishniac effect

Since the first order Doppler effect is mainly cancelled due
to geometrical reasons associated with irrotational flows, sec-
ond order effects can dominate the anisotropy at small angles.
While in principle there are many sources in second order per-
turbation theory, it has been shown that the Vishniac effect is
the dominant contribution wherever such effects are important
(Hu et al. 1994, Dodelson & Jubas 1995). It is obtained by
noting that fluctuations in the baryon density A, change the
optical depth 7 to Compton scattering and hence the proba-
bility of scattering. The coupling of the optical depth fluctua-
tion to the standard Doppler source yields the Vishniac term:
v - q(x) = - ve(X)Ap(x).

Generalizing the Doppler term in Eq. (1), the formal solu-
tion to the Vishniac effect is

n
Ok, v,m) = / ey - gt Py, an
0

We have neglected feedback effects from the generation of a
monopole and quadrupole by the Vishniac effect into the full
Boltzmann equation. For scales under the width of the visibil-
ity function 7e~7, the Vishniac effect feeds back to create a
monopole O + ¥ = ?(q7/k). Just as for the first order effect,
these contributions are reduced by the optical depth through a
wavelength on small scales. For scales much larger than the
width, v - q sources only a dipole. Thus feedback effects are
always negligible.

Following Vishniac (1987), let us decompose the solution
at the present epoch 7 into spherical harmonics,

Ok, 7,m0) = Y _ Opm(K)Yerm(Q),

Zm

(12)

so that

70 ) 2
|@Zm|2 = ‘/ ds) Yrem(Q) / d’r”]"e_rﬂy . qe"‘kl"('n_"?o) . (13)
0

Choosing 2 || k, we note that the azimuthal angle dependence
separates out components of q parallel and perpendicular to k:
v - q = cos¢sinfq; + cosfq. This dependencg guarantees
that the cross terms between the two components vanish after
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integrating over azimuthal angles. Thus the two contributions
add in quadfature and may be considered as separate effects.

Let us consider the parallel component cos ¢ = ug. This
is to be integrated over the oscillatory function e?*#=m)_If the
wavelength is much smaller than the thickness of the visibil-
ity function, the integral will suffer severe cancellation unless
= 0. Just as in the first order case, unless the perturbation is
perpendicular to the line of sight, we will be looking through
many crests and troughs of the perturbation. Since the parallel
component is proportional to u, there is no contribution from
this direction, leaving a negligible total effect. Because the sec-
ond order parallel term suffers the same cancellation as the first
order term, it can always be neglected in comparison.

The perpendicular term does not vanish for & = 0 and thus
survives cancellation. Since the final result after summing over
all k modes has no preferred direction, define

2
=4 2/2+1Z| Oeml”,

which corresponds to the former definition of ©,. Using the
addition theorem for spherical harmonics and the orthogonality
of cos m¢, we find (Vishniac 1987)

|©e(k, m0)? (14)

1 1
|©¢(k,mo)|* = m’ /_] du P[(1 — p)]'/? (15)

7o . 2
% / dn fe—quelkH(ﬂ—ﬂo)
0

The p integral can be performed (Abromowitz & Stegun 1964,
eqs [8.5.1, 10.1.14]), to yield

1 o
|@e(k,n0)[2 = §€(€+ 1)' / dnte "q1 , (16)
0

kAn

where An = 19 — 7). Notice that this has a simple physical in-
terpretation. We know from the spherical decomposition that a
plane wave perturbation projects onto the shell at distance An
as jy(kAn). The projection from & to £ is not one-to-one and
thus leads to an aliasing which is described by the oscillating
tail of the Bessel function. If the amplitude of the plane wave
is modulated by an angular dependence, the projection is mod-
ified. In particular, the perpendicular component is a face-on
projection and suffers less aliasing. Thus the higher oscillations
are damped roughly as £/kAn.

Now all that remains is to evaluate the ¢, term. Since the
Vishniac effect is second order, the convolution theorem for
Fourier transforms tells us that

kk
Cu=(1 > va(k)Ab(lk k')

+vp(k — k/)Ab(kl).

an

We can relate the linear theory baryon velocity and density by
the continuity Eq. (8). Taking the ensemble average of the fluc-
tuation and assuming random phases for the underlying linear

theory perturbations, we obtain

&2 . .
(@1 (k,maLk,n)) = 7D(n)D(n)D(n’)D(n’) (18)

x Y P(K)P(k — K'|),
kl

where P(k) = |A%(k, n0)|* and the projected vector

k) [K | k—K
0= () [ w=we)

A bit of straightforward but tedious algebra yields

1 10¢+1)
@22 kno

(19)

{|1©¢(k, mo)|*) = ——— M(k)IZ(k)P2(k), (20)

where the mode coupling integral, coming from |d[2, is
(1 =231 = 2yz)®

(o) 1
M = /0 dy/_l Wy 2yep
Plk(1 +y? — 2yz)'/?] P(ky)

P(k) Pk) "

The integration variables arise from y = k' /k and k" - k = k'kx
and the time integral is

@n

o d77 )
i = [ 2L sy ik @2
o "o

Here Sy(n) = DD+e "™n3/(no — n), which reduces to
2(n/mo)>re""mo/(1 — n/no) if Qo = 1. Note that the integrand
is more strongly weighted toward later times than the visibility
function itself. It has often been assumed (e.g. Efstathiou 1988)
that the contributions come mainly from last scattering where
the optical depth 7 & 1. This causes a significant error in the k
to £ projection, i.e. a given spatial scale would erroneously be
considered to contribute to a smaller angle. It can be a very se-
vere effect if the power spectrum peaks toward small scales as in
the case of baryon isocurvature scenarios (Peebles 1987). Even
extremely small scales can contribute to observable anisotropies
at sufficiently late times.

The time integral in Eq. (22) is cumbersome to evaluate for
high ¢ due to the spherical Bessel function. However just as in
the first order case, we can exploit the fact that in the cancella-
tion regime the integral extends over many wavelengths of the
perturbation. Indeed, we have just shown that the function Sy
multiplying j¢ is even more slowly varying than the wide visibil-
ity function itself. Taking Sy out of the integral and employing
the approximation of Eq. (6), we obtain

AT+ 1)/2] 1
2 I‘[(£+2)/2] knOSV(W)

N\/ Ek —Sv(m), €>1

where recall 1y = 19 — (£+ 1/2)/k. This represents an excellent
approximation for angular scales relevant to the Vishniac effect
(see Fig. 4).

Ii(k) = (23)
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Fig. 4. Comparison of different approximations for evaluating the Vish-
niac effect for a standard CDM model (2 = 1, h = 0.5, 2, = 0.05)
normalized to COBE (Qmms—ps = 20uK). The cancellation approx-
imation of Eq. (23) matches the full integral of Eq. (22) extremely
well, whereas the projection of the r.m.s. spatial fluctuation (Efstathiou
1988) does not.

The random phase assumption for the underlying linear per-
turbations assures us that there are no cross terms between first
and second order contributions or different ¥ modes. Thus the
total anisotropy is obtained by integrating over all £ modes:

C(z) _ E(£+ H1

dk
0

InFig. 5, we plot the Vishniac effect for standard CDM with late
to minimal reionization. Since the Vishniac effect is so strongly
weighted toward late times, the underlying approximation that
Compton drag is negligible holds even for low £,h% models
unlike for the Doppler effect. The small scale matter power
spectrum is well described by an analytic fit (Bond & Efstathiou
1984)

Ak

P(k) = )
{1+ [(ak + (Ok)2 + (cky2 ] V¥

(25)

where a = 6.4(Qh%) " 'Mpc, b = 3.0(Qh%)~" Mpc, ¢ =
1.7(Qoh%*)~" Mpc, and v = 1.13. The normalization is re-
lated to the CMB ensemble averaged quadrupole by A =
7.62 x 103(Qrms—ps/20pK)*(h~'"Mpc)* in an €y = 1 model
and by employing Eq. (10) for a A model. Note that C; =
(47r/5)(Qrms—PS /2‘726K)2-

Most previous calculations (Efstathiou 1988; Hu et
al. 1994; Chiba, Sugiyama, & Suto 1994; Persi 1995) of the
Vishniac effect have relied upon the approximations of Efs-

i

Fig. 5. Primary and Vishniac contributions for a range of possible ion-
ization histories in the standard CDM model (see Fig. 4). Note that
even for minimally ionized 2 = 5 — 10, where first order anisotropies
are nearly indistinguishable from the standard recombination case, the
Vishniac effect contributes a significant fraction of its total in temper-
ature fluctuations. Because standard CDM has more small scale power
than measurements suggest, we expect these calculations to be an upper
limit for CDM-like models.

tathiou & Bond (1987). This involves approximating the r.m.s.
temperature fluctuation at present,

0 d
()/ @,

and projecting such fluctuations on the sky today via a free
streaming approximation such as

Pz(k)

|O(k, 770)]rms ~ 773 Tor

~1ysy ()
To

£+ 1)

)
7 —C,

1
555100k, 7o) @7

k=£/(mo—n4)

where 7, is the epoch where optical depth reaches unity. This
approach is flawed since the k-space power spectrum at the
present does not contain sufficient information to reconstruct
the anisotropy in £.

As we have seen, anisotropy contributions to a given £ are
widely distributed along the line of sight from last scattering to
the present in a form that depends sensitively on the power spec-
trum. In Fig. 4, we show that this prior approximation causes
a ~ 30% underestimate of the coherence angle of the Vishniac
effect in the standard CDM model. The error can be signifi-
cantly more severe in cases where there is more power at small
scales. Our techniques are also more powerful in that they apply
to visibility functions with arbitrary features, e.g..the bimodal
function which occurs in late reionization scenarios.
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4. Conclusions
'

1

We have presented a formalism for calculating CMB
anisotropies in the weak coupling or cancellation damped
regime. When applied to the Doppler effect in reionized sce-
narios, it allows for simple post-processing of the standard re-
combination results. It also gives the A ISW effect at large angles
to good accuracy. Applied to the Vishniac effect, this yields a
significantly more accurate description than that which has pre-
viously appeared in the literature. As an example of our method,
we have evaluated the contribution from standard CDM for a
range of reionization histories and shown that the arcminute
scale anisotropies are small but present even in a minimally
ionized scenario.

While the small amplitude of arcminute fluctuations in stan-
dard flat CDM models will make their detection difficult in the
near future, the fact that they are so small implies that their con-
tribution cannot be confused with the much larger effect due to
the geometry of the universe. A positive detection of large CMB
fluctuations on small scales would be evidence that the geometry
of the universe is hyperbolic. As we have shown here the sec-
ond order contributions in models such as CDM (which already
have more small scale power than observationally required) are
small. Recently, the non-linear analogue of the Vishniac effect
has been calculated from hydrodynamic simulations and shown
to be small in comparison with the second order effect in CDM
(Persi et al. 1995). Other higher order contributions have also
been calculated from simulations. Gravitational lensing only
redistributes the power, it does not generate more power on
small scales (Seljak 1996a). It has recently been shown (Sel-
jak 1996b) that the Rees-Sciama effect is also small.

Clusters can also induce anisotropies on the CMB from
Compton scattering off electrons in the hot cluster medium. Hot
electrons transfer energy to the microwave background leading
to spectral distortions in the CMB by the Sunyaev-Zel’dovich
mechanism. Thus the temperature fluctuation will not only have
an angular but also a frequency dependence unlike other sources
of anisotropies. Ceballos & Barcons (1994) employ an empiri-
cally based model for clusters. They find that in the Rayleigh-
Jeans regime, where the Sunyaev-Zel’dovich effect leads to a
constant brightness decrement, the anisotropy at arcminutes is
on the order AT/T < 10~7. Moreover, the signal is in large
part due to bright and easily identifiable clusters. If such known
clusters are removed from the sample, the anisotropy drops to
an entirely negligible level. One therefore expects that the small
Vishniac effect dominates the small angle anisotropy beyond
the damping tail of primary anisotropies. Thus the presence of
significant arcminute scale anisotropies may provide a robust
indicator of curvature in the universe.
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