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ABSTRACT

Weak lensing of galaxies by large-scale structure can potentially measure cosmological quantities as accurately
as the cosmic microwave background (CMB). However, the relation between observables and fundamental
parameters is more complex and degenerate, especially in the full space of adiabatic cold dark matter models
considered here. We introduce a Fisher matrix analysis of the information contained in weak-lensing surveys to
address these issues and provide a simple means of estimating how survey properties and source redshift un-
certainties affect parameter measurement. We find that surveys on degree scales and above can improve the
accuracy on parameters that affect the growth rate of structure by up to an order of magnitude compared to using
the CMB alone, even if the characteristic redshift of the sources must be determined from the data itself.
Surprisingly, both sparse sampling and increasing the source redshift can weaken the cosmological constraints.

Subject headings: cosmic microwave background — gravitational lensing

1. INTRODUCTION

Weak lensing of faint galaxies by large-scale structure can
in principle provide precise constraints on the spectrum and
evolution of mass fluctuations in the universe (Miralda-Escude
1991; Blandford et al. 1991; Kaiser 1992). Given the same sky
coverage, the statistical errors on these measurements should
be as small as those from the cosmic microwave background
(CMB). The main systematic errors are instrumental rather than
astrophysical; although difficult, detector problems are in prin-
ciple surmountable (Kaiser, Squires, & Broadhurst 1995; Fi-
scher & Tyson 1997; Kamionkowski et al. 1997; Schneider et
al. 1998).

Because lensing convolves aspects of the spectrum of pre-
sent-day mass fluctuations, their evolution, and the distribution
of source galaxies, it is not obvious how to translate precision
in the observables into precision in the cosmological param-
eters. Previous work has focussed on a relatively small number
of parameters such as the matter density and its present-day
fluctuation amplitude assuming a fixed functional form and a
fixed distribution of sources (e.g., Jain & Seljak 1997; Ber-
nardeau, Waerbeke, & Mellier 1997; Kaiser 1998). Even so,
predictions depend strongly on prior assumptions for these
parameters.

In this Letter, we use a Fisher matrix approach to assess the
information contained in the weak-lensing power spectrum.
This quantifies how assumptions about survey properties, pa-
rameter space, fiducial model, and prior knowledge from other
cosmological measurements affect parameter estimation. We
study an 11-dimensional parameter space based on the adiabatic
cold dark matter (CDM) model and show that information from
CMB anisotropy measurements can be used in lieu of large
sky coverage to isolate several key cosmological parameters
and measure the redshift distribution of the sources.

We begin in § 2 with the Fisher matrix formalism. In § 3,
we describe the parameterization of the cosmological model to
which we apply this formalism in § 4. We study the effect of
the source sampling and distribution in § 5 and summarize our
conclusions in § 6.

2. FISHER MATRIX

By measuring the distortion of the shapes of galaxies due
to the tidal deflection of light by large-scale structure, one can

determine the power spectrum of the convergence as a function
of multipole or angular frequency on the sky (Kaiser 1992,ø
1998):

2g (x)
k 4P 5 ø dx P (ø/ sinh x, x), (1)ø E F6sinh x

where PF is the three-dimensional power spectrum of the grav-
itational potential, is the distance to z in unitsz21 21x { R H dz∫0

of the radius of curvature with H as the1/2R { 1/H (1 2 Q )0 tot

Hubble parameter, and g(x) weights the galaxy source distri-
bution by the lensing probability

` ′sinh (x 2 x)′ ′g(x) 5 sinh x dx n(x ) , (2)E ′sinh (x )x

where n(x) is the distribution of sources normalized to
. We use the Peacock & Dodds (1994) scalingdxn(x) 5 1∫

relation to obtain the nonlinear density and hence the potential
power spectrum. For models with massive neutrinos, we replace
their growth rates with the scale-dependent rates from Hu &
Eisenstein (1998).

Kaiser (1992, 1998) showed that the errors on a galaxy el-
lipticity based estimator of are described bykPø

22 Ag Sintk kDP 5 P 1 (3)Îø ø( )¯(2ø 1 1)f nsky

(see also Seljak 1998), where deg2 is the2f 5 V p/129,600sky

fraction of the sky covered by a survey of area V2 and
is the galaxy-intrinsic rms shear in one compo-2 1/2Ag S ≈ 0.4int

nent. We assume throughout that deg5 22n̄ ≈ 2 # 10 5 6.6 #
sr21, which corresponds roughly to a magnitude limit of810

(e.g., Smail et al. 1995b). The first term is simply theR ∼ 25
sampling error assuming Gaussian statistics for the underlying
field. Equating the two terms gives the above which shotø
noise from the finite number of source galaxies dominates. We
plot an example of the band power and its errorskø(ø 1 1)P /2pø

averaged over bands in in Figure 1.ø
Equation (3) tells us that weak lensing can, in principle,

provide measurements as precise as the CMB. Unlike the CMB,
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Fig. 1.—Weak-lensing power spectrum for the fiducial LCDM model and
errors for a survey. These are compared with a model that is degenerateV 5 37
with respect to CMB measurements from MAP. With the fixed assumedz 5 1s

here for illustration purposes, the 0.1 j MAP separation increases to many j
in the lensing survey.

TABLE 1
Full-Sky Weak Lensing Compared with CMB

j(pi) Weak Lensing MAP Planck

j(Qmh2) . . . . . . . . . . . . . 0.024 (430) 0.029 0.0027
j(Qbh

2) . . . . . . . . . . . . . 0.0092 (310) 0.0029 0.0002
j(mn) . . . . . . . . . . . . . . . 0.29 (230) 0.77 0.25
j(QL) . . . . . . . . . . . . . . . 0.079 (180) 1.0 0.11
j(QK) . . . . . . . . . . . . . . . 0.048 (200) 0.29 0.030
j(nS) . . . . . . . . . . . . . . . 0.066 (470) 0.1 0.009

. . . . . . . . . . . . .j(ln A) 0.28 (310) 1.21 0.045
j(zs) . . . . . . . . . . . . . . . . 0.047 (56) [1] [1]
j(t) . . . . . . . . . . . . . . . . ) 0.63 0.004
j(T/S) . . . . . . . . . . . . . . ) 0.45 0.012
j(Yp) . . . . . . . . . . . . . . . [0.02] [0.02] 0.01

Note.—MAP assumes temperature information; Planck assumes additional
polarization information. These span the range of predicted CMB parameter
estimation prospects. Square brackets denote priors of andj(Y ) 5 0.02p

.j(z ) 5 1s

the angular power spectrum of weak lensing is rather featureless
because of the radial projection in equation (1). Thus, the trans-
lation of these measurements into cosmological parameters will
suffer from more severe parameter degeneracies.

We estimate the accuracy with which these cosmological
parameters pi can be jointly measured by computing the so-
called Fisher information matrix (see § 17 of Kendall &F
Stuart 1969). can be thought of as the covariance matrix21F
of the best possible unbiased estimator of the parameter vector

, i.e., cannot be measured with a variance less thanp pi

. If all other parameters were known a priori, this min-21(F )ii

imum variance drops to . In the approximation that the21(F )ii

power spectrum measurements have uncorrelated and Gaus-kPø

sian errors , the Fisher matrix is given byk kDP K P F 5ø ø ij

(Tegmark, Taylor, & Heavensk 22 k kO (DP ) (­P /­p )(­P /­p )ø ø ø i ø j

1997). Equation (3) therefore gives

ømax k kø 1 1/2 ­P ­Pø øF 5 . (4)Oij k 2 2¯f (P 1 Ag /nS) ­p ­pø5ømin sky ø int i j

We choose when evaluating equation (4),ø 5 1007/Vmin

since it corresponds roughly to the survey size. The precise
value does not matter for parameter estimation because of the
increase in sample variance on the survey scale. We choose a
maximum value of , since here nonlinear effectsø 5 3000max

can produce non-Gaussianity in the angular distribution, which
increases the errors on the power spectrum estimator (Jain &
Seljak 1997; Jain, Seljak, & White 1999). Since the conver-
gence arises from many independent density fluctuations along
the line of sight, it remains Gaussian deeper into the nonlinear
regime. Nonetheless, determining a more precise value for

is an important issue that will be addressed by futureømax

simulations. We explore variations in in § 4.ømax

Although information in the power spectrum is degraded by
non-Gaussianity, it can be recovered from the non-Gaussian
measures such as the skewness of the convergence. We neglect
such information here to be conservative (see Jain & Seljak
1997; Bernardeau et al. 1997).

3. PARAMETERIZED MODEL

Projections for how well weak lensing can measure cos-
mological parameters depend crucially on the extent of the
parameter space considered as well as the location in this space
(or “fiducial model”) around which we quote our errors. Pre-
vious works have focused on models with essentially two pa-
rameters, the matter density Qm and the amplitude of mass
fluctuations on the 8 h21 Mpc scale today, j8 (e.g., Bernardeau
et al. 1997; Jain & Seljak 1997; Jain et al. 1999). Since all
cosmological parameters that affect the amplitude of power
across a wide range of physical ( h Mpc21) andH & k & 100

temporal scales ( ) are accessible to weak lensing, it seemsz & 1
prudent to consider a wider parameter space and then impose
any external constraints as prior information.

We consider the adiabatic cold dark matter model space and
include 11 free parameters. Weak lensing is only sensitive to
eight of the parameters: the matter density , the baryon2Q hm

density , the mass of the neutrinos mn, the cosmological2Q hb

constant QL, the curvature , the scalar tilt nS,Q 5 1 2 Q 2 QK m L

the power normalization PF(3000 Mpc21) initially (A), and the
characteristic redshift of the sources zs. When considering prior
information provided by the CMB, the optical depth to reion-
ization t, the primordial helium abundance Yp, and the scalar-
tensor ratio T/S must be considered because of their covariance
with the eight lensing parameters.

For our source redshift distribution, we assume a common
redshift given by zs since the errors on cosmological parameters
are insensitive to the shape of the distribution as long as it is
considered known. We return to this point in § 6. Our fiducial
model is the same LCDM model as chosen in Eisenstein, Hu,
& Tegmark (1998): , , ,Q 5 0.35 h 5 0.65 Q 5 0.05 Q 5m b L

, eV, , , , and A given by0.65 m 5 0.7 t 5 0.05 n 5 1 T/S 5 0n S

the COBE normalization.

4. PARAMETER ESTIMATION RESULTS

In Table 1, we present the Fisher estimates of errors
on cosmological parameters from weak lensing assum-21(F )ii

ing full sky coverage and . Reducingf 5 1 ø 5 3000sky max

to 1000 typically degrades errors by no more than a factorømax

1.5. Errors for more realistic survey sizes V scale roughly as
until , at which the errors diverge. Although21/2f V ∼ 1007/øsky max

these errors (per ) are comparable in precision to CMB21/2fsky

estimates projected for the Microwave Anisotropy Probe (MAP)
and Planck satellites from Eisenstein et al. (1999), they fail to
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Fig. 2.—Improving CMB parameter estimation with weak lensing. Here and
throughout, we have assumed a prior of .j(z ) 5 1s

achieve their ultimate potential because of parameter degen-
eracies. We have included in parenthesis the degradation factors
due to degeneracies . These are on the order of21/2 21 1/2(F ) /(F )ii ii

hundreds and reflect that lowering or nS or raising2Q hm

all reduce the primordial small-scale power in mass fluc-2Q hb

tuations, whereas raising QL, QK, or mn all slow the growth of
structure. This mimics changes in the amplitude A and source
redshift zs at the well-sampled high ’s. On the other hand, theø
features in can basically be characterized by fourkø(ø 1 1)Pø

parameters: an amplitude, a slope, the nonlinear scale (ø ∼
), and the turnover scale ( ).3 210 ø ∼ 10

Surveys in the near future will be limited to several degrees
on the side at best ( ), and the precision lost to pa-23f ∼ 10sky

rameter degeneracies is crucial. The best constrained combi-
nations of the parameters can be determined from the eigen-
vectors of . The best combination involves , ,2 2F (Q h Q hm b

; variation in the direction (20.24, 0.45, 1)2Q h 5 m /94 eV)n n

is constrained to have 1025 amplitude for . Moving inf 5 1sky

this direction rapidly reduces the small-scale power in mass
fluctuations to which weak lensing is most sensitive. From
analytic treatments of growth rates, we also expect that neu-
trinos are twice as effective as baryons in reducing small-scale
power (Hu & Eisenstein 1998).

These considerations imply that external constraints can help
weak-lensing measurements regain their precision. CMB sat-
ellite missions provide the ideal source of such information
since the CMB angular power spectrum they measure is sen-
sitive to the same cosmological parameters but in different
combinations. The CMB is particularly useful in the example
above, since it can provide precise measurements of Qbh

2 and
Qmh2, leaving weak lensing free to constrain the neutrino mass.
Furthermore, it is well known that CMB temperature meas-
urements suffer from degeneracies themselves, especially be-
tween QL and QK along the direction that keeps the angular
diameter distance to last scattering fixed. Because QL must be
raised to compensate QK in the CMB angular diameter distance
but must be lowered to compensate QK in the growth rate of
structure, one expects that weak lensing will be particularly
useful in breaking the degeneracy.

Figure 2 quantifies these expectations. The top panel shows
the improvement over projected MAP satellite errors on cos-
mological parameters (Eisenstein et al. 1999) when adding the
weak-lensing information with different survey sizes by sum-
ming Fisher matrices. Dividing the CMB numbers of Table 1
with these gain factors gives the absolute errors on cosmolog-
ical parameters. As expected, even a rather modest survey size
of is sufficient to improve MAP errors on QL and QKV 5 07.3
by a factor of 3 (see also Fig. 1). Ultimately, weak lensing can
improve MAP’s measurement of these quantities by over an
order of magnitude. Amusingly, it also improves the measure-
ment of t by a comparable factor, since the angular diameter
distance degeneracy in the CMB requires t-variations to offset
the amplitude changes from QL and QK. Once the degeneracy
is broken by weak lensing, t becomes better measured. With
survey sizes of several degrees and beyond, constraints on mn

improve to reach the ultimate limit of eV.j(m ) 5 0.1n

Weak lensing can improve on cosmological parameter es-
timation even if the CMB reaches its full potential with pre-
cision temperature and polarization measurements from the
Planck satellite (see Fig. 2b). In this case, gains will mainly
come from survey sizes . Again there is the potentialV * 107
to improve measurements of QK, QL, and mn by nearly an order
of magnitude, e.g., eV. This number is of par-j(m ) 5 0.04n

ticular interest since the atmospheric neutrino anomaly is cur-
rently suggesting mass squared separations of .2 23Dm ∼ 10n

More generally, this result suggests that weak lensing and CMB
measurements can be combined to study the clustering prop-
erties of the dark matter beyond the CDM paradigm. For ex-
ample, lensing can potentially test whether the cosmological
constant or scalar fields drives the acceleration in the expansion
rate.

5. EFFECT OF GALAXY SAMPLING AND DISTRIBUTION

How does the sampling of galaxies and their redshift dis-
tribution affect parameter estimation? Kaiser (1998) noted that
at degree scales, the large ratio of sample variance to noise
variance in equation (3) implies that one can obtain better
constraints on here by sparse sampling, i.e., tiling a largekPø

field with small fields at the same depth. One can estimate the
effect on cosmological parameters, under the optimistic as-
sumption that aliasing of power from small scales is negligible,
by replacing with in equation (3) (see2¯ ¯ ¯n n 5 nN (V /V)eff tile tile

Kaiser 1998, eq. [44]). Unfortunately, we find that going from
a filled survey at deg22 to at5¯V 5 37 n 5 2 # 10 V 5 107

deg22 not only fails to improve the errors, but4n̄ 5 2 # 10eff

can actually degrade them. This is because the main source of
cosmological information if comes from the translinearV ! 107
regime near . Accordingly, parameter errors start im-ø 5 1000
proving rapidly in Figure 2 only if by resolving theV 1 107
power spectrum bend below . Aliasing problems may2ø ∼ 10
unfortunately preclude such aggressive sparse sampling.

External knowledge of the redshift distribution of the sources
can aid parameter estimation especially for survey sizes with

where zs is not well measured internally. Redshifts onV ! 107
a fair sample of 100 galaxies would be sufficient to pin down
the characteristic redshift to , improving errors onj(z ) 5 0.1s

QL and QK by up to a factor of 2 for . Unfortunately,V ! 107
spectroscopy on a fair sample of these faint galaxies may be
prohibitive. Alternatively, one can use photometric redshifts to
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select a subsample of galaxies whose individual redshifts are
known to ∼10%. For example, even separating the 1.3% of
galaxies that are around (Steidel et al. 1996) improvez 5 3
errors on QL, mn, and zs by factors of 1.7, 1.3, and 2.1, re-
spectively, for .V 5 67

The actual value of zs affects the sensitivity of weak lensing
to cosmological parameters, but in a counterintuitive manner.
As the characteristic redshift of the source galaxies rise, the
lensing effect increases because of the increased amount of
intervening large-scale structure. Although this makes the sig-
nal easier to detect, it does not necessarily improve errors on
cosmological parameters. In fact, errors on QL and QK worsen
as zs increases! The reason is that QL and QK only affect low-
redshift structure. The intervening high-redshift structure is in-
sensitive to these parameters, and the sample variance on this
larger signal swamps that of QL and QK. With , errors onz 5 3s

QL and QK are a factor of 6 and 2 larger for .f 5 1sky

Finally, we have assumed that the galaxy redshift distribution
is parameterized by a single number, the characteristic redshift.
While this is indeed the main effect (Smail, Ellis, & Fitchet
1995a; Fort, Mellier, & Dantel-Fort 1995; Luppino & Kaiser
1997), the fact that weak lensing has the statistical power to
measure the characteristic redshift to better than 10% for survey
sizes implies that more detailed aspects of the distri-V * 107
bution, e.g., its width and skewness, can in principle be mea-
sured from large surveys. Allowing the data itself to determine
the form of the distribution will of course introduce more un-
certainty in the cosmological parameter determinations, but this
would be a small price to pay given the statistical power of
such large surveys.

6. DISCUSSION

The Fisher matrix analysis introduced here allows one to
explore with ease how assumptions about the survey properties,
the fiducial model, and any prior knowledge from other cos-
mological measurements affect parameter estimation. Weak-
lensing surveys are in principle sensitive to all cosmological
parameters that affect the shape of the matter power spectrum,

the growth rate of fluctuations, and the source redshift distri-
bution. Here we have included the effects of a cosmological
constant, spatial curvature, cold dark matter, baryonic dark mat-
ter, hot (neutrino) dark matter, power spectrum tilt and ampli-
tude, and the characteristic redshift of sources. We find that
even a relatively modest sample size of 07.3 would suffice to
improve our knowledge of cosmological parameters, such as
the cosmological constant and the curvature, over those pro-
vided by MAP satellite measurements of the CMB temperature
power spectrum. Order-of-magnitude improvements in many
cosmological parameters are available with survey sizes *37.

We have also explored how properties of the sample affect
parameter estimation. Sparse sampling can help extend power
spectrum determinations to larger angles but can degrade pa-
rameter estimation because of the rather featureless nature of
the lensing power spectrum in the range . The100 ! ø ! 1000
cosmological constant and curvature can be best measured with
a moderate-redshift ( ) population of sources, since thez ∼ 1s

larger signal at high redshifts is insensitive to these parameters
and therefore acts like noise. On the other hand, even separating
out the ∼1% of galaxies at by photometric redshiftsz ∼ 3s

(Steidel et al. 1996) can improve errors in the absence of red-
shifts for the bulk of the galaxies.

The potential of weak lensing for cosmology will only be
realized once systematic errors are reduced below the statistical
errors considered here. Anisotropies in the point-spread func-
tion of telescopes can mask the percent-level cosmological sig-
nal and pose a daunting challenge for the current generation
of weak-lensing surveys. Our analysis reinforces the conclusion
that the returns for cosmology justify this great expenditure of
effort.
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