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ABSTRACT
We describe an efficient algorithm for calculating the statistics of weak lensing by large-scale structure

based on a tiled set of independent particle-mesh N-body simulations that telescope in resolution along
the line of sight. This efficiency allows us to predict not only the mean properties of lensing observables
such as the power spectrum, skewness and kurtosis of the convergence, but also their sampling errors for
Ðnite Ðelds of view, which are themselves crucial for assessing the cosmological signiÐcance of obser-
vations. We Ðnd that the non-Gaussianity of the distribution substantially increases the sampling errors
for the skewness and kurtosis in the several to tens of arcminutes regime, whereas those for the power
spectrum are only fractionally increased even out to wavenumbers where shot noise from the intrinsic
ellipticities of the galaxies will likely dominate the errors.
Subject headings : cosmology : theory È gravitational lensing È large-scale structure of universe

1. INTRODUCTION

Weak lensing of background galaxies by foreground
large-scale structure o†ers an opportunity to directly probe
the mass distribution on large scales over a wide range of
redshifts. In this paper we describe an N-bodyÈbased algo-
rithm optimized for weak-lensing calculations that can be
run on workstation-class computers. The method is fast and
efficient, allowing the exploration of parameter space and
the production of many realizations of a given model to
assess the statistical signiÐcance of any result.

Weak lensing of distant galaxies by large-scale structure
shears and magniÐes their images. As Ðrst pointed out by
Blandford et al. (1991) and Miralda-Escude (1991), these
e†ects are of the order of a few percent in adiabatic cold
dark matter models, making their observation challenging
but feasible. Early predictions for the power spectrum of the
shear and convergence were made by Kaiser (1992) on the
basis of linear perturbation theory. Likewise, the skewness
of the convergence in perturbation theory was computed by
Bernardeau, van Waerbeke, & Mellier (1997). Jain & Seljak
(1997) estimated the e†ect of nonlinearities in the density
through analytic Ðtting formulae (Peacock & Dodds 1996)
and showed that they substantially increase the power in
the convergence below the degree scale.

On subdegree scales, a full description of weak lensing
therefore requires numerical simulations, the most natural
being N-body simulations. N-body codes are ideally suited
to weak-lensing calculations, since on the relevant scales
only gravity is involved, bypassing the need for a treatment
of hydrodynamic and radiative transfer e†ects. The evolu-
tion of density perturbations into the nonlinear regime by
N-body techniques is now a well-developed Ðeld. The
particle-mesh (PM) N-body technique provides an efficient
means of simulating the evolution of structure. Its speed
makes it ideal for the rapid exploration of cosmological
models and the calculation of statistical properties of the
lensing observables, e.g., the sampling variance on estima-
tors of the power spectrum, skewness, and kurtosis of the
convergence. While Lagrangian perturbation theory is
arguably even more efficient (Waerbeke, Bernardeau, &
Mellier 1999), without the proper nonlinear dynamics one

cannot guarantee that the statistics are faithfully repro-
duced.

The main drawback of the PM technique is the lack of
angular dynamic range, due partially to the broad kernel
that describes the efficiency with which structures along the
line of sight lens the sources (Jain, Seljak, & White 1998).
We show here that this problem can be in large part over-
come by tiling the line of sight with simulations of increas-
ing resolution.

The lensing signal is calculated by ray tracing through
the simulations (Blandford et al. 1991 ; Wambsganss, Cen,
& Ostriker 1998 ; Jain et al. 1998 ; Couchman, Barber, &
Thomas 1999 ; Fluke, Webster, & Mortlock 1999 ; Hamana,
Martel, & Futamase 2000). In the weak-lensing regime, a
key simpliÐcation is that one can use unperturbed photon
paths to perform the relevant line-of-sight integrals,
eliminating the need for explicit ray tracing (Blandford
et al. 1991 ; L. Hui 1999, private communication ; see,
e.g., Mellier 1999 ; Bartelmann & Schneider 2000 for a
discussion). This allows one to incorporate the lensing right
into the time evolution of the code, eliminating the need to
output the density Ðeld along the way and allowing very
dense sampling of the integrals. While the evaluation of the
convergence along an unperturbed path is self-consistent
within the framework of weak lensing, the results must be
checked against a full ray-tracing method. The simulations
reported in Jain et al. (1998) suggest that the approximation
is good to 10~3 in power for models similar to the one
reported in this paper.

In this paper, we concentrate on a speciÐc cosmological
model, a cosmological constant cold dark matter model
("CDM), with a scale-invariant spec-)

m
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trum of adiabatic perturbations (n \ 1), and a matter power
spectrum described by the Ðtting function of Bardeen et al.
(1986), with The model is normalized to the!BBKS \ 0.2.
COBE 4 yr data using the method of Bunn & White (1997).
This corresponds to slightly above the valuep8\ 1.2,
inferred from the abundance of rich clusters (Eke et al. 1998 ;
Viana & Liddle 1999).

The outline of the paper is as follows. In ° 2 we describe
our implementation of a PM code and lensing evaluation.
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In ° 3 we introduce the tiling technique. We present results
for the power spectrum of the convergence and sampling
errors in its estimation in ° 4, and analogous results for the
skewness and kurtosis of the convergence in ° 5. A compari-
son of our tiling method and those based on single simula-
tions is presented in ° 6. We conclude in ° 7.

2. THE PM LENSING CODE

To evolve the dark matter distribution in the nonlinear
regime, we use a particle-mesh (PM) code described in
detail in Meiksin, White, & Peacock (1999) and White
(1999). The simulations reported here use either 1283 or
2563 particles and a 2563 or 5123 force ““ mesh.ÏÏ The initial
conditions are generated by displacing particles from a
regular grid using the Zeldovich approximation. The simu-
lations are started at 1 ] z\ 35 and evolved to the present
(z\ 0) using adaptive steps in the log of the scale factor,
a \ (1] z)~1. The force on each particle is calculated from
the density using Fourier Transform (FT) techniques with a
kernel [k/k2. The gridded Ðelds are computed from the
particle data using cloud-in-cells (CIC) charge assignment
(Hockney & Eastwood 1981). The time step is dynamically
chosen as a small fraction of the inverse square root of the
maximum acceleration, with an upper limit of *a/a \ 3%
per step. The code typically takes 200È300 time steps
between 1] z\ 35 and z\ 0.

The new ingredient, beyond simple N-body evolution of
the density Ðeld, is the calculation of the convergence along
a bundle of rays. In the weak-lensing approximation, calcu-
lation of this scalar quantity in any Ðeld is sufficient to
enable calculation of all of the other quantities (e.g., the
shear c). We assume here for simplicity that the sources all
lie at one redshift, The code as written allows multi-z

s
\ 1.

ple source redshifts, but we restrict ourselves to the single
source plane in this paper.

Before the N-body evolution begins, we generate geo-
desics, in code coordinates, for or 2562 lines ofNlos \ 1282
sight by integrating

dD
@@

da
\ 1

a2H(a)
, (1)

where is the comoving distance parallel to the line ofD
@@sight. The lines of sight originate in a square lattice at andz

sconverge on an observer situated at the center of one face of
the box at z\ 0. We further demand that the Ðeld of view
never subtend more than a box length, to avoid introducing
artifacts due to periodic boundary conditions. We make the
small-angle approximation and assume that lies parallelD

@@to the z-axis for all rays ; thus, the coordinates perpendicu-
lar to the line of sight scale linearly1 with D

@@
.

The N-body code is then run, and once the evolution
reaches a redshift of we integrate the lensing equation,z

s
,

i(x
M
)\ D

s

P
dD
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t(1[ t)+

M
2 '(x) , (2)

in addition to the gravitational force. Here t 4 D(a)/
is the dimensionless distance to the source. ForD

s
½ [0, 1]

multiple sources, one can replace the kernel for source i

1 This is appropriate for the Ñat universes we deal with in this paper. In
a curved universe, the angular diameter distance must be used to calculate
the ““ opening distance ÏÏ of any ray from the center of the box as a function
of redshift.

with t(1[ t) with where is the dis-t(t
si
[ t)/t

si
, t

s
\ D

si
/D

stance to the ith source in units of the distance to the farthest
source, D

s
.

The source is calculated in the box using FT+
M
2 '(x)

methods under the small-angle approximation. The par-
ticles are assigned to the nearest point on a grid (NGP;
Hockney & Eastwood 1981) to obtain the density distribu-
tion. The FT of this distribution, is then multiplied byd

k
,

and the transform inverted. Within[(3/2))
m

H02 a~1k
M
2/k2

each time step, we assume that the potential is slowly
varying, '(a ] da) B '(a). Since time steps are separated by
*a/a D 0.01, much less than the expansion time on which '
varies, this is a very good approximation. The integral is
evaluated by taking N points along each line of sight and
time step, assuming that the potential is frozen. By increas-
ing N, we Ðnd that N D 102 dynamically chosen points
suffices for convergence. This substep integration range
runs from the a of the last time step in the code to the
present a. The integral in equation (2) is therefore densely
sampled, and the i correctly evaluated at the a correspond-
ing to the box redshift.

We Ðrst test the Limber approximation (see Appendix),
which says that only modes perpendicular to the line of
sight contribute to the integral in equation (2). In this
approximation, the two-dimensional Laplacian can be
replaced with a three-dimensional Laplacian, which in turn
can be expressed in terms of the density perturbation
through the Poisson equation :

i(x
M
) \ 32 )
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s
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a
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Using integration by parts, the error induced by this
replacement should be O(') D 10~5 (Jain et al. 1998).

We have run a 2563 PM simulation of our "CDM model
in a 125 h~1 Mpc box using equations (2) and (3) to
compute i in a grid of 2562 lines of sight. The two track
each other very well. The power spectra computed from the
two Ðelds are almost identical, as are the histograms of i. In
a line-of-sight by line-of-sight comparison, equations (2)
and (3) return values for i that deviate by at most 0.03, and
on average (rms) 0.003. For comparison, the rms Ñuctuation
on the grid scale in these planes is nearly an order of magni-
tude larger than this : Some of this scatter is nopi ^ 0.02.
doubt induced by our small-angle approximation in com-
puting while some comes from the Ðnite size of the box.+

M
2 ,

Since the integration has traced across the box 19 times and
at each edge, we can pick up a term O('), this level of
variance agrees roughly with our expectations. In the
absence of Ðnite box size e†ects, we expect equations (2) and
(3) to match even more closely, and there is reason to
believe that our evaluation of equation (3) is the more accu-
rate (see also Stebbins 1996).

Since equation (3) is less computationally expensive, we
will adopt it from this point on. The fact that this approx-
imation works well shows that the integral given in equa-
tion (3) is sensitive only to those modes in the box that are
perpendicular to the line of sight. This is an important point
to remember when considering questions of sample or
run-to-run variance.

Finally, the entire bundle of rays is rotated at a random
angle to the box faces and placed at a random o†set from
the box center. This ensures that the rays do not trace paral-
lel to the edges of the simulation box and the grid used to
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deÐne the density. Since the simulation uses periodic
boundary conditions, we actually compute the density in a
periodic universe. Thus, each time a ray leaves the box it is
remapped into it using periodicity.

3. TILING

A photon from zD 1 traverses many Gpc on its way to
us, whereas the large-scale structure responsible for lensing
spans the Mpc range and below. Simulating the full range of
scales implied is currently a practical impossibility. One
solution commonly employed in the literature is to recycle
the output of a single smaller simulation, i.e., sum the con-
tributions of the density, projected to the midplane, of the
given simulation at a series of discrete redshifts. We here
propose a ““ tiling ÏÏ alternative that addresses three potential
problems with the traditional technique : the lack of sta-
tistical independence of the Ñuctuations, the loss of angular
resolution in the projection, and the discreteness of the pro-
jection.

We maintain the statistical independence of the Ñuctua-
tions by employing multiple independent simulations to tile
the line of sight. We are then free to adjust the sizes of the
simulation boxes, and in particular can make them smaller
and smaller as the rays converge on the observer (see Table
1). Recall that as the lines of sight converge, they probe ever
smaller physical separations for a given angular separation.
Since the lensing kernel is so broad, even structure quite
close to the observer contributes to the signal. In fact, the
nonlinear ampliÐcation of structure at low z implies that on
large angular scales the lensing kernel is skewed toward the
observer (see Fig. 1).

SpeciÐcally, for each simulation box, the code outputs the
contribution to the i planes at speciÐed redshifts (see Table
2), typically spaced in a so that the photons traverse the box
once between each output. Note that this is not the same as
simply computing the projected density at the midplane.
The full integral, with the evolution of the potential and the
geometry of the rays, etc., is being computed within each
tile. After each output, the o†set and random orientation of
the rays are chosen anew, and the integration is started
afresh for the next segment.

If we simulate only a single box, the integral of equation
(3) is simply given by the sum of the planes from that box.
However, with multiple simulation boxes run with the same
tiling scheme, we can construct our Ðnal i plane as the sum
of planes from di†erent simulations. In practice, we shrink

TABLE 1

NUMBER OF SIMULATIONS

L box N256 N512
245 . . . . . . 76 10
195 . . . . . . 20 10
155 . . . . . . 20 10
120 . . . . . . 20 10
95 . . . . . . . 21 10
75 . . . . . . . 36 15

NOTE.ÈThe sizes of the
simulation boxes used (in h~1
Mpc) and the number of inde-
pendent boxes of resolution of
that size, with both 2563 and
5123 mesh resolutions.

FIG. 1.ÈContribution to as a function of scale factor for l \ 100,*i2300, and 1000 from eq. (6).

the box size so that it Ðts in the Ðeld of view at the endplane
until it reaches the nonlinear scale. The nonlinear scale
must be within the box at the relevant epoch to ensure that
the PM code evolves the density correctly. Nonetheless, we
demonstrate that this box-resizing technique is very e†ec-
tive by comparing results from a series of low-resolution
(2563) simulations to our higher resolution (5123) simula-
tions done in a box of a single size (° 6).

The result at the end of the simulation(s) is a grid i along
lines of sight spaced equally in angle. We then calculate the
shear from this grid by using

c8 1\ l12[ l22
l12] l22

i8 , (4)

c8 2\ 2l1 l2
l12] l22

i8 , (5)

TABLE 2

TILING SOLUTION

aout L box aout L box
0.537 . . . . . . 245 0.822 . . . . . . 75
0.577 . . . . . . 245 0.841 . . . . . . 75
0.610 . . . . . . 195 0.861 . . . . . . 75
0.646 . . . . . . 195 0.881 . . . . . . 75
0.675 . . . . . . 155 0.902 . . . . . . 75
0.707 . . . . . . 155 0.924 . . . . . . 75
0.732 . . . . . . 120 0.946 . . . . . . 75
0.759 . . . . . . 120 0.970 . . . . . . 75
0.780 . . . . . . 95 0.994 . . . . . . 75
0.803 . . . . . . 95 1.000 . . . . . . 75

NOTE.ÈThe tiling solution for our "CDM
model assuming a single source redshift

i.e., that uses six box sizesz
s
\ 1, a

s
\ 0.5,

and 20 tiles. The column aout gives the scale
factor at which each tile is output. (A tile con-
tains that part of the integration of i lying
between the last output and aout.) The size of
the simulation box used for that tile (in h~1
Mpc) is also given.
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FIG. 2.ÈL eft : Image, 6¡ on a side, of the convergence, i, from a single realization of our tiling solution. The gray scale is linear from i \ [0.05 to 0.15.
Right : Shear Ðeld, derived from the left panel. The lines have been exaggerated, and the amplitude of the shear is at the same percent level as in the leftc

i
,

panel.

where is the two-dimensional FT of the convergencei8
Ðeld,2 and is the Fourier variable conjugate tol \ (l1, l2)the position on the sky.

We show in Figure 2 the convergence, i, and the derived
shear Ðeld, from one of the 5123 simulations using thec

i
,

2 Because the Ðeld is not periodic, it is important to zero-pad the FT
array before computing i8 .

tiling scheme described in Table 2 and simulations whose
details are given in Table 3. The Ðeld is 6¡ on a side and
contains 2562 lines of sight. From our multiple simulations,
we are able to generate many independent Ðelds of this size
and resolution. In the following sections we discuss the sta-
tistics of these Ðelds based on 512 random combinations of
the tiles listed in Table 1 for both the low- and high-
resolutions sets.

TABLE 3

SIMULATION PROPERTIES

L box hbox L mesh hmesh mpart
amid Weight (h~1 Mpc) (arcmin) (h~1 kpc) (arcmin) (109 M

_
)

0.518 . . . . . . 0.05 245 385 479 0.75 73
0.557 . . . . . . 0.13 245 433 479 0.85 73
0.593 . . . . . . 0.19 195 389 381 0.76 37
0.628 . . . . . . 0.22 195 438 381 0.86 37
0.660 . . . . . . 0.24 155 393 303 0.77 19
0.691 . . . . . . 0.25 155 444 303 0.87 19
0.719 . . . . . . 0.25 120 388 234 0.76 8.6
0.745 . . . . . . 0.25 120 438 234 0.85 8.6
0.769 . . . . . . 0.23 95 391 186 0.76 4.3
0.792 . . . . . . 0.22 95 441 186 0.86 4.3
0.812 . . . . . . 0.20 75 394 146 0.77 2.1
0.831 . . . . . . 0.19 75 444 146 0.87 2.1
0.851 . . . . . . 0.17 75 510 146 1.00 2.1
0.871 . . . . . . 0.15 75 599 146 1.17 2.1
0.891 . . . . . . 0.13 75 726 146 1.42 2.1
0.913 . . . . . . 0.11 75 920 146 1.80 2.1
0.935 . . . . . . 0.08 75 1257 146 2.45 2.1
0.958 . . . . . . 0.05 75 1981 146 3.87 2.1
0.982 . . . . . . 0.02 75 4673 146 9.13 2.1
0.988 . . . . . . 0.02 75 6875 146 13.43 2.1

NOTE.ÈAs a function of the scale factor at the middle of each tile : the weight, t(1[ t), at the
tile midpoint, the box size used for that tile and the size of the force mesh, the angular size of
the box and mesh and the particle mass. These numbers are for the 5123 simulations. For the
2563 simulations the mesh size should be doubled and the mass per particle increased by 23.
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FIG. 3.ÈTop : Angular power spectrum, or vs. multipolel2C
l
/(2n) *i2,number, l, for the convergence, i, from our tiling simulations. We also

show the semianalytic prediction from eq. (6) using both linear theory and
the nonlinear power spectrum. The shot-noise contribution assuming

galaxies per deg2, each with an rms ellipticity isn6 \ 2 ] 105 crms\ 0.4,
also shown. Bottom : Ratio of the simulation results to the (nonlinear)
prediction of eq. (6).

4. POWER SPECTRUM

Figure 3 shows the angular power spectrum of i, com-
puted from the tiling simulations, as compared to the semi-
analytic result (see Appendix),

*i2(l)\
9n
4l

()
m

H02D
s
2)2
P dD

@@
D

s
t3(1[ t)2

]
C*mass2 (k \ l/D

@@
, a)

a2
D

, (6)

where is the contribution to the*mass2 (k)\ k3P(k)/(2n2)
mass variance per logarithmic interval physical wavenum-
ber, and analogously, is the contribution to*i2(l)\ l2C

l
/(2n)

per logarithmic interval in angular wavenumber (orirms2
equivalently, multipole) l. We also show, in Figure 4, the
power spectrum from the Ðrst Ðve realizations, to empha-
size the scatter from Ðeld to Ðeld.

FIG. 4.ÈSame as Fig. 3, but with the power spectrum from Ðve di†erent
realizations shown to emphasize the scatter from Ðeld to Ðeld. The thick
solid line shows the prediction from eq. (6).

In evaluating equation (6), we use the method of Peacock
& Dodds (1996) to compute the nonlinear power spectrum
as a function of scale factor. Comparison with the average
power spectrum from our simulations (e.g., Fig. 5 at z\ 0)
shows agreement at the 10% level for the range of redshifts
and scales resolved by simulations h Mpc~1).(k [ 5

The loss of power on large scales (small l) is a result of our
FT based analysis routines and the 6¡ ] 6¡ Ðeld of view. To
test this, we generated Gaussian Ðelds with the angular
power spectrum of equation (6) and with much larger areas.
When analyzing 6¡ ] 6¡ subÐelds, the same low-l suppress-
ion as in Figure 3 was seen, which results from
““ windowing ÏÏ the map by the Ðeld of view.

The rollo† at high l in Figure 3 is as expected from the
resolution of the N-body code. The PM code resolves scales
(in k) down to approximately with a slight depen-kNyquist/3,
dence on the spectral index of the model. The smallest k we
can simulate is so in a 5123 simulation we would2n/L box,expect a dynamic range in k of 256/3 ^ 90. The projection
from physical scale to angular scale is not unique, but rather
has a Ðnite width ““ kernel ÏÏ (see eq. [6]). In our case, the
width is roughly a factor of 3 in scale. Therefore, to fully
resolve a given l-mode, we need to resolve a factor of 3
higher in physical scale than the model projects at the mid-
plane. This further reduces our dynamic range to a factor of
30. Because we cannot arbitrarily reduce the box size
without the fundamental mode becoming nonlinear by the
present, our tiling is inefficient at low-z, and our actual
dynamic range is closer to a factor of 20È25, as can be seen
in Figure 3.

The error bars in Figure 3 show the sampling errors for
an individual 6¡ ] 6¡ Ðeld of view, as estimated from the
scatter of the full suite of simulations. T his should not be
confused with the much smaller error on the mean power
spectrum of the suite. Sampling errors for di†erent survey
dimensions scale roughly as the ratio of the dimensions, and
the variance as the ratio of the survey areas.

As demonstrated in Figures 3 and 6, even though sam-
pling errors only fully converge to that of a Gaussian
random Ðeld with the same power spectrum for thel[ 300,

FIG. 5.ÈTop : Three-dimensional mass power spectrum from our
ensemble of simulations, compared to the Ðtting function of Peacock &
Dodds (1996). Here, and only here, the error bars represents the error on
the mean computed from averaging over our many realizations of the
model. Bottom : Ratio of the N-body results to the Ðtting formula.
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FIG. 6.ÈTop : Standard deviation, in our binned estimates of asd*i2, *i2a function of l. The solid line is from our 5123 simulations, dotted line is
from our 2563 simulations, and the short-dashed line is from Gaussian fake
skies with the same power spectrum. The choice of binning is given in
Table 4. Bottom : Ratio of errors with shot noise to pure sampling errors for
the three cases above.

non-Gaussian contribution to the errors remains in the few
tens of percent out until at least (in qualitativel[ 1000
accord with analytic estimates ; see Scoccimarro, Zaldar-
riaga, & Hui 1999). We have checked that the deviations
from Gaussianity are only weakly dependent on the binning
chosen for this range in l. This can also be seen by examin-
ing the covariance of the binned power spectrum estimators
shown in Table 4. As with the variance, the covariance
deviates from the Gaussian limit beginning at lD 300 and
grows at a moderate rate through lD 1000. The bins are
correlated even in the Gaussian limit by the limited Ðeld of
view: the fundamental mode implies a spacing of *l\ 60.

The full distribution of the power-spectrum estimator
also becomes moderately less well characterized by its
variance for In Figure 7, we show the histogram oflZ 300.
values from the simulations. The probability of outliers on
the low side decreases due to the skewness of the distribu-
tion, whereas that on the high side remains reasonably well
characterized by the variance for 2 and 3 p outliers. These
probabilities are with respect to a Gaussian sky artiÐcially

FIG. 7.ÈHistogram of for two di†erent bins from our higher (solid*i2(l)lines) and lower (dashed lines) resolution simulations, and fake Ðelds gener-
ated with Gaussian statistics (dotted lines).

set to the same variance for the power-spectrum estimator.
This should not be confused with the expectations from the
Gaussian prediction for the variance : for the l \ 738 bin, a
greater than 2 p deviation from the mean power with
respect to the Gaussian standard deviation occurs in one-
quarter of our tiles.

Beyond l D 1000, the non-Gaussian contributions to the
variance, covariance, and tails of the distribution of the
power-spectrum estimators becomes substantial. However,
this is also the point at which shot noise from the intrinsic
ellipticity of the galaxies begins to exceed the sample
variance. The shot-noise power spectrum is (Kaiser 1998)

Cnoise\
crms2
n6

, (7)

where is the number density of the sources and is then6 crmsrms intrinsic shear in each component. The shot noise spec-
trum for deg~2 and is shown inn6 \ 2 ] 105 crms \ 0.4
Figure 3. The noise bias in the measurements of the power
spectrum can be subtracted o† at the expense of increasing

TABLE 4

POWER SPECTRUM COVARIANCE

lbin 97 138 194 271 378 529 739 1031 1440 2012

97 . . . . . . . . 1.00 0.26 0.12 0.10 0.02 0.10 0.12 0.15 0.18 0.19
138 . . . . . . . (0.23) 1.00 0.31 0.21 0.09 0.14 0.16 0.18 0.15 0.22
194 . . . . . . . (0.04) (0.22) 1.00 0.26 0.24 0.28 0.17 0.15 0.19 0.16
271 . . . . . . . ([0.02) ([0.03) (0.17) 1.00 0.38 0.33 0.34 0.27 0.19 0.32
378 . . . . . . . ([0.01) (0.02) (0.04) (0.11) 1.00 0.45 0.38 0.33 0.32 0.27
529 . . . . . . . (0.01) ([0.01) ([0.07) ([0.02) (0.02) 1.00 0.50 0.48 0.36 0.46
739 . . . . . . . (0.04) ([0.03) ([0.01) ([0.02) ([0.02) (0.13) 1.00 0.54 0.53 0.50
1031 . . . . . . (0.07) (0.01) (0.07) ([0.03) (0.03) (0.08) (0.04) 1.00 0.57 0.61
1440 . . . . . . ([0.03) (0.02) (0.04) ([0.04) (0.05) ([0.07) ([0.04) ([0.03) 1.00 0.65
2012 . . . . . . ([0.02) ([0.04) (0.03) (0.03) (0.03) ([0.02) (0.03) ([0.07) (0.02) 1.00

NOTE.ÈCovariance of the binned power spectrum estimators. Upper diagonal half of the table displays the covariance found in
the 512 tilings of the 5123 simulations. Lower diagonal half (parenthetical numbers) displays the covariance found in an equal
number of Gaussian realizations. The Ðnite 6¡ ] 6¡ Ðeld of view couples the power-spectrum estimators over *lD 60 in both cases,
whereas nonlinear dynamics couples the estimators in the simulations at high l.
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the variance of the estimator for each l mode,

dC
l
2 ototal\ dC

l
2 oi ] 4C

l
Cnoise] 2Cnoise2 . (8)

For our binned estimators, the sample variance is reduced
by N1@2 statistics, so that the total fractional variance is

AdC
l

C
l

B
total

2 \
AdC

l
C

l

B
sim

2 ] 1
N

l
2C

l
2 ;

l

(4C
l
Cnoise] 2Cnoise2 ) , (9)

where the Ðrst term is the result from our simulations
(without shot noise), and the sum in the second term is over
the independent modes in the bin. The number of inde-N

lpendent modes for a given l is approximately (2l ] 1) fsky,where is the fraction of sky covered by the Ðeld of viewfsky for our Ðelds). We show the e†ect of shot noise( fskyD 10~3
on the sample variance in Figure 6. We have tested these
approximations against Monte Carlo realizations of the
shot noise and found good agreement.

The combination of these results imply that techniques
based on Gaussian assumptions for power-spectrum esti-
mation are fair approximations, at least in the context of
this "CDM model (e.g., Kaiser 1998 ; Seljak 1998 ; Hu &
Tegmark 1999).

5. SKEWNESS AND KURTOSIS

Figure 8 shows the coadded histogram of i, smoothed on
5@ and 10@, from 512 tiling solutions. The non-Gaussian
nature of the distribution is apparent in this Ðgure, as is the
low-i cuto† enforced by The large number ofdmassº [1.
tiling solutions we have run allows us to probe the distribu-
tion well into the tails. Clearly, the higher and lower
resolution simulations agree well on these scales. Our
ability to simulate many i planes allows us to study the
statistics of the moments of this distribution. In this section,
we examine the lowest order moments beyond the two-
point function : the skewness and kurtosis.

5.1. Simulation Results
From the two-dimensional angular grid of the con-

vergence, i, we calculate the skewness and kurtosis on an
angular scale, p. We Ðrst smooth the grid with a pixelized

FIG. 8.ÈHistogram of i, smoothed with a top-hat Ðlter of radius 5@ and
10@. The solid lines show our 5123 simulations, while the dashed lines show
our 2563 simulations.

top-hat window, with FT techniques,Wp,

i8 p \ i8 W3 p , (10)

and eliminate edge e†ects by zero-padding the array and
discarding the data that are convolved with the zero-
padded region. We then calculate the skewness,

S3(p) \ Sip3T
Sip2T2 , (11)

and the kurtosis,

S4(p) \Sip4T [ 3Sip2T2
Sip2T3 , (12)

for two di†erent averaging schemes : averaging over pixels
in a given 6¡ ] 6¡ Ðeld, and averaging the pixels over all
Ðelds.

As can be seen in Figures 9 and 10, even a 6¡] 6¡ Ðeld
su†ers from large sample variance on scales of tens of arc-
minutes. Like the power-spectrum estimators, we expect the
sample variance to scale roughly with the survey area. By
generating Gaussian Ðelds with the same power spectrum,
we Ðnd that the sampling errors for and are a factor ofS3 S42 and 7, respectively, larger than the Gaussian limit for
p D 10@.

The di†erence in the moments computed from averaging
in each Ðeld compared to computing using all of theS

N
S
NÐelds has been stressed by Hui & Gaztanaga (1999). The

bias increases as the Ðeld-to-Ðeld variance increases, as can
be seen by comparing large and small smoothing scales in
Figures 9 and 10. (In our simulations, we found that the
value of computed using the moments of all the ÐeldsS

NÑuctuated more with increasing numbers of runs than the
mean of the computed from moments within each Ðeld.)S

NThese large sampling errors should be borne in mind when
employing measurements to distinguish between cosmo-S3logical models.

Comparison of the 5123 simulations with the 2563 simu-
lations indicates that the N-body calculation has converged
on a scale of 10@, both in the moments themselves and in the

FIG. 9.ÈSkewness, as a function of a (top-hat) smoothing scale. TheS3,squares show results from the 5123 simulations, while the circles are from
the 2563 simulations. Filled symbols indicate the skewness computed from
the set of generated i planes, while open symbols with error bars indicate
the mean and variance of for each plane. The points are o†set slightlyS3for clarity. The solid line shows a semianalytic estimate (L. Hui 1999,
private communication), discussed in more detail in the text.
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FIG. 10.ÈSame as Fig. 9, but for the kurtosis, The kurtosis has beenS4.scaled by Si2T for display purposes.

sampling errors. The two sets of simulations begin to
diverge in their fractional standard deviation near 5@, sug-
gesting that the higher resolution simulations may even be
reliable down to Figure 11 shows that the divergence2@.5.
between the simulations in is in the high tail, whichS3 S3may be due to resolution or may indicate that too few
higher resolution simulations have been run. We have also
checked that the 75 h~1 Mpc are large enough to provide
an adequate sample of the nonlinear scale for these pur-
poses. Omitting these simulations and completing the tiling
with 95 h~1 Mpc simulations produces a negligible change
in at 10@.S3As Figure 10 shows, the kurtosis increases above

below 10@. Since this is the number expected forSi2TS4\ 3
for a Gaussian Ðeld, it marks the regime inSip4T/Sip2T3

which the distribution becomes signiÐcantly non-Gaussian
in the 4th moments. However, we detect no similar dra-
matic rise in the power-spectrum errors at lD 1000 (° 4).

Finally, we have simulated the e†ect of shot noise on the
variance of and In the presence of shot noise, weS3 S4.deÐne estimators of in analogy with equations (11) andS

N

FIG. 11.ÈHistogram of values from our higher (solid line) andS3(5@)
lower (dashed line) resolution simulations. Also shown are the predictions
from HEPT (see text) and one plane of the simulations of Jain et al. (1998).

(12), but subtracting the contribution of the shot noise to
For example, if is the measured value of includ-SipnT. ip@ ip,ing shot noise, with variance we deÐneSvp2T,

S3\ Sip@3T
Sip@2T [ Svp2T

. (13)

Using these estimators and adding simulated shot noise to
our planes, we Ðnd that the estimators are unbiased and
their standard deviations are only slightly increased ([16%
for and for even on scales as small as ThisS3 [6% S4) 2@.5.
is not too surprising, since with 2 ] 105 galaxies per square
degree the shot noise power only surpasses the signal power
in our model on scales smaller than and we have shown1@.3,
that the sample variance on and is signiÐcantlyS3 S4enhanced by the non-Gaussianity of the distribution. ArtiÐ-
cially increasing the noise by a factor of 4 does lead to an
increase in the variance of and but the estimatorsS3 S4,remain unbiased.

5.2. Comparison to Previous Results
These results make sense physically, but it would be

useful to compare them with previous work. On the scales
we are working with, perturbation theory is not adequate,
so the best comparison is with other simulations, the closest
being those of Jain et al. (1998). Unfortunately, a direct
comparison with their work is difficult. While our model
di†ers slightly from theirs, we have run a smaller set of
simulations of their exact model and Ðnd that are notS3strongly a†ected by the slight changes. However, we do not
have the dynamic range to reliably estimate the skewness on
1@ scales, and their Ðeld is sufficiently small that3¡.5 ] 3¡.5
they have large sample variance on 10@ scales. Using our
analysis software on one Ðeld from their simulations (B.
Jain 1999, private communication), our skewness is approx-
imately 20% lower at 5@ than theirs. We compare at 5@,
which is the edge of our reliable range, because the sample
variance from their small Ðelds makes comparison difficult
above this scale. Indeed, in the plane we have analyzed,
their skewness peaks at 10@ before dropping precipitously.
In the distribution of in our higher resolution (5123S3mesh) simulations (see Fig. 11), only 5% of our planes have

as high as or higher than the plane from Jain et al. (1998).S3Crudely accounting for the increased sample variance due
to their smaller Ðeld by scaling the distribution by 6¡/3¡.5
raises this number to 10%È15%. While this is not highly
improbable, the di†erence may still be due to systematic
di†erences in the codes. Jain et al. (1998) also performed
some PM runs in a 64 h~1 Mpc box with a 2563 force mesh
and found results D20% lower than their P3M results at 5@
(U. Seljak 1999, private communication). Whether this dis-
crepancy is due to the small box size they used, systematic
di†erence between PM and P3M codes (e.g., Splinter et al.
1998 ; Jain & Bertschinger 1998)3, or sample variance is not
clear.

We show in Figures 9 and 11 the prediction of a semi-
analytic calculation (L. Hui 1999, private communication)
based on hyperextended perturbation theory (HEPT; Scoc-
cimarro & Frieman 1999). The agreement is at the level one
would expect from the approximation used. To check this,

3 The discrepancy noted by these authors for the n \ [2 spectrum is
not directly relevant here, since n is less negative on the scales of interest.
We have shown this speciÐcally in Fig. 5. The general point remains valid,
however.
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we have calculated the skewness and kurtosis of the density
Ðeld (at z\ 0.4, the peak of the curves in Fig. 1) in our 155
h~1 Mpc boxes with 2563 particles and a 5123 force mesh.
For each of the 10 simulations, we binned the particles onto
a 5123 grid using NGP assignment (the results do not
depend on this choice), then smoothed this grid using a
three-dimensional analogue of equation (10) with a top-hat
radius R. The moments were computed by averaging
powers of d over the 5123 grid sites. We again computed the
average over the simulations and the ““ global ÏÏ fromS

N
S
Ncombining the moments from all the simulations :

S3(R)4
Sd

R
3T

Sd
R
2T2 , (14)

S4(R)4
Sd

R
4T [ 3Sd

R
2T2

Sd
R
2T3 . (15)

Our results are shown in Figure 12 as a function of radius,
along with the variance in the density. Also plotted (Fig. 12,
dotted lines) are the predictions of HEPT as used in the
semianalytic lensing calculation (Hui 1999) and the variance
(dashed lines) predicted by Peacock & Dodds (1996). The
non-Gaussianity in the lensing signal may be generated at
lower z than the peak in Figure 1, so we have also calcu-
lated and from our z\ 0 data. The results are consis-S3 S4tent with little or no evolution in and since z\ 0.4,S3 S4,although the variance grows as predicted by Peacock &
Dodds (1996).

The level of disagreement is sufficient to explain the dis-
crepancy in Figure 9. The stated realm of validity for the
HEPT result is for variances and indeed our resultsZ100,
for and of the density in this regime agree better withS3 S4the prediction (see Fig. 12). For lower variances, one expects
both moments to be smaller and the power-law approx-
imation to the mass power spectrum inherent in HEPT to
break down. Preliminary results from a treatment that
includes these two e†ects (R. Scoccimarro 1999, private
communication) indeed agree better with our lensing
results : at 5@, compared to our 111, with a gradualS3B 115

FIG. 12.ÈVariance, skewness and kurtosis of the density Ðeld(S3), (S4)at z\ 0.4 as a function of a (top-hat) smoothing scale. These results are
from our 5123 simulations, as described in the text. Filled symbols indicate
the computed from 10 boxes, while open symbols with error barsS

Nindicate the mean and variance of for each box. The dotted lines showS
Nthe predictions based on HEPT, used to generate the curve in Fig. 9. The

dashed line shows the prediction of Peacock & Dodds (1996).

decline to at 70@È80@ before an increase back to theS3D 80
perturbation theory results of Bernardeau et al. (1997). In
any case, the di†erence shown in Figure 12 is very likely the
cause of the discrepancy with the semianalytic calculation.

6. TILING TESTS

As a result of our ““ tiling ÏÏ method and the large number
of simulations that we have run (Table 1), we are able to
systematically examine the dependence of our various
results on the volume of space sampled by the simulations.
Of particular interest is the following question : how is the
sample variance associated with each Ðeld a†ected by
tracing repeatedly through a single simulation? We have
attempted to answer that question for various statistics with
our large ensemble of simulations.

We Ðrst looked at the statistics of the power spectrum.
Using our 76 large boxes (245 h~1 Mpc at 2563 force
resolution), we checked that the mean, variance, and prob-
ability distribution function (PDF) of the power spectrum
(for four di†erent binnings) was the same whether we shuf-
Ñed the tiles between boxes or used each box in isolation.
These large and lower resolution boxes are not fully resolv-
ing the structure at late times, but this is not of great
concern, since the small-scale structure that is missing is
unlikely to be correlated over large scales, as required to
cause an e†ect in this test.

For the power spectrum, repeatedly tracing through a
245 h~1 Mpc box provides the same distribution as our
tiling method (although multiple boxes are still needed to
assess sample variance). The same test for our smaller, 75
h~1 Mpc model also shows no statistically signiÐcant e†ect.
This is signiÐcant, since as the box shrinks, the volume of
space sampled is reduced, and sampling becomes a larger
issue. Likewise, for and no signiÐcant di†erenceS3 S4between repeated tracing and tiling was found.

These results shed light on another possible concern : that
the rays in these simulations trace through boxes that are
joined ““ discontinuously ÏÏ at their edges. Figure 3 shows
that this does not a†ect the mean value of the two-point
function reproduced by the code. Our multiple simulations
allow us to go further, however. A comparison of the tiling
simulations with the repeated tracings of the 245 h~1 Mpc
box allows us to test the e†ect of a di†erent number of
““ matchings ÏÏ along the line of sight. On the scales where
both resolve the structure, we Ðnd convergence in the mean
value of (the values of are too noisy to allow a strongS3 S4statement) and a PDF of with four di†erent binnings.*i2This suggests that box matching is not a major source of
error, although we cannot test that this is true on very small
scales because of the lack of resolution in our simulations.

Tiling does increase the angular resolution of our simula-
tions. In Figure 13 we compare the angular power spectrum
from our higher resolution (5123 mesh) PM runs in boxes of
size 245 h~1 Mpc with our tiling solution at lower
resolution (2563 mesh), using the shrinking box. One can see
that allowing the box to shrink along the line of sight pro-
duces considerable gains in angular resolution. Unfor-
tunately, the need to keep the fundamental mode of the box
linear at all times restricts the size of the low-z boxes and
limits the gain in angular resolution that can be achieved by
this method (to a factor of between 2 and 3). While larger
Ðelds of view are easily simulated, the minimum size of the
low-z boxes restricts the smallest angular scale that can be
probed. This gain is enough, however, to make PM codes



10 WHITE & HU Vol. 537

FIG. 13.ÈComparison of resolution from tiling compared with single-
size boxes. The open circles represent the power spectrum of Ðelds produc-
ed by ““ tiling ÏÏ with the 2563 PM simulations. The Ðlled squares show the
power spectrum deduced from our higher resolution, 5123 simulation, but
using only the largest box, 245 h~1 Mpc. Note that tiling wins back the
extra factor of 2 in resolution.

viable for a rapid exploration of parameter space on
workstation-class machines (cf. Jain et al. 1998).

7. DISCUSSION

We have described an efficient algorithm for calculating
the statistics of weak lensing by large-scale structure in
N-body simulations. By working with the unperturbed
paths, our method is extremely simple to implement and
can be done at the same time as the N-body run(s). This
gives one the ability to simulate a large volume and sample
the line-of-sight integration densely in both space and time.
Contrast this with more traditional ray-tracing techniques,
which use only tens of lens planes and project the entire
density distribution in the box onto a single lens plane for
each time step. Neglecting the deÑections is certainly self-
consistent within the weak-lensing approximation. Analytic
arguments (Bernardeau et al. 1997) and explicit ray-tracing
simulations (Jain et al. 1998) furthermore imply that correc-
tions due to deÑections are small for our purposes.

As with other simulation-based results, numerical
resolution and dynamic range are a serious issue. In partic-
ular, the e†ects of Ðnite force resolution can be seen in our
results below For weak lensing, there are also problems2@.5.

introduced by the periodicity of the simulation box, which
limits the size of the Ðeld of view that one can probe in a
given simulation, in our case to 6¡ ] 6¡.

We have described a technique, which we call ““ tiling,ÏÏ
that allows us to use results from multiple realizations of a
given model and to match the size of the simulation box to
the converging ray bundle in order to increase angular
resolution for a Ðxed physical resolution. By varying the
tiling scheme, we also tested the e†ects of discontinuities
from joining the boxes and repeatedly tracing through the
same simulation. We found no signiÐcant e†ect from either.

With our suite of simulations, we are able to predict not
just the mean properties of the models, but also their sam-
pling errors. This is extremely important in assessing the
statistical signiÐcance of future measurements. We have
shown that the non-Gaussian contribution to the errors on
the power spectrum remains small out to l D 103, even
though the distribution of the convergence, i, is clearly non-
Gaussian at 10@. We have quantiÐed the (large) sample
variance in estimates of higher moments of the i distribu-
tion that have been suggested as tests of the energy contents
of the universe. Even with 6¡] 6¡ Ðelds, the errors on the
moments are totally dominated by sample variance on
scales above a few arcminutes with galaxy densities achiev-
able in current observations.

Since sampling errors scale inversely with the dimensions
of the survey, a Ðeld of view in the tens to hundreds of
square degree range will be crucial for extracting cosmo-
logical information on large-scale structure from weak-
lensing surveys, especially for the non-Gaussian signatures
of models. Nevertheless, due to the growing number of
instruments with wide Ðelds of view, for example
MEGACAM at the Canada-France-Hawaii Telescope
(Boulade et al. 1998) and the VLT Survey Telescope at the
European Southern Observatory (Arnaboldi et al. 1998),
the prospects for weak lensing in the era of precision cos-
mology remain bright.
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APPENDIX

LIMBERÏS EQUATION

In this appendix we provide a simple derivation of the expression in the main text for the two-point function of the
convergence, i. We start by assuming that the lensing occurs at late enough times that the anisotropic stress of the radiation
can be neglected, so that in Newtonian gauge we can write the metric

ds2\ a2(g)[[(1] 2')dg2] (1[ 2')dx2] (A1)

to Ðrst order in the gravitational potential 'D 10~5. Here dg \ a(t)dt is the conformal time, and we have written the 3-metric
schematically as dx2\ ds2] r2(s)d). For scales smaller than the curvature scale, we can approximate this as Ñat, r(s)\ s ;
however, on cosmological scales we need to use r \ oK o~1@2 sinh oK o1@2s for an open universe and r \ oK o~1@2 sin oK o1@2s
for a closed universe. The conformal factor, a(g), accounts for the cosmological redshift of photon energy. When following null
geodesics, we can scale it out, i.e., set a \ 1. The Lagrangian describing geodesic motion is where the overdotL \ 12gklx5 kx5 l,
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represents di†erentiation with respect to an affine parameter j along the path. Recalling that the momentum thep
M

4 dL /dx5
M
,

Euler-Lagrange equations become

dp
M

dj
\ LL

Lx
M

\ [2
L'
Lx

M

p
@@

dx
@@

dj
] O('2) . (A2)

Thus, the deÑection angle, receives di†erential contribution Simple geometry dictates thata 4 *p
M
/p

@@
, da \ [2+

M
' dx

@@
.

such a deÑection at a ““ lens ÏÏ position results in a change of angle at the observer of where isdh \ (r
LS

/r
S
)da, r

LS
\ r(s

S
[ s

L
)

the (radial) distance from the lens to the source and is the (radial) distance from the observer to the source.r
S
\ r(s

S
)

Translating this into a change in position at of we see that two rays initially separated by have a Ðnals
L

dx
M

\ D
L
dh, D

S
*h

separation

*x
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\ (d

ij
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j
, (A3)

where

t
ij
\ 2

P
0

sS
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r
L
r
LS

r
S

L
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L
j
' . (A4)

The 2 ] 2 matrix can be expanded in Pauli matrices with coefficients(d
ij
[ t

ij
)

(d
ij
[ t

ij
) \ (1[ i)I[ c1 p3[ c2 p1 , (A5)

so, e.g., Tr which leads to equation (2). Since all of the coefficients are derived from one function, specifyingi \ 12 (It)\ 12tjj
,

any one of them is sufficient. We focus here on the convergence, i. Replacing with +2 in the integral results in errors of+
M
2

O(')D 10~5, so we can use +2'\ 4nGoa2d to obtain equation (3).
To calculate the two-point function of i, we expand d(x) in Fourier modes and use the Rayleigh expansion of a plane wave

to Ðnd

C
l
\ 4n

A3
2

)
m

H02
B2 P dk

k
*mass2 (k)

P
ds1
P

ds2
Cg(s1)

a1

g(s2)
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D
j
l
(ks1) jl(ks2) , (A6)

where g(s) is the distance kernel in equation (A4). For open universes, replace with the hyperspherical Bessel function. Onj
lsmall scales, we can use the resolution of the identity

P
k2dk j

l
(ks1) jl(ks2) \

n
2

[r(s)]~2d(s1[ s2) (A7)

to obtain the power per logarithmic interval in l,

l(2l] 1)C
l

4n
^

9n
4l

()
m

H02)2
P

ds r
Cg(s)

a
D2

*mass2
Al
r
B

. (A8)

In a spatially Ñat universe (r \ s), this reduces to equation (6).
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