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ABSTRACT
Weak gravitational lensing observations probe the spectrum and evolution of density Ñuctuations and

the cosmological parameters that govern them. The nonlinear evolution of large-scale structure produces
a non-Gaussian signal that is potentially observable in galaxy shear data. We study the three-point sta-
tistics of the convergence, speciÐcally the bispectrum, using the dark matter halo approach, which
describes the density Ðeld in terms of correlations between and within dark matter halos. Our approach
allows us to study the e†ect of the mass distribution in observed Ðelds, in particular the bias induced by
the lack of rare massive halos (clusters) in observed Ðelds. We show that the convergence skewness is
primarily due to rare and massive dark matter halos, with skewness converging to its mean value only if
halos of mass M [ 1015 are present. This calculational method can in principle be used to correctM

_for such a bias as well as to search for more robust statistics related to the two- and three-point corre-
lations.
Subject headings : cosmology : theory È gravitational lensing È large-scale structure of universe

1. INTRODUCTION

Weak gravitational lensing of faint galaxies probes the
distribution of matter along the line of sight. Lensing by
large-scale structure (LSS) induces correlations in the
galaxy ellipticities at the few percent level (e.g., Blandford et
al. 1991 ; 1991 ; Kaiser 1992). AlthoughMiralda-Escude�
challenging to measure, these correlations provide impor-
tant cosmological information that is complementary to
that supplied by the cosmic microwave background and
potentially as precise (e.g., Jain & Seljak 1997 ; Bernardeau,
van Waerbeke, & Mellier 1997 ; Kaiser 1998 ; Schneider et
al. 1998 ; Hu & Tegmark 1999 ; Cooray 1999 ; Van Waerb-
eke, Bernardeau, & Mellier 1999 ; see Bartelmann & Schnei-
der 2000 for a recent review). Indeed, several recent studies
have provided the Ðrst clear evidence for weak lensing in
so-called blank Ðelds (e.g., Van Waerbeke et al. 2000a ;
Bacon, Refregier, & Ellis 2000 ; Wittman et al. 2000 ; Kaiser,
Wilson, & Luppino 2000), although more work is clearly
needed to understand even the statistical errors (e.g.,
Cooray, Hu, & 2000a).Miralda-Escude�

Given that weak gravitational lensing results from the
projected mass distribution, the statistical properties of
weak-lensing convergence reÑect those of the dark matter.
Nonlinearities in the mass distribution induce non-
Gaussianity in the convergence distribution. With the
growing observational and theoretical interest in weak
gravitational lensing, statistics such as the skewness have
been suggested as probes of cosmological parameters and
the nonlinear evolution of large-scale structure (e.g., Ber-
nardeau, van Waerbeke, & Mellier 1997 ; Jain, Seljak, &
White 2000 ; Hui 1999 ; Munshi & Jain 1999 ; Van Waerb-
eke et al. 1999).

Here we extend previous studies by considering the full
convergence bispectrum, the Fourier-space analog of the
three-point function. The bispectrum contains all the infor-
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mation present at the three-point level, whereas convention-
al statistics, such as skewness, do not. The calculation of the
convergence bispectrum requires detailed knowledge of the
dark matter density bispectrum, which can be obtained
analytically through perturbation theory (e.g., Bernardeau
et al. 1997) or numerically through simulations (e.g., Jain et
al. 2000 ; White & Hu 2000). Perturbation theory, however,
is not applicable at all scales of interest, while numerical
simulations are limited by computational expense to a
handful of realizations of cosmological models with a
modest dynamical range. Here we use a new approach to
obtain the density Ðeld bispectrum analytically by describ-
ing the underlying three-point correlations as due to contri-
butions from (and correlations between) individual dark
matter halos. We also construct real-space statistics, such as
the skewness, from the bispectrum and determine their
dependence on halo properties. Real-space statistics have
di†erent noise properties from Fourier statistics and
together they may be used to identify unknown systematic
e†ects.

Techniques for studying the dark matter density Ðeld
through halo contributions have recently been developed
(Seljak 2000 ; Ma & Fry 2000b ; Scoccimarro et al. 2000) and
applied to two-point lensing statistics (Cooray et al. 2000a).
The critical ingredients are : a mass function for the halo
distribution, such as the Press-Schechter (PS ; Press &
Schechter 1974) or Sheth-Tormen (ST; Sheth & Tormen
1999) mass function ; a proÐle for the dark matter halo, e.g.,
the proÐle of Navarro, Frenk, & White (1996, hereafter
NFW), and a description of halo biasing (Mo, Jing, &
White 1997 ; extensions in Sheth & Lemson 1999 and Sheth
& Tormen 1999). The dark matter halo approach provides
a physically motivated method for calculating the bispec-
trum. By calibrating the halo parameters with N-body
simulations, it can be made accurate across the scales of
interest. Since lensing probes scales ranging from linear to
deeply nonlinear, this is an important advantage over
perturbation-theory calculations.

Throughout this paper, we take "CDM as our Ðducial
cosmology, with parameters for the CDM)

c
\ 0.30

density, for the baryon density, for the)
b
\ 0.05 )" \ 0.65

cosmological constant, h \ 0.65 for the dimensionless
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Hubble constant, and a scale-invariant spectrum of primor-
dial Ñuctuations, normalized to galaxy cluster abundances

see Viana & Liddle 1999) and consistent with(p8\ 0.9 ;
COBE (Bunn & White 1997). For the linear power spec-
trum, we take the Ðtting formula for the transfer function
given in Eisenstein & Hu (1999).

In ° 2, we review the dark matter halo approach to mod-
eling the density Ðeld. In ° 3 we apply the formalism to the
convergence power spectrum, skewness, and bispectrum.
We summarize our results in ° 4.

2. DENSITY POWER SPECTRUM AND BISPECTRUM

2.1. General DeÐnitions
Underlying the halo approach is the assertion that dark

matter halos of virial mass M are locally biased tracers of
density perturbations in the linear regime. In this case, func-
tional relationship between the overdensity of halos and
mass can be expanded in a Taylor series,

dh(x, M ; z)\ b1(M ; z)d(x ; z)] 12b2(M ; z)d2(x ; z)] É É É .

(1)

Roughly speaking, the perturbative aspect of the clus-
tering of the dark matter is described by the correlations
between halos, whereas the nonlinear aspect is described by
the correlations within halos, i.e., the halo proÐles. We con-
sider the Fourier analogies of the two- and three-point
correlations of the density Ðeld deÐned in the usual way,

Sd*(k)d(k@)T \ (2n)3d(k [ k@)Pt(k) , (2)

Sd(k1)d(k2)d(k3)T \ (2n)3d(k1 ] k2] k3)Bt(k1, k2, k3) .

(3)

Here and throughout, we occasionally suppress the redshift
dependence where no confusion will arise.

As we shall see, these spectra are related to the linear
density power spectrum, P(k), through the bias parameters
and the normalized three-dimensional Fourier transform of
the halo density proÐle, o(r, M) :

y(k, M)\ 1
M
P
0

rv
dr 4nr2o(r, M)

sin (kr)
kr

. (4)

Note that y(k, M) can be written as a combination of sine
and cosine integrals for computational purposes, and y(k,
M)] 1 as k ] 0.

It is then convenient to deÐne a general integral over the
halo mass function dn/dM,

Ikb(k1, . . . , kk ; z) 4
P

dM
AM
o
b

Bk dn
dM

(M, z)bb(M)

]y(k1, M) . . . y(kk, M) , (5)

where b04 1.
Given a description of the halo biasing scheme, a halo

density proÐle, and a mass function for halos, we now
describe how to calculate the nonlinear dark matter power
spectrum and bispectrum. The three ingredients outlined
here are the only inputs necessary for this calculation.

2.2. Power Spectrum and Bispectrum
Following Seljak (2000), we can decompose the density

power spectrum, as a function of redshift, into contributions

from single halos (shot-noise or ““ Poisson ÏÏ contributions),

PPP(k) \ I20(k, k) , (6)

and correlations between two halos,

Phh(k) \ [I11(k)]2P(k) , (7)

such that

Pt \ PPP] Phh . (8)

As k ] 0, Phh ] P(k).
Similarly, we decompose the bispectrum into terms

involving one, two, and three halos (see Scherrer & Berts-
chinger 1991 ; Ma & Fry 2000b) :

Bt\ BPPP] BPhh] Bhhh , (9)

where

BPPP(k1, k2, k3) \ I30(k1, k2, k3) (10)

for single-halo contributions,

BPhh(k1, k2, k3) \ I21(k1, k2)I11(k3)P(k3) ] Perm . (11)

for double-halo contributions, and

Bhhh(k1, k2, k3) \ [2J(k1, k2, k3)I11(k3) ] I12(k3)]
]I11(k1)I11(k2)P(k1)P(k2) ] Perm . (12)

for triple-halo contributions. Here the two permutations are
Second-order perturbation theory tells us thatk3% k1, k2.(Fry 1984 ; Bouchet et al. 1992 ; Kamionkowski & Buchalter

1999)

J(k1, k2, k3) \ 1 [ 2
7

)
m
~2@63 ]

Ak32[ k12[ k22
2k1 k2

B2

]
C k12] k22
k32[ k12[ k22

] 2
7

)
m
~2@63

D
. (13)

As k ] 0, Bhhh ] BPT, where BPT is the bispectrum predicted
by second-order perturbation theory,

BPT(k1, k2, k3) \ 2J(k1, k2, k3)P(k1)P(k2) ] Perm. , (14)

with permutations following k3% k1, k2.

2.3. Ingredients
2.3.1. Mass Function

In order to describe the dark matter halo mass distribu-
tion, we consider two analytical forms commonly found in
the literature. These are the Press-Schechter (PS ; Press &
Schechter 1974) and Sheth-Tormen (ST; Sheth & Tormen
1999) mass functions, and both are parameterized by

dn
dM

dM \ o
b

M
f (l)dl , (15)

with f (l) taking the general form of

lf (l) \ A
S2

n
[1] (al2)~p](al) exp

A
[ al2

2
B

. (16)

Here, where p(M, z) is the rms Ñuctuationl\ d
c
/p(M, z),

within a top-hat Ðlter at the virial radius corresponding to
mass M, and is the threshold overdensity of sphericald

ccollapse (see Henry 2000 for useful Ðtting functions).
The normalization A in equation (1) is set by requiring

mass conservation, such that the average mass density from
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the mass function is same as the average mass density of the
universe :

P dn
dM

M
o
b

dM \
P

f (l)dl\ 1 , (17)

and takes values of 0.5 and 0.383 when the PS (p \ 0, a \ 1)
or ST (p \ 0.3, a \ 0.707) mass functions are used, respec-
tively. The two mass functions behave such that when l is
small, lf (l)P l1.0 and Pl0.4 for the PS and ST mass func-
tions, respectively. As we shall see, di†erences in the mass
functions can be compensated for by changes in the proÐle
parameters as a function of halo mass.

We take the minimum mass to be 103 while theM
_

,
maximum mass is varied to study the e†ect of massive halos
on lensing convergence statistics. In general, masses above
1016 do not contribute to low-order statistics due to theM

_exponential decrease in the number density of such massive
halos.

2.3.2. Halo Bias

Mo et al. (1997 ; see also Sheth & Lemson 1999 and Sheth
& Tormen 1999 for extensions) give the following analytic
predictions for the bias parameters in equation (1), which
agree well with simulations :

b1(M ; z)\ 1 ] al2(M ; z)[ 1
d
c

] 2p
d
c
M1 ] [al2(M, z)]pN

,

(18)

and

b2(M ; z)\ 8
21

[b1(M ; z)[ 1]] l2(M ; z)[ 3
p2(M ; z)

] 2p
d
c
2M1 ] [al2(M, z)]pN

] [2p ] 2al2(M ; z)[ 1] . (19)

Note that the parameters a and p are the same parameters
introduced in the mass function (eq. [16]), and that we have
now explicitly written the dependence on mass and redshift
of l.

2.3.3. Halo ProÐle

Finally, we need to know the proÐle of the halos. We take
a general proÐle with a density distribution

o(r, M)\ o
s

(r/r
s
)a(1] r/r

s
)b

. (20)

We consider three forms of the density proÐle : (1) the well-
known NFW (Navarro et al. 1996) proÐle (a \ 1, b \ 2) as
our Ðducial dark matter density proÐle, (2) the Hernquist
proÐle (a \ 1, b \ 3 ; Hernquist 1990), and (3) a proÐle with
(a \ 1.5, b \ 1.5) to represent a steeper index in the inner
regions of the halo, consistent with some suggestions based
on simulations by Moore et al. (1999).

In the case of the NFW proÐle, the density proÐle can be
integrated analytically and related to the total dark matter
mass of the halo within r

v
,

M \ 4no
s
r
s
3
C
log (1 ] c)[ c

1 ] c
D

, (21)

where the concentration, c, is deÐned as Choosing asr
v
/r

s
. r

vthe virial radius of the halo, spherical collapse tells us that
where *(z) is the overdensity of collapseM \ 4nr

v
3*(z)o

b
/3,

(see, e.g., Henry 2000), and is the background mattero
bdensity today. We use comoving coordinates throughout.

By equating these two expressions, one can eliminate ando
sdescribe the halo by its mass M and concentration c. The

same procedure applies when proÐles other than NFW are
also used, although in these cases, one needs to solve the
equation related to mass and concentration numerically.

Following Cooray et al. (2000a), we take the concentra-
tion of dark matter halos to be

c(M, z) \ a(z)
C M
M

*
(z)
D~b(z)

, (22)

where a(z) \ a(1] z)~0.3 and b(z) \ b(1] z)~0.3, with the
parameters (a, b) taking numerical values of (10.3, 0.24) and
(5.5, 0.17) for the NFW and a \ 1.5, b \ 1.5 proÐles, respec-
tively. Note that we have kept the redshift dependence to be
the same in all three proÐles ; we did not Ðnd strong varia-
tions in the results when redshift dependence is varied. In
our concentration relation above, is the nonlinearM

*
(z)

mass scale at which the peak-height threshold l(M, z)\ 1.
The numerical values for (a, b) are chosen such that dark
matter halos provide a reasonable match to the nonlinear
density power spectrum as predicted by Peacock & Dodds
(1996) over the range of h Mpc~1 ; note that0.01[ k [ 100
the nonlinear power spectrum has only been properly
studied out to D10 h Mpc~1 with numerical simulations.
We caution the reader that equation (22) for proÐles used
here is only a good Ðt for the "CDM model assumed.

Unless otherwise stated, we employ the PS mass function
and NFW proÐle as the default ingredients in the halo
approach.

2.4. Results
In Figure 1a, we show the density Ðeld power spectrum

today (z\ 0), written such that *2(k) \ k3P(k)/2n2 is the
power per logarithmic interval in wavenumber. Here we
show individual contributions from the single- and double-
halo terms and a comparison to the nonlinear power spec-
trum as predicted by the Peacock & Dodds (1996) Ðtting
function. In Figure 1b, we show the dependence of the
density Ðeld power as a function of maximum mass used in
the calculation when the PS mass function and the NFW
proÐle are involved. Similar results are obtained when other
combinations of the mass function or halo proÐle are used,
as we show in the next section.

Since the bispectrum generally scales as the square of the
power spectrum, it is useful to deÐne

*eq2 (k) 4
k3
2n2 JB(k, k, k) , (23)

which represents equilateral triangle conÐgurations, and its
ratio to the power spectrum,

Qeq(k) 4
1
3
C*eq2 (k)

*2(k)
D2

. (24)

In second-order perturbation theory,

QeqPT \ 1 [ 37)m
~2@63 , (25)
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FIG. 1.ÈPresent-day dark matter density (a) power spectrum and (c) equilateral bispectrum under the halo prescription. The power spectrum shown in (a)
is compared with the PD Ðtting function and the linear P(k). We have decomposed the power spectrum and bispectrum to individual contributing terms
under the halo approach. Also shown are the mass cuto† e†ects on the present-day dark matter density (b) power spectrum and (d) bispectrum under the halo
approach. From bottom to top, the maximum mass used in the calculation is 1011, 1012, 1013, 1014, 1015, and 1016 Here and throughout the ÐguresM

_
.

(unless stated otherwise), we adopt the PS mass function and NFW proÐle as the ingredients of the halo description.

and under hyperextended perturbation theory (HEPT;
Scoccimarro & Frieman 1999),

QeqHEPT(k)\ 4 [ 2n(k)
1 ] 2n(k)`1 , (26)

which is claimed to be valid in the deeply nonlinear regime.
Here n(k) is the linear power spectral index at k.

In Figure 1c, we show separated into its various*eq2 (k)
contributions, while in Figure 1d, we show the contribution
to the bispectrum as a function of maximum mass again for
the combination of PS mass function and NFW proÐle.
Since the power spectra and equilateral bispectra share
similar features, it is more instructive to examine (seeQeq(k)
Fig. 2). Here we also compare the prediction with the
second-order perturbation theory (PT) and the HEPT pre-
diction. In the halo prescription, at hQeq k Z 10knonlinD 10
Mpc~1 arises mainly from the single-halo term. We also
show predicted by the Ðtting function of ScoccimarroQeq(k)
& Couchman (2000) based on simulations in the range of

h Mpc~1. This function is designed such that it0.1[ k [ 3
converges to HEPT values at small scales and PT values at
large scales. The HEPT prediction, however, falls short on
smaller scales ; further work with numerical simulations,
especially at scales with h Mpc~1, where the predic-k Z 10
tions based on HEPT and halo models di†er, will be useful

at present broken into individual contributions underFIG. 2.ÈQeq(k)
the halo description and compared with second-order perturbation theory
(PT) and hyperextended perturbation theory (HEPT). The thick dotted
line shows based on the Ðtting function of Scoccimarro & CouchmanQeq(2000) that combines HEPT at small scales and PT at large scales.
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to distinguish between various clustering hypotheses (see,
e.g., Ma & Fry 2000c). The scales at which the two predic-
tions signiÐcantly di†er is unlikely to be probed by weak-
lensing observations, since such scales only contribute at
angular scales of a few arcseconds (lD 104).

2.5. Discussion
Even though the dark matter halo formalism provides a

physically motivated means for calculating the statistics of
the dark matter density Ðeld, there are several limitations of
the approach that should be borne in mind when inter-
preting the results.

The approach assumes all halos to be spherical, with a
single proÐle shape. Any variations in the proÐle through
halo mergers and resulting substructure can a†ect the
power spectrum and higher order correlations. In addition,
real halos are not perfectly spherical, which a†ects the con-
Ðguration dependence of the bispectrum.

Furthermore, there are parameter degeneracies in the for-
malism that prevent a straightforward interpretation of
observations in terms of halo properties. For example, one
might think that the power spectrum and bispectrum can be
used to measure any mean deviation from, e.g., the Ðducial
NFW proÐle form. As pointed out by Seljak (2000),
however, changes in the slope of the inner proÐle can be
compensated for by changing the concentration as a func-
tion of mass ; this degeneracy is also preserved in the bispec-
trum. As shown in Figure 3, we Ðnd that combinations of
di†erent mass functions, mainly PS and ST, and halo pro-
Ðles that have been suggested for dark matter halos can
produce essentially the same dark matter power spectrum
and bispectrum through an appropriate choice for the con-
centration as a function of mass.

In addition to the accuracy of proÐle shape and mass
function, the error introduced by the use of spherical pro-
Ðles should be studied further with numerical simulations.
We do not expect these issues to a†ect our qualitative
results. If this technique is to be used for precision studies of
cosmological parameters, however, more work will be
required in testing it quantitatively against simulations.
Studies by Ma & Fry (2000a) show that the bispectrum
predictions of the halo formalism are in good agreement
with simulations, at least when averaged over conÐgu-
rations. Scoccimarro et al. (2000) Ðnd that there are discrep-
ancies at the D20%È30% level in the mildly nonlinear
regime that show up most markedly in the conÐguration
dependence ; uncertainties in the mass function, with respect
to the mass functions produced in simulations, also produce
variations at this level. The replacement of individual halos
found in numerical simulations with synthetic smooth halos
with NFW proÐles by Ma & Fry (2000b) show that the
smooth proÐles can regenerate the measured power spec-
trum and bispectrum in simulations. This agreement, at
least at scales less than suggests that mergers and10knonlin,substructures may not be important at such scales.

The agreement between the power spectrum and bispec-
trum for a given halo prescription is also signiÐcant in that,
as we shall see, the two statistics weight high-mass halos
very di†erently. The agreement serves as a test that the halo
prescription correctly captures the halo mass dependence of
the statistics. We conclude that the halo model is useful in
that it provides a means to study the halo mass dependence
of two- and three-point statistics and an approximate
means to bridge the gap between the linear regime, where

FIG. 3.ÈSensitivity to halo mass function and proÐle assumptions of
the present-day dark matter density (a) power spectrum and (b) equilateral
bispectrum. In all cases we Ðnd consistent results, and the minor di†erences
do not change our conclusions.

PT is valid, and the nonlinear regime, where extensions
such as HEPT can be used.

In the deeply nonlinear regime (where h Mpc~1),k Z 10
there are qualitative di†erences between the halo predic-
tions and HEPT. Unfortunately, current state-of-the-art
simulations do not have the resolution to address the di†er-
ences (Scoccimarro et al. 2000). For weak-lensing purposes,
the di†erences are less relevant, since in the deeply nonlin-
ear regime shot noise from the intrinsic ellipticities of the
galaxies will likely dominate.

3. CONVERGENCE POWER SPECTRUM AND BISPECTRUM

Under the Limber approximation, the statistics of the
dark matter Ðeld as a function of redshift uniquely deÐne
those of the lensing as a simple projection of the dark
matter density Ðeld (see Appendix A of White & Hu 2000).
Hence, the halo description of the dark matter distribution
should also accurately describe the lensing convergence. A
potential problem is that by using the Limber approx-
imation, we implicitly integrate over the unperturbed
photon paths (Born approximation). The Born approx-
imation has been tested in numerical simulations by Jain et
al. (2000 ; see their Fig. 7) and found to be an excellent
approximation for the two-point statistics. The same
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approximation can also be tested through lens-lens coup-
ling involving lenses at two di†erent redshifts. At the three-
point level, analytical calculations in the mildly nonlinear
regime by Van Waerbeke et al. (2000b ; see also Bernardeau
et al. 1997 ; Schneider et al. 1998) indicate that corrections
to the skewness are less than a few percent. Thus, our use of
the Limber approximation by ignoring the lens-lens coup-
ling should not signiÐcantly change the Ðnal results for two-
and three-point statistics.

We focus on the power spectrum and the bispectrum. All
real-space statistics can be derived from them, and we
examine two in particular : the variance and the skewness.
Although the Fourier-space statistics are complete, they
become increasingly difficult to measure as the order of the
statistic increases (Jain et al. 2000). Individual bispectrum
terms are also susceptible to systematics and noise, which
tend to be better localized in real space. The variance and
skewness collapse the information in the spectra into single
less noisy quantities. The drawback is that they do not
retain the full information in the two- and three-point
statistics. The two- and three-point correlation functions
themselves do retain all the information, but have the dis-
advantage that sampling errors and their covariance are
more difficult to describe. It is therefore prudent to consider
both types of statistics and to be aware of their individual
drawbacks and beneÐts.

3.1. Power Spectrum and Variance
The angular power spectrum of the convergence is

deÐned in terms of the multipole moments asi
lm

Si
lm
* i

l{m{T \ C
l
i d

ll{
d
mm{ , (27)

where is numerically equal to the Ñat-sky power spec-C
ltrum in the Ñat-sky limit. It is related to the dark matter

power spectrum by (Kaiser 1992 ; 1998)

C
l
i \
P

dr
W (r)2

d
A
2 Pt

A l
d
A

; r
B

, (28)

where r is the comoving distance and is the angulard
Adiameter distance. When all background sources are at a

distance of the weight function becomesr
s
,

W (r)\ 3
2

)
m

H02
c2a

d
A
(r)d

A
(r
s
[ r)

d
A
(r
s
)

; (29)

for simplicity, we assume in our Ðducial modelr
s
\ r(z

s
\ 1)

involving the PS mass function and NFW proÐle. We also
change this redshift to study any variations in lensing con-
tribution (see Fig. 5). In deriving equation (28), the Limber
approximation (Limber 1954) sets through the Ñat-k \ l/d

Asky approximation. In Cooray et al. (2000a), we used the
projected mass of individual halos to construct the weak-
lensing power spectrum directly. The two approaches are
essentially the same, since the order in which the projection
is taken does not matter.

In Figure 4a, we show the convergence power spectrum
of the dark matter halos compared with that predicted by
the Peacock & Dodds (1996) power spectrum. Here we
assume a background source redshift of as morez

s
\ 1,

appropriate for current and planned observations of lensing
statistics. The lensing power spectrum due to halos has the
same behavior as the dark matter power spectrum. At large
angles the correlations between halos dominate.(l[ 100),
The transition from linear to nonlinear is at lD 500, where

halos of mass similar to contribute. The single haloM
*
(z)

contributions start dominating at l [ 1000. When fewlZ a
thousand, at small scales corresponding to the deeply non-
linear regime, the intrinsic correlations between individual
background galaxy shapes can complicate the accurate
recovery of the lensing signal (Croft & Metzler 2000 ;
Heavens, Refregier, & Heymans 2000 ; Catelan, Kamionk-
owski, & Blandford 2000). Therefore, it is unlikely that the
lensing observations can be used to test various clustering
models that are relevant to such nonlinear regimes.

As shown in Figure 4c, and discussed extensively in
Cooray et al. (2000a), if there is a lack of massive halos in
the observed Ðelds, convergence measurements will be
biased low compared to the cosmic mean. The lack of
massive halos a†ects the single-halo contribution more than
the halo-halo correlation term, thereby changing the shape
of the total power spectrum in addition to decreasing the
overall amplitude. Here we have shown the contribution to
the lensing power spectrum as a function of maximum mass
used in the calculation with our Ðducial PS mass function
and the NFW proÐle. Since the lensing power spectrum is
simply a projected measure of the dark matter power spec-
trum, the variations in the weak-lensing angular power
spectra are consistent with the behavior observed in the
dark matter power spectrum.

It is interesting to study the origin of this result in terms
of the physical parameters to see how they depend on
assumptions. The lensing convergence weight function (eq.
[29]) peaks at half the angular diameter distance to back-
ground sources,4 which for our Ðducial "CDM model with
sources at corresponds to zB 0.4, with the growth ofz

s
\ 1

structures shifting this peak redshift to a slightly lower
value. In Figures 5a and 5c, we show the result of the mass
cuts where only those halos for which z\ 0.3 and M \

are excluded. Note that the sensitivity to the massMcutthreshold is reduced, indicating that a substantial fraction
of the e†ect comes from rare massive halos at high redshift.
As shown in Figures 5b and 5d, when changing thez

s
\ 2,

source redshift therefore does not a†ect the results qualit-
atively.

In the case of the two-point function, one can also con-
sider the second moment, or variance, in addition to the
power spectrum. The variance of a map smoothed with a
window is related to the power spectrum by

Si2(p)T \ 1
4n

;
l

(2l ] 1)C
l
i W

l
2(p) , (30)

where are the multipole moments (or Fourier transformW
lin a Ñat-sky approximation) of the window. For simplicity,

we choose a window that is a two-dimensional top-hat in
real space, with a window function in multipole space of

with x \ lp.W
l
(p) \ 2J1(x)/x
In Figures 6a and 6b, we show the second moment as a

function of smoothing scale p when the PS mass function
and NFW proÐle are used. Here we have considered
angular scales ranging from 5@ to 90@, which are likely to be
probed by ongoing and upcoming weak-lensing experi-
ments. As shown, most of the contribution to the second
moment comes from the double-halo correlation term and
is mildly a†ected by a mass cuto†.

4 The physical scale in the halos roughly corresponds to the angular
scale times half the angular diameter distance to the source. For example,
at 1@, the scale corresponding to sources at is D400 kpc.z

s
\ 1
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FIG. 4.ÈWeak-lensing convergence (a) power spectrum and (c) bispectrum under the halo description. Also shown in (a) is the prediction from the PD
nonlinear power spectrum Ðtting function. We have separated individual contributions under the halo approach to the weak-lensing angular power spectrum
and bispectrum. Also shown are the mass cuto† e†ects on the weak-lensing convergence (b) power spectrum and (d) bispectrum. The maximum mass used is
same as in Figs. 1b and 1d. We have assumed that all sources are at z

s
\ 1.

3.2. Bispectrum and Skewness
The angular bispectrum of the convergence is deÐned as

Si
l1 m1

i
l2 m2

i
l3 m3

T \(
t
:

l1 l2 l3
m1 m2 m3

)
t
;
B

l1l2 l3
i . (31)

Extending our derivation of the Sunyaev-Zeldovich (SZ)
bispectrum in Cooray et al. (2000a), we can write the
angular bispectrum of the convergence as

B
l1l2 l3
i \

S(2l1] 1)(2l2] 1)(2l3 ] 1)

4n
(
t
:

l1 l2 l3
0 0 0

)
t
;

]
CP

dr
[W (r)]3

d
A
4 Bt

A l1
d
A

,
l2
d
A

,
l3
d
A

; r
BD

. (32)

The more familiar Ñat-sky bispectrum is simply the expres-
sion in square brackets (Hu 2000). The basic properties of
the Wigner 3j symbol introduced above can be found in
Cooray et al. (2000b).

Similar to the density Ðeld bispectrum, we deÐne

*eql2 \ l2
2n

JB
lll
i , (33)

involving equilateral triangles in l-space.
In Figure 5b, we show The general behavior of the*eql2 .

lensing bispectrum can be understood through the individ-

ual contributions to the density Ðeld bispectrum: at small
multipoles, the triple-halo correlation term dominates,
while at high multipoles, the single-halo term dominates.
The double-halo term contributes at intermediate lÏs, corre-
sponding to angular scales of a few tens of arcminutes. The
variations in the weak-lensing bispectrum as a function of
maximum mass are shown in Figure 5d. Here again, the
variations are consistent with the behavior seen in dark
matter bispectrum and produce qualitatively consistent
results regardless of the exact halo proÐle or mass function.

In Figure 7, we show the conÐguration dependence

R
l1l2
l3 \ l1 l2

2n
JB

l1l2 l3
i

*eql2 (34)

as a function of and when The surface, andl1 l2 l3\ 1000.
associated contour plot, shows the contribution to the
bispectrum from triangular conÐgurations in l-space rela-
tive to that from the equilateral conÐguration. Because of
the triangular conditions associated with lÏs, only the upper
triangular region of space contribute to the bispec-l1-l2trum. The symmetry about the line is due to thel1\ l2intrinsic symmetry associated with the bispectrum.
Although the weak-lensing bispectrum peaks for equilateral
conÐgurations, the conÐguration dependence is weak. In
fact, Scoccimarro et al. (2000) Ðnd that the halo prescription
somewhat overestimates the conÐguration dependence of
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FIG. 5.ÈWeak-lensing convergence spectra under the halo description for sources at with a mass cuto† only applied to halos at andz
s
\ 1 z

c
\ z\ 0.3,

for source with mass cuto† to the same redshift, for (a)È(b) angular power spectrum, and (c)È(d) equilateral bispectrum. The mass cuts are the same as inz
s
\ 2

Figs. 1b and 1d. A signiÐcant fraction of the e†ect comes from rare massive halos at high redshift.

the underlying mass spectrum in the nonlinear regime when
compared to simulations.

As discussed in the case of the second moment, it is likely
that the Ðrst measurements of higher order correlations in
lensing would be through real-space statistics. Thus, in
addition to the bispectrum, we also consider skewness,
which is associated with the third moment of the smoothed
map (cf. eq. [30]) :

Si3(p)T \ 1
4n

;
l1 l2 l3

S(2l1] 1)(2l2] 1)(2l3] 1)
4n

](
t
:

l1 l2 l3
0 0 0

)
t
;
B

l1l2 l3
i W

l1
(p)W

l2
(p)W

l3
(p) . (35)

We then construct the skewness as

S3(p)\ Si3(p)T
Si2(p)T22 . (36)

The e†ect of the mass cuto† is dramatic in the third
moment. As shown in Figures 6c and 6d, most of the contri-
butions to the third moment come from the single-halo
term, with those involving halo correlations contributing
signiÐcantly only at angular scales greater than D25@. With
a mass cuto†, the total third moment decreases rapidly and
is suppressed by more than 3 orders of magnitude when the
maximum mass drops to 1013 The skewness only satu-M

_
.

rates when the maximum mass is raised to a few times 1015

Even though a small change in the maximum massM
_

.
does not greatly change the convergence power spectrum
(Fig. 3 of Cooray et al. 2000a), the third moment, or the
bispectrum, is strongly sensitive to the rarest or most
massive dark matter halos.

In Figure 8 we plot the skewness as a function of
maximum mass, ranging from 1011 to 1016 Our totalM

_
.

maximum skewness agrees with what is predicted by
numerical particle-mesh simulations (White & Hu 2000)
and yields a value of D116 at 10@. However, it is lower than
predicted by the HEPT arguments and simulations of Jain
et al. (2000), which suggest a skewness of D140 at angular
scales of 10@. The skewness based on second-order PT is
factor of D2 lower than the maximum skewness predicted
by halo calculation. As shown, the PT skewness decreases
slightly from angular scales of few arcminutes to 90@, and
increases thereafter. Our halo-based calculation of skewness
di†ers from both Hui (1999) and Bernardeau et al. (1997),
since these authors used HEPT and PT, respectively, to
calculate lensing skewness.

The e†ect of the maximum mass on the skewness is inter-
esting. When the maximum mass is decreased to 1015 M

_from the maximum mass value where skewness saturates
(D3 ] 1015 the skewness decreases from D116 to 98M

_
),

at an angular scale of 10@, although the convergence power
spectrum only changes by less than a few percent when the
same change is made in the maximum mass used. When the
maximum mass used in the calculation is 1013 theM

_
,
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FIG. 7.ÈBispectrum conÐguration dependence, as a function of and with Due to triangular conditions associated with lÏs, only theR
l1l2
l3 , l1 l2 l3\ 1000.

upper triangular region in space contributes to the bispectrum.l1-l2
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FIG. 8.ÈSkewness, as a function of angular scale. Shown here areS3(p),
the skewness values with varying maximum mass as in Figs. 1c and 1d. For
comparison, we also show skewness values as measured in PM simulations
of White & Hu (1999), as predicted by HEPT (dashed line) and second-
order PT (long-dashed line).

skewness at 10@ is D8, which is roughly a factor of 15
decrease in the skewness from the total.

The variation in skewness as a function of angular scale is
due to the individual contribution to the second and third
moments. The increase in the skewness at angular scales less
than D30@ is due to the single-halo contributions for the
third moment. The triple-halo correlation terms dominate
angular scales greater than 50@, leading to a slight increase
toward large angles, e.g., from D74 at 40@ to D85 at 90@.
However, this increase is not present when the maximum
mass used in the calculation is less than D1014 EvenM

_
.

though mass cuto† a†ects the single-halo contributions
more than the halo contribution, at such masses, the change
in halo contribution with mass cuto† prevents an increase
in skewness at large angular scales.

The absence of rare and massive halos in observed Ðelds
will certainly bias the skewness measurement from the
cosmological mean. One therefore needs to exercise caution
in using the skewness to constrain cosmological models
(Hui 1999). In Cooray et al. (2000a), we suggested that
lensing observations in a Ðeld of D30 deg2 may be adequate
for an unbiased measurement of the convergence power
spectrum. For the skewness, observations within a similar
area may be biased by as much as D25%. This is consistent
with the sampling errors found in numerical simulations : 1
p errors of 24% at 10@ with a 36 deg2 Ðeld (White & Hu
2000). To obtain the skewness within a few percent of the
total, one requires a fair sample of halos out to D3 ] 1015

requiring observations of D1000 deg2, which is withinM
_

,
the reach of upcoming lensing surveys involving wide-Ðeld
cameras, such as the MEGACAM at the Canada-France-
Hawaii-Telescope (Boulade et al. 1998), and proposed dedi-
cated telescopes (e.g., the Dark Matter Telescope ; J. A.
Tyson 2000, private communication).

Still, this does not mean that non-Gaussianity measured
in smaller Ðelds will be useless. With this halo approach one
can calculate the expected skewness if one knows that the
most massive halos are not present in the observed Ðelds.

This knowledge may come from external information, such
as X-ray data and Sunyaev-Zeldovich measurements, or
internally from the lensing data.

3.3. Related Statistics
The halo description in general allows one to test the

e†ect of rare massive halos on any statistic related to the
two- and three-point functions. In particular, it can be used
to design more robust statistics.

Generalized three-point statistics have been considered
previously by Jain et al. (2000), following Nusser & Dekel
(1993) and Juszkiewicz et al. (1995). For example, Jain et al.
(2000) consider a statistic that is proportional to Si3T/
Si2T1@2 in perturbation theory. In Figure 9a, we show this
statistic as a function of maximum mass used in the calcu-
lation. We still Ðnd strong variations with changes to the
maximum mass. We can deÐne a generalized statistic

S3(p, m) \ Si3T
Si2Tm

, (37)

where m is an arbitrary index. We varied m such that the
e†ect of mass cuts on skewness are minimized. In Figure 9b,
we show such an example with m\ 3.7. Here the values are
separated into two groups, one involving the most massive

FIG. 9.ÈGeneralized skewness statistic, for (a) follow-S3(p, m), m\ 12,
ing Jain et al. (2000) ; (b) m\ 3.7, chosen to minimize the mass cuto†
dependence.
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FIG. 10.ÈProbability distribution function of the weak-lensing con-
vergence as a function of maximum mass used in the calculation at an
angular scale of 12@. From top to bottom, the curves range from 1011 to
1016 M

_
.

and rarest halos, and another with halos of masses 1014 M
_or less. Although the values from the two groups agree with

each other on small angular scales, they depart signiÐcantly
above 25@, reaching a di†erence of 2.5 at 80@. Statistics
involving such a high index m weight the single-halo contri-
butions highly when the most massive halos are present,
whereas they weight the halo-correlation terms more
strongly for M \ 1014 To some extent, this may beM

_
.

useful to identify the presence of rare halos in the obser-
vations.

However, the consequence of using these generalized sta-
tistics is that one progressively loses their independence
from the details of the cosmological model, e.g., the shape
and amplitude of the underlying density power spectrum, as
one departs from m\ 2, thereby contaminating the probe
of dark matter and dark energy. The correction for noise
bias in the generalized skewness statistic also depends on m.
The distribution also changes, but in a way that it is predict-
able from the distributions of second and third moments.
Further work is necessary Ðnd the optimal trade-o†
between robustness, cosmological independence, and noise
properties of these and other generalized statistics.

Another observable statistic is the probability distribu-
tion function (PDF) of the convergence maps smoothed on
the scale p. This possibility has been recently studied by
Jain & van Waerbeke (2000), where the reconstruction of
the PDF using peak statistics was considered. Using the
Edgeworth expansion to capture small deviations from
Gaussianity, one can write the PDF of convergence to
second order as

p(i)\ 1

J2nSi2(p)T
e~i(p)2@2Wi2(p)X

]
C
1 ] 1

6
S3(p)JSi2(p)TH3

A i(p)

JSi2(p)T
BD

, (38)

where is the third-order Hermite poly-H3(x)\x3[ 3x
nomial (see Juszkiewicz et al. 1995 for details).

In Figure 10, we show the PDF of convergence at 12@ as a
function of maximum mass used in the calculation. As

shown, the greatest departures from Gaussianity begin to
occur when the maximum mass included is greater than
1014 Given that we have only constructed the PDFM

_
.

using terms out to skewness, the presented PDFs should
only be considered as approximate. With increasing non-
Gaussian behavior, the approximated PDFs are likely to
depart from this form, especially in the tails. As studied in
Jain & van Waerbeke (2000), the measurement of the full
PDF can potentially be used a probe of cosmology. Its
low-order properties describe deviations from Gaussianity
near the peak, as opposed to the skewness, which is more
weighted to the tails.

4. SUMMARY AND CONCLUSIONS

We have presented an efficient method for calculating the
non-Gaussian statistics of lensing convergence at the three-
point level, based on a description of the underlying density
Ðeld in terms of dark matter halos. The bispectrum contains
all of the three-point information, including the skewness.
Prior attempts at calculating lensing bispectrum and skew-
ness were limited by the accuracy of perturbative approx-
imations and the dynamic range and sample variance of
simulations.

Although the present technique provides a clear and an
efficient method for calculating the statistics of the con-
vergence Ðeld, it has its own shortcomings. Halos are not all
spherical, which can to some extent a†ect the conÐguration
dependence in moments higher than the two-point level.
Substructures due to mergers of halos can also introduce
scatter. Although such e†ects are unlikely to dominate our
calculations, further work using numerical simulations will
be necessary to determine to what extent the present
method can be used as a precise tool to study the higher
order statistics associated with weak gravitational lensing.
As we have shown for the power spectrum and the bispec-
trum, both for the density Ðeld and the lensing convergence,
it is possible to use di†erent mass functions or proÐles that
have been suggested in the literature to obtain a qualitative-
ly accurate model, as long as one modiÐes certain free pa-
rameters of the model, such as the concentration of the halo
proÐle. If such parameters were to be known a priori, then it
might be possible to recover additional physical properties
of the halo distribution using lensing observations. For
now, it is unlikely that such a study would be achievable in
practice, given the large number of uncertainties associated
with the halo approach.

The dark matter halo approach also allows one to study
possible selection e†ects that may be present in weak-
lensing observations due to the presence or absence of rare
massive halos in the small Ðelds that are observed. We have
shown that the weak-lensing skewness is mostly due to the
most massive and rarest dark matter halos in the universe.
The e†ect of such halos is stronger at the three-point level
than at the two-point level. The absence of massive halos,
with masses greater than 1014 leads to a strongM

_
,

decrease in skewness, suggesting that a straightforward use
of measured skewness values as a test of cosmological
models may not be appropriate unless prior observations
are available on the distribution of masses in observed
lensing Ðelds.

One can correct for such biases using the halo approach,
however. To implement such a correction in practice,
further work will be needed to calibrate the technique preci-
sely against simulations across a wide range of cosmologies.
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Efficient techniques to correct for mass biases in both the
lensing power spectrum and bispectrum will be needed.
Alternatively, this technique can be used to search for gen-
eralized three-point statistics that are more robust to sam-
pling issues. Given the great potential for studying the dark
matter distribution through weak lensing, these issues merit
further study.
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