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ABSTRACT
Weak gravitational lensing observations probe the spectrum and evolution of density Ñuctuations and

the cosmological parameters that govern them. At low redshifts, the nonlinear gravitational evolution of
large-scale structure produces a non-Gaussian covariance in the shear power spectrum measurements
that a†ects their translation into cosmological parameters. Using the dark matter halo approach, we
study the covariance of binned band power spectrum estimates and the four-point function of the dark
matter density Ðeld that underlies it. We compare this semianalytic estimate to results from N-body
numerical simulations and Ðnd good agreement. We Ðnd that for a survey out to zD 1, the power spec-
trum covariance increases the errors on cosmological parameters determined under the Gaussian
assumption by about 15%.
Subject headings : cosmology : theory È gravitational lensing È large-scale structure of universe

1. INTRODUCTION

Weak gravitational lensing by large-scale structure (LSS)
shears the images of faint galaxies at the percent level and
correlates their measured ellipticities (e.g., Blandford et al.
1991 ; 1991 ; Kaiser 1992). Although chal-Miralda-Escude�
lenging to measure, the two-point correlations, and the
power spectrum that underlies them, provide important
cosmological information that is complementary to that
supplied by the cosmic microwave background, and poten-
tially as precise (e.g., Jain & Seljak 1997 ; Bernardeau, van
Waerbeke, & Mellier 1997 ; Kaiser 1998 ; Hu & Tegmark
1999 ; Hui 1999 ; Cooray 1999 ; Van Waerbeke, Bernardeau,
& Mellier 1999 ; see Bartelmann & Schneider 2001 for a
recent review). Indeed, several recent studies have provided
the Ðrst clear evidence for weak lensing in so-called blank
Ðelds, where the large-scale structure signal is expected to
dominate (e.g., Van Waerbeke et al. 2000 ; Bacon, Refregier,
& Ellis 2000 ; Wittman et al. 2000 ; Kaiser, Wilson, &
Luppino 2000).

Given that weak gravitational lensing probes the project-
ed mass distribution, its statistical properties reÑect those of
the dark matter. Nonlinearities in the mass distribution, due
to gravitational evolution at low redshifts, cause the shear
Ðeld to become non-Gaussian. It is well known that lensing
induces a measurable three-point correlation in the derived
convergence Ðeld (Bernardeau et al. 1997 ; Cooray & Hu
2001). The same processes also induce a four-point corre-
lation. The four-point correlations are of particular interest
in that they quantify the sample variance and covariance of
two-point correlation or power spectrum measurements.
Previous studies of the ability of power spectrum measure-
ments to constrain cosmology have been based on a Gauss-
ian approximation to the sample variance and the
assumption that covariance is negligible (e.g., Hu &
Tegmark 1999) ; it is of interest to test to what extent their
inferences remain valid in the presence of realistic non-
Gaussianity. More importantly, when interpreting the
power spectrum recovered from the next generation of
surveys, an accurate propagation of errors will be critical
(Hu & White 2000).

Here we present a semianalytical estimate of the Fourier
analog of the four-point function, i.e., the trispectrum, and

calculate in detail the conÐgurations that contribute to
power spectrum covariance. Since weak-lensing shear and
convergence can be written as a simple projection of the
dark matter density Ðeld, the problem reduces to a study of
the trispectrum of the density Ðeld. Previous studies of the
dark matter trispectrum have employed a mix of pertur-
bation theory and nonlinear scalings (e.g., Scoccimarro,
Zaldarriaga, & Hui 1999) or N-body simulations (Meiksin
& White 1999). The former are not applicable to the full
range of scales and conÐgurations of interest ; the latter are
limited by computational expense to a handful of realiza-
tions of cosmological models with modest dynamical range.

Here we use the dark matter halo approach to model the
density Ðeld (Seljak 2000 ; Ma & Fry 2000a ; Scoccimarro et
al. 2001) and extend our previous treatments of the two-
and three-point lensing statistics (Cooray, Hu, & Miralda-

2000 ; Cooray & Hu 2001). The critical ingredientsEscude�
are : a mass function for the halo distribution, such as the
Press-Schechter (PS ; Press & Schechter 1974) mass func-
tion ; a proÐle for the dark matter halo, e.g., the proÐle of
Navarro, Frenk, & White (1996 ; NFW), and a description
of halo biasing (Mo, Jing, & White 1997). In the mildly
nonlinear regime, where most of the contribution to lensing
is expected, the accuracy of the halo model has been exten-
sively tested against simulations at the two- and three-point
levels (Seljak 2000 ; Ma & Fry 2000a ; Scoccimarro et al.
2001). We present tests here of the four-point conÐgurations
involved in the power spectrum covariance. These tech-
niques can also be extended to the covariance of the power
spectrum of galaxy redshift surveys with a prescription for
assigning galaxies to halos (Seljak 2000 ; Scoccimarro et al.
2001). The e†ect of non-Gaussianities on the measured
galaxy power spectrum, through a measurement of the
angular correlation function, is discussed in Eisenstein &
Zaldarriaga (2001).

In ° 2, we study the trispectrum of the dark matter density
Ðeld under the halo model and test it against simulations
from Meiksin & White (1999). In ° 3, we apply these tech-
niques to the weak-lensing covariance and test them against
the simulations of White & Hu (2000). We also discuss the
e†ect of power spectrum covariance on cosmological
parameter estimation.
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2. DARK MATTER POWER SPECTRUM COVARIANCE

We begin by deÐning the power spectrum, trispectrum,
and power spectrum covariance in ° 2.1. We then derive the
halo model for these quantities in ° 2.2. In ° 2.3, we present
results and comparisons with N-body simulations.

2.1. General DeÐnitions
The two- and four-point correlations of the density Ðeld

are deÐned in the usual way,

Sd(k1)d(k2)T \ (2n)3dD(k12)P(k1) , (1)

Sd(k1) . . . d(k4)Tc
\ (2n)3dD(k1234)T (k1, k2, k3, k4) , (2)

where and is the delta function,k
i . . . j\ k

i
] . . . ] k

j
, dDnot to be confused with the density perturbation. Note that

the subscript c denotes the connected piece, i.e., the tri-
spectrum is deÐned to be identically zero for a Gaussian
Ðeld. Here and throughout, we occasionally suppress the
redshift dependence where no confusion will arise.

Because of the closure condition expressed by the delta
function, the trispectrum can be viewed as a four-sided
Ðgure with sides It can alternately be described by thek

i
.

length of the four sides plus the diagonals. We occa-k
isionally refer to elements of the trispectrum that di†er by

the length of the diagonals as di†erent conÐgurations of
the trispectrum.

Following Scoccimarro et al. (1999), we can relate the
trispectrum to the variance of the estimator of the binned
power spectrum,
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Note that although both terms scale in the same way with
the volume of the survey, only the Gaussian piece necessar-
ily decreases with the volume of the shell. For the Gaussian
piece, the sampling error reduces to a simple root-N mode
counting of independent modes in a shell. The trispectrum
quantiÐes the nonindependence of the modes both with-
in a shell and between shells. Calculating the covariance ma-
trix of the power spectrum estimates reduces to averaging
the elements of the trispectrum across conÐgurations in
the shell. We now turn to the subject of modeling the
trispectrum.

2.2. Halo Model
We model the power spectrum and trispectrum of the

dark matter Ðeld under the halo approach. Here we present
in detail the extensions required to model the trispectrum.

We refer the reader to Cooray & Hu (2001) for a more
in-depth treatment of the components.

The halo approach models the fully nonlinear dark
matter density Ðeld as a set of correlated discrete objects
(““ halos ÏÏ) with proÐles that for deÐniteness depend ono

itheir mass M and concentration c as in the NFW proÐle
(Navarro et al. 1996),1
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where the sum is over all positions. The density Ñuctuation
in Fourier space is

d(k) \ ;
i

eik Õ xid
h
(k ; M

i
; c
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) . (7)

Following Peebles (1980), let us divide up space into suffi-
ciently small volumes dV that they contain only one or zero
halos of a given mass and concentration and convert the
sum over halos to a sum over the volume elements, masses,
and concentrations,

d(k) \ ;
V1,M1,c1

n1 eik Õ x1d
h
(k, M1, c1) . (8)

By virtue of the small volume element, 1 orn1\ n12\ n1k \
0, following Peebles (1980).

The Ðnal component is that the halos themselves are
taken to be biased tracers of the linear density Ðeld (denoted
by ““ pt ÏÏ),2 such that their number density Ñuctuates as

d2n
dM dc

(x) \ d2n6
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C
b0] b1(M)dpt(x) ] 1

2
b2(M)dpt2 (x) . . .

D
,

(9)

where and the halo bias parameters are given in Mob04 1,
et al. (1997). Thus,

Sn1T \ d2n6
dMdc

dM1 dc1 , (10)

Sn1 n2T \ Sn1T2d12] Sn1TSn2T[b02] b1(M1)
]b1(M2)Sdpt(x1)dpt(x2)T] ,

Sn1 n2 n3T \ . . . . (11)

The derivation of the higher point functions in Fourier
space is now a straightforward but tedious exercise in
algebra. The Fourier transforms inherent in equation (8)
convert the correlation functions in equation (11) into the
power spectrum, bispectrum, trispectrum, etc., of pertur-
bation theory.

Replacing sums with integrals, we obtain expressions
based on the general integral

Ikb(k1, . . . , kk) 4
P

dM
P
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d2n6

dMdc
bb(M)

]d
h
(k1, M, c) . . . d

h
(kk, M, c) . (12)

The index k represents the number of points taken to be in
the same halo, such that Sn1kT \Sn1T.

1 This prescription can be generalized for more complicated halo pro-
Ðles in the obvious way.

2 It should be understood that ““ pt ÏÏ here denotes the lowest non-
vanishing order of perturbation theory for the object in question. For the
power spectrum, this is linear perturbation theory ; for the bispectrum, this
is second-order perturbation theory, etc.
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The power spectrum under the halo model becomes
(Seljak 2000)

P(k)\ P1h(k)] P2h(k) , (13)

P1h(k)\ I20(k, k) , (14)

P2h(k)\ [I11(k)]2Ppt(k) , (15)

where the two terms represent contributions from two
points in a single halo (1h) and points in di†erent halos (2h),
respectively.

Likewise, for the trispectrum, the contributions can be
separated into those involving one to four halos,

T \ T 1h ] T 2h] T 3h ] T 4h , (16)

where here and below the argument of the trispectrum is
understood to be The term involving a(k1, k2, k3, k4).single halo probes correlations of dark matter within that
halo,

T 1h \ I40(k1, k2, k3, k4) , (17)

and is independent of conÐguration because of the assumed
spherical symmetry for our halos.

The term involving two halos can be further broken up
into two parts,

T 2h \ T 312h ] T 222h , (18)

which represent taking three or two points in the Ðrst halo,

T 312h \ Ppt(k1)I31(k2, k3, k4)I11(k1)] 3 perm. , (19)

T 222h \Ppt(k12)I21(k1, k2)I21(k3, k4)] 2 perm . (20)

The permutations involve the three other choices of fork
ithe term in the Ðrst equation, and the two other pairingsI11of the for the terms in the second. Here we deÐnek

i
I21note that is the length of one of thek12\ k1 ] k2 ; k12diagonals in the conÐguration.

The term containing three halos can only arise with two
points in one halo and one in each of the others,

T 3h \ Bpt(k1, k2, k34)I21(k3, k4)I11(k1)I11(k2)
]Ppt(k1)Ppt(k2)I22(k3, k4)I11(k1)I11(k2)
]5 perm. , (21)

where the permutations represent the unique pairings of the
in the factors. This term also depends on the conÐgu-k

i
I2ration. The bispectrum in perturbation theory is given by3
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where the term is given by second-order gravitationalF2sperturbation calculations (see below).
Finally for four halos, the contribution is

T 4h \ I11(k1)I11(k2)I11(k3)I11(k4)
G
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3 The kernels are derived in Goro† et al. (1986 ; see their eqs. [A2]F
n
s

and [A3] ; note that their and we have written it such that theP
n
4F

n
),

symmetric form of are used. The use of the symmetric form accounts forF
nthe factor of 2 in equation (22) and factors of 4 and 6 in equation (24).

where the permutations represent the choice of in the I1k
iin the brackets. The perturbation trispectrum can be written

as (Fry 1984)

T pt\ 4[F2s (k12,[ k1)F2s (k12, k3)P(k1)

] P(k12)P(k3) ] perm.]

] 6[F3s (k1, k2, k3)P(k1)P(k2)P(k3) ] perm.] . (24)

The permutations involve a total of 12 terms in the Ðrst set
and four terms in the second set. We now discuss the results
from this modeling for a speciÐc choice of halo input pa-
rameters and cosmology.

2.3. Results
2.3.1. Fiducial Model

We evaluate the trispectrum under the halo model of the
last section assuming an NFW proÐle for the halos
(Navarro et al. 1996), which depends on their virial mass M
and concentration c. For the di†erential number density we
take

dn6
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\
A dn
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p(c) , (25)
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where PS denotes the Press-Schechter mass function. From
the simulations of Bullock et al. (2001), the mean and width
of the concentration distribution is taken to be

c6 (M, z) \ 9(1] z)~1
C M
M

*
(z)
D~0.13

, (26)

p ln c
\ 0.2 , (27)

where is the nonlinear mass scale at which the peak-M
*
(z)

height threshold l(M, z) \ 1.
This prescription di†ers from that in Cooray & Hu (2001)

where since a Ðnite distribution becomes increas-p ln c
] 0,

ingly important for the higher moments. To maintain con-
sistency, we have also taken the mean concentration
directly from simulations, rather than empirically adjusting
it to match the power spectrum. For the same reason we
choose a "CDM cosmological model with )

m
\ 0.3, )" \

0.7, h \ 0.65, and a scale-invariant spectrum of primordial
Ñuctuations. This model has mass Ñuctuations on the 8 h
Mpc~1 scale of D1.0, consistent with the abundance of
galaxy clusters (Viana & Liddle 1999) and COBE (Bunn &
White 1997). For the linear power spectrum, we take the
Ðtting formula for the transfer function given in Eisenstein
& Hu (1999).

2.3.2. Comparisons

In Figure 1a, we show the logarithmic power spectrum
*2(k) \ k3P(k)/2n2 with contributions broken down to the
1h and 2h terms today and the 1h term at a redshift of 1. We
Ðnd that there is an slight overprediction of power at scales
corresponding to h Mpc~1 when compared to1 [ k [ 10
the Peacock & Dodds (1996, hereafter PD) Ðtting function
shown for redshifts of 0 and 1, and a more substantial
underprediction at small scales with h Mpc~1. Sincek Z 10
the nonlinear power spectrum has only been properly
studied out to overdensities *2D 103 with numerical simu-
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FIG. 1.È(a) Dark matter power spectrum and (b) square-conÐguration
trispectrum, broken into individual contributions under the halo descrip-
tion. The lines labeled ““ PD ÏÏ shows the dark matter power spectrum under
the Peacock & Dodds (1996) nonlinear Ðtting function, while the curve
labeled ““ PT ÏÏ shows the linear dark matter power spectrum (at redshift of
0). In (a), we show the power spectrum at redshifts of 0 and 1. In (b), we
show the square conÐguration trispectrum (see text). In both (a) and (b), at
small scales the single halo term dominates, while at large scales halo
correlations contribute.

lations, it is unclear whether the small-scale disagreement is
signiÐcant. Fortunately, it is on sufficiently small scales so
as not to a†ect the lensing observables.

For the trispectrum, we are mainly interested in terms
involving i.e., parallelograms that areT (k1, [ k1, k2, [ k2),deÐned by either the length or the angle between andk12 k1For illustration purposes, we take and the anglek2. k1\ k2to be 90¡ such that the parallelogram is a square.(k2 \ k

M
),

It is then convenient to deÐne

*sq2 (k)4
k3
2n2 T 1@3(k,[ k, k

M
,[ k

M
) , (28)

such that this quantity scales roughly as the logarithmic
power spectrum itself, *2(k). This spectrum is shown in
Figure 1b with the individual contributions from the 1h, 2h,
3h, and 4h terms shown. We test the sensitivity of our calcu-
lations to the width of the distribution in Figure 2, where we
show the ratio between the single-halo contribution, as a
function of the concentration distribution width, to the halo

FIG. 2.ÈRatio of the single halo term contribution to that for a concen-
tration width for the (a) power spectrum and (b) trispectrum. Thep ln c

] 0
small-scale behavior is increasingly sensitive to the high-concentration
tails for the higher order statistics.

term with a delta function distribution, As in thep
c
\ 0.

power spectrum, the e†ect of increasing the width is to
increase the amplitude at small scales due to the high-
concentration tail of the distribution. Note that the width
e†ect is stronger in the trispectrum than the power spec-
trum, since the tails of the distribution are weighted more
heavily in higher point statistics.

To compare the speciÐc scaling predicted by perturbation
theory in the linear regime and the hierarchical Ansatz in
the deeply nonlinear regime, it is useful to deÐne the quan-
tity

Qsq(k) 4
T (k,[ k, k

M
,[ k

M
)

[8P2(k)P(J2k)][4P3(k)]
. (29)

In the halo prescription, at h Mpc~1Qsq k Z 10knonlinD 10
arises mainly from the single-halo term. In perturbation
theory, The does not approach the pertur-Qsq B 0.085. Qsqbation theory prediction as k ] 0, since that contribution
appears only as one term in the four-halo piece. Our model
therefore does not recover the true trispectrum of the
density Ðeld in the linear regime. The problem is that in
modeling the density Ðeld with discrete objects (here halos),
there is an error associated with shot noise. A more familiar
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at present, broken into individual contributions under theFIG. 3.ÈQsqhalo description. The hierarchical model predicts a constant value for Qsqin the deeply nonlinear regime for clustering (HEPT). In the linear regime,
the perturbation theory (PT) prediction is reproduced by the four-halo
term, which is only of the total. See text for a discussion of discrep-D12ancies.

example of the same e†ect comes from the use of galaxies as
tracers of the dark matter density Ðeld. While this error
appears large in the statistic, it does not a†ect the calcu-Qsqlations of the power spectrum covariance, since in this
regime it is the Gaussian piece errors that dominate.

The hierarchical Ansatz predicts that in theQsq \ const
deeply nonlinear regime. Its value is unspeciÐed by the
Ansatz, but is given as

Qsqsat \
1
2
C 54 [ 27 ] 2n ] 2 ] 3n ] 6n

1 ] 6 ] 2n ] 3 ] 3n ] 6 ] 6n
D

(30)

under hyperextended perturbation theory (HEPT; Scocci-
marro & Frieman). Here n \ n(k) is the linear power spec-
tral index at k. As shown in Figure 3, the halo model
predicts that increases at high k. This behavior, alsoQsqpresent at the three-point level for the dark matter density
Ðeld bispectrum, suggests disagreement between the halo

approach and the hierarchical clustering Ansatz (see Ma &
Fry 2000b), although numerical simulations do not yet have
enough resolution to test this disagreement. Fortunately,
the discrepancy is also outside the regime important for
lensing.

To further test the accuracy of our halo trispectrum, we
compare dark matter correlations predicted by our method
to those from numerical simulations by Meiksin & White
(1999). For this purpose, we calculate the covariance matrix

from equation (5) with the bins centered at andC
ij

k
ivolume corresponding to their scheme. WeV

s,i \ 4nk
i
2 dk

ialso employ the parameters of their "CDM cosmology and
assume that the parameters that deÐned the halo concen-
tration properties from our Ðducial "CDM model holds
for this cosmological model also. The physical di†erences
between the two cosmological models are minor, although
normalization di†erences can lead to large changes in the
correlation coefficients.

In Table 1, we compare the predictions for the correlation
coefficients

CŒ
ij
\ C

ij
JC

ii
C

jj

(31)

with the simulations. Agreement in the o†-diagonal ele-
ments is typically better than ^0.1, even in the region
where non-Gaussian e†ects dominate, and the qualitative
features such as the increase in correlations across the non-
linear scale are preserved.

A further test of the accuracy of the halo approach is to
consider higher order real-space moments, such as skewness
and kurtosis. In Cooray & Hu (2001), we discussed the
weak-lensing convergence skewness under the halo model
and found it to be in agreement with numerical predictions
from White & Hu (2000). The fourth moment of the density
Ðeld, under certain approximations, was calculated by Scoc-
cimarro et al. (1999) using dark matter halos and was found
to be in good agreement with N-body simulations. Given
that density Ðeld moments have already been studied by
Scoccimarro, Zaldarriaga, & Hui, we no longer consider
them here other than to suggest that the halo model has
provided, at least qualitatively, a consistent description that
is better than any of the perturbation theory arguments.

TABLE 1

DARK MATTER POWER SPECTRUM CORRELATIONS

k 0.031 0.044 0.058 0.074 0.093 0.110 0.138 0.169 0.206 0.254 0.313 0.385

0.031 . . . . . . . . . . . 1.000 0.019 0.041 0.065 0.086 0.113 0.149 0.172 0.186 0.186 0.172 0.155
0.044 . . . . . . . . . . . ([0.017) 1.000 0.036 0.075 0.111 0.153 0.204 0.238 0.261 0.264 0.251 0.230
0.058 . . . . . . . . . . . (0.023) (0.001) 1.000 0.062 0.118 0.183 0.255 0.302 0.334 0.341 0.328 0.305
0.074 . . . . . . . . . . . (0.024) (0.024) (0.041) 1.000 0.102 0.189 0.299 0.368 0.412 0.425 0.412 0.389
0.093 . . . . . . . . . . . (0.042) (0.056) (0.027) (0.079) 1.000 0.160 0.295 0.404 0.466 0.485 0.475 0.453
0.110 . . . . . . . . . . . (0.154) (0.076) (0.086) (0.094) (0.028) 1.000 0.277 0.433 0.541 0.576 0.570 0.549
0.138 . . . . . . . . . . . (0.176) (0.118) (0.149) (0.202) (0.085) (0.205) 1.000 0.434 0.580 0.693 0.698 0.680
0.169 . . . . . . . . . . . (0.188) (0.180) (0.138) (0.229) (0.177) (0.251) (0.281) 1.000 0.592 0.737 0.778 0.766
0.206 . . . . . . . . . . . (0.224) (0.165) (0.177) (0.322) (0.193) (0.314) (0.396) (0.484) 1.000 0.748 0.839 0.848
0.254 . . . . . . . . . . . (0.264) (0.228) (0.206) (0.343) (0.261) (0.355) (0.488) (0.606) (0.654) 1.000 0.858 0.896
0.313 . . . . . . . . . . . (0.265) (0.234) (0.202) (0.374) (0.259) (0.397) (0.506) (0.618) (0.720) (0.816) 1.000 0.914
0.385 . . . . . . . . . . . (0.270) (0.227) (0.205) (0.391) (0.262) (0.374) (0.508) (0.633) (0.733) (0.835) (0.902) 1.000
JC

ii
/CG

ii
. . . . . . 1.00 1.01 1.02 1.03 1.04 1.07 1.14 1.23 1.38 1.61 1.90 2.26

NOTE.ÈDiagonal normalized covariance matrix of the binned dark matter density Ðeld power spectrum with k values in units of h Mpc~1. Upper
triangle displays the covariance found under the halo model. Lower triangle (parenthetical numbers) displays the covariance found in numerical
simulations by Meiksin & White (1999). Bottom row shows the fractional increase in the errors (root diagonal covariance) due to non-Gaussianity, as
calculated under the halo model.
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Even though the dark matter halo formalism provides a
physically motivated means of calculating the statistics of
the dark matter density Ðeld, and especially higher order
correlations, there are several limitations of this approach
that should be borne in mind when interpreting results. This
approach assumes that all halos share a parameterized
spherically symmetric proÐle. We have attempted to include
variations in the halo proÐles with the addition of a dis-
tribution function for the concentration parameter based on
results from numerical simulations. Unlike our previous
calculations presented in Cooray et al. (2000) and Cooray &
Hu (2001), we have not modiÐed the concentration-mass
relation to Ðt the PD nonlinear power spectrum, but rather
have taken results directly from simulations as inputs.
Although we have partly accounted for halo proÐle varia-
tions, the assumption that halos are spherical is likely to
a†ect detailed results on the conÐguration dependence of
the trispectrum.

Since we are considering a weighted average of conÐgu-
rations, our tests presented here and other work through
simulations are insufficient to establish the validity of the
trispectrum modeling in general. Further numerical work is
required to quantify to what extent the present approach
reproduces simulation results for the full trispectrum.

For reference, in the case of the density Ðeld bispectrum,
Scoccimarro et al. (2001) found discrepancies at the D20%È
30% level in the mildly nonlinear regime in the conÐgu-
ration dependence. When averaged over conÐgurations, Ma
& Fry (2000a) found that predictions of the halo formalism
are in good agreement with simulations. They also showed
that the power spectrum and bispectrum in the simulations
can be adequately modeled with the replacement of real
halos with smooth, spherical NFW proÐles by Ma & Fry
(2000b). This level of agreement in the bispectrum leads one
to hope that the conÐguration dependence of the tri-
spectrum is not severely a†ected by asphericity, mergers,
and substructure, at least in the moderately nonlinear
regime.

3. CONVERGENCE POWER SPECTRUM COVARIANCE

3.1. General DeÐnitions
Weak lensing probes the statistical properties of the shear

Ðeld on the sky, which is a weighted projection of the matter
distribution along the line of sight to the source galaxies. As
such, the observables can be reexpressed as a scalar quan-
tity, the convergence i, on the sky.

Its power spectrum and trispectrum are deÐned in the
Ñat-sky approximation in the usual way,

Si(l1)i(l2)T \ (2n)2dD(l12)Cl
i ,

Si(l1) . . . i(l4)Tc
\ (2n)2dD(l1234)T i(l1, l2, l3, l4) . (32)

These are related to the density power spectrum and tri-
spectrum by the projections (Kaiser 1992 ; Scoccimarro et
al. 1999)
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where r is the comoving distance and is the angulard
Adiameter distance. When all background sources are at a

distance of the weight function becomesr
s
,

W (r) \ 3
2

)
m

H02
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d
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(r)d

A
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s
[ r)

d
A
(r
s
)

; (35)

for simplicity, we assume In deriving equationr
s
\ r(z

s
\ 1).

(34), we have used the Limber approximation (Limber 1954)
by setting and the Ñat-sky approximation. Ak \ l/d

Apotential problem in using the Limber approximation is
that we implicitly integrate over the unperturbed photon
paths (Born approximation). The Born approximation has
been tested in numerical simulations by Jain et al. (2000 ; see
their Fig. 7) and found to be an excellent approximation for
the two-point statistics. The same approximation can also
be tested through lens-lens coupling involving lenses at two
di†erent redshifts. For higher order correlations, analytical
calculations in the mildly nonlinear regime by Van Waerb-
eke et al. (2001 ; see also Bernardeau et al. 1997 ; Schneider
et al. 1998) indicate that corrections are again less than a
few percent. Thus, our use of the Limber approximation by
ignoring the lens-lens coupling is not expected to change the
Ðnal results signiÐcantly.

For the purpose of this calculation, we assume that the
upcoming weak-lensing convergence power spectrum will
measure binned logarithmic band powers at several inl

imultipole space with bins of thickness dl
i
;

C
i
\
P
s,i

d2l
A

s,i

l2
2n

i(l )i([l ) , (36)

where is the area of the two-dimensional shell inA
s,i \ / d2l

multipole and can be written as A
s,i \ 2nl

i
dl

i
] n(dl

i
)2.

We can now write the signal covariance matrix as
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where A is the area of the survey in steradians. Again, the
Ðrst term is the Gaussian contribution to the sample
variance and the second is the non-Gaussian contribution.
A realistic survey will also have shot noise variance due to
the Ðnite number of source galaxies in the survey. We return
to this point in ° 3.3.

3.2. Comparisons
Using the halo model, we can now calculate contribu-

tions to the lensing convergence power spectrum and tri-
spectrum. The logarithmic power spectrum, shown in
Figure 4a, shows the same behavior as the density Ðeld
when compared with the PD results : a slight overprediction
of power when However, these di†erences are notl Z 103.
likely to be observable, given the shot noise from the Ðnite
number of galaxies at small scales.

In Figure 4b we show the scaled trispectrum,

*sqi (l) \ l2
2n

T i(l,[ l, l
M
,[ l

M
)1@3 . (39)

where and The projected lensing tri-l
M

\ l l Æ l
M

\ 0.
spectrum again shows the same behavior as the density Ðeld
trispectrum with similar conditions on k

i
.

We can now use this trispectrum to study the contribu-
tions to the covariance, which is what primarily concerns us
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here. In Figure 5a we show the fractional error,

*C
i

C
i

4
JC

ii
C

i
, (40)

for bands given in Table 2 following the binning schemel
iused by White & Hu (2000) on 6¡ ] 6¡ Ðelds. The dashed

line compares that with the Gaussian errors, involving the
Ðrst term in the covariance (eq. [38]). At multipoles of a few
hundred and greater, the non-Gaussian term begins to
dominate the contributions. For this reason, the errors are
well approximated by simply taking the Gaussian and
single-halo contributions.

In Figure 5b, we compare these results with those of the
White & Hu (2000) simulations. The decrease in errors from
the simulations at small l reÑects Ðnite box e†ects that
convert variance to covariance as the fundamental mode in
the box becomes comparable to the bandwidth.

The correlation between the bands is given by

CŒ
ij
4

C
ij

JC
ii
C

jj

. (41)

In Table 2 we compare the halo predictions to the simula-
tions by White & Hu (2000). The upper triangle here gives
the correlations under the halo approach, while the lower
triangle shows the correlations found in numerical simula-
tions. The correlations along individual columns increase
(as one goes to large l or small angular scales), consistent
with simulations. In Figures 6a and 6b we show the corre-
lation coefficients with and without the Gaussian contribu-
tion to the diagonal, respectively.

Figure 6a shows the behavior of the correlation coeffi-
cient between a Ðxed as a function of When thel

j
l
i
. l

i
\ l

jcoefficient is 1 by deÐnition. Because of the presence of the
dominant Gaussian contribution at the coefficientl

i
\ l

j
,

has an apparent discontinuity between andl
i
\ l

j
l
i
\ l

j~1that decreases as increases and non-Gaussian e†ectsl
jdominate.

To better understand this behavior, it is useful to isolate
the purely non-Gaussian correlation coefficient,

CŒ
ij
NG\ T

ij
JT

ii
T
ij

. (42)

As shown in Figure 6b, the coefficient remains constant for
and smoothly increases to unity across a transitionl

i
> l

j

scale that is related to where the single-halo terms starts to
contribute. A comparison of Figures 6b and 4b shows that
this transition happens around l of few hundred to 1000.
Once the power spectrum is dominated by correlations in
single halos, the Ðxed proÐle of the halos will correlate the
power in all the modes. The multiple halo terms, on the
other hand, correlate linear and nonlinear scales but at a
level that is generally negligible compared to the Gaussian
variance.

The behavior seen in the halo based covariance, however,
is not present when the covariance is calculated with hierar-
chical arguments for the trispectrum (see Scoccimarro et al.
1999). With hierarchical arguments, which are by construc-
tion only valid in the deeply nonlinear regime, one predicts
correlations that are, in general, constant across all scales
and show no decrease in correlations between very small
and very large scales. Such hierarchical models also violate
the Schwarz inequality with correlations greater than 1
between large and small scales (e.g., Scoccimarro et al. 1999 ;
Hamilton 2000). The halo model, however, shows a
decrease in correlations similar to numerical simulations,
suggesting that the halo model, at least qualitatively, pro-
vides a better approach to studying non-Gaussian corre-
lations in the translinear regime.

3.3. E†ect on Parameter Estimation
Modeling or measuring the covariance matrix of the

power spectrum estimates will be essential for interpreting
observational results. In the absence of many Ðelds where
the covariance can be estimated directly from the data, the
halo model provides a useful, albeit model-dependent,
quantiÐcation of the covariance. As a practical approach,
one could imagine taking the variances estimated from
the survey under a Gaussian approximation, but which
accounts for uneven sampling and edge e†ects (Hu & White
2000), and scaling it up by the non-Gaussian to Gaussian
variance ratio of the halo model, along with the inclusion of
the band-power correlations. In addition, it is in principle
possible to use the expected correlations from the halo
model to decorrelate individual band-power measurements,
similar to studies involving CMB temperature anisotropy
and galaxy power spectra (e.g., Hamilton 1997 ; Hamilton &
Tegmark 2000).

We can estimate the resulting e†ects on cosmological
parameter estimation with an analogous procedure on the
Fisher matrix. In Hu & Tegmark (1999), the potential of

TABLE 2

WEAK-LENSING CONVERGENCE POWER SPECTRUM CORRELATIONS

lbin 97 138 194 271 378 529 739 1031 1440 2012

97 . . . . . . . . 1.00 0.04 0.05 0.07 0.08 0.09 0.09 0.09 0.08 0.08
138 . . . . . . . (0.26) 1.00 0.08 0.10 0.11 0.12 0.12 0.12 0.11 0.11
194 . . . . . . . (0.12) (0.31) 1.00 0.14 0.17 0.18 0.18 0.17 0.16 0.15
271 . . . . . . . (0.10) (0.21) (0.26) 1.00 0.24 0.25 0.25 0.24 0.22 0.21
378 . . . . . . . (0.02) (0.09) (0.24) (0.38) 1.00 0.33 0.33 0.32 0.30 0.28
529 . . . . . . . (0.10) (0.14) (0.28) (0.33) (0.45) 1.00 0.42 0.40 0.37 0.35
739 . . . . . . . (0.12) (0.16) (0.17) (0.34) (0.38) (0.50) 1.00 0.48 0.45 0.42
1031 . . . . . . (0.15) (0.18) (0.15) (0.27) (0.33) (0.48) (0.54) 1.00 0.52 0.48
1440 . . . . . . (0.18) (0.15) (0.19) (0.19) (0.32) (0.36) (0.53) (0.57) 1.00 0.54
2012 . . . . . . (0.19) (0.22) (0.16) (0.32) (0.27) (0.46) (0.50) (0.61) (0.65) 1.00

NOTE.ÈCovariance of the binned power spectrum when sources are at a redshift of 1. Upper triangle displays
the covariance found under the halo model. Lower triangle (parenthetical numbers) displays the covariance
found in numerical simulations by White & Hu 2000. To be consistent with these simulations, we use the same
binning scheme as the one used there.
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FIG. 4.ÈWeak-lensing convergence (a) power spectrum and (b) tri-
spectrum under the halo description. Also shown in (a) is the prediction
from the PD nonlinear power spectrum Ðtting function. We have separated
individual contributions under the halo approach and have assumed that
all sources are at We also show the shot-noise contribution to thez

s
\ 1.

power spectrum assuming a survey down to a limiting magnitude of
RD 25 with an intrinsic rms shear of 0.4 in each component.

wide-Ðeld lensing surveys to measure cosmological parame-
ters was investigated using the Gaussian approximation of
a diagonal covariance and Fisher matrix techniques. The
Fisher matrix is simply a projection of the covariance
matrix onto the basis of cosmological parameters p

i
,

Fab\ ;
ij

LC
i

Lpa
(Ctot~1)

ij
LC

j
Lpb

, (43)

where the total covariance includes both the signal and
noise covariance. Under the approximation of Gaussian
shot noise, this reduces to replacing in theC

l
i ] C

l
i ] C

l
SN

expressions leading up to the covariance equation (38). The
shot-noise power spectrum is given by

C
l
SN \ Scint2 T

n6
, (44)

where is the rms noise per component intro-ScintT1@2D 0.4
duced by intrinsic ellipticities and measurement errors, and

sr~1 is the surface number density of back-n6 D 6.6 ] 108
ground source galaxies. The numerical values here are

FIG. 5.ÈFractional errors in the measurements of the convergence
band powers. (a) Fractional errors under the Gaussian approximation, the
full halo description, the Gaussian plus single halo term, and the Gaussian
plus shot noise term (see ° 3.3). As shown, the additional variance can be
modeled with the single halo piece, while shot noise generally becomes
dominant before non-Gaussian e†ects become large. In (b), we compare the
halo model with simulations from White & Hu (2000). The decrease in the
variance at small l in the simulations is due to the conversion of variance to
covariance by the Ðnite box size of the simulations.

appropriate for surveys that reach a limiting magnitude in
RD 25 (e.g., Smail et al. 1995).

Under the approximation that there are a sufficient
number of modes in the band powers that the distribution
of power spectrum estimates is approximately Gaussian, the
Fisher matrix quantiÐes the best possible errors on cosmo-
logical parameters that can be achieved by a given survey.
In particular, F~1 is the optimal covariance matrix of the
parameters and is the optimal error on the ith(F~1)

ii
1@2

parameter. Implicit in this approximation of the Fisher
matrix is a neglect of information from the cosmological
parameter dependence of the covariance matrix of the band
powers themselves. Since the covariance is much less than
the mean power, we expect this information content to be
small.

In order to estimate the e†ect of non-Gaussianities on the
cosmological parameters, we calculate the Fisher matrix
elements using our Ðducial "CDM cosmological model and
deÐne the dark matter density Ðeld today as

*2(k) \ A2
A k
H0

Bns`3
T 2(k) , (45)

where A is the amplitude of the present-day density Ñuctua-
tions and is the tilt at the Hubble scale. The densityn

spower spectrum is evolved to higher redshifts using the
growth function G(z) (Peebles 1980), and the transfer func-
tion T (k) is calculated using the Ðtting functions from Eisen-
stein & Hu (1999). Since we are only interested in the
relative e†ect of non-Gaussianities, we restrict ourselves to
a small subset of the cosmological parameters considered
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FIG. 6.È(a) Correlation coefficient, as a function of the multipoleCŒ
ij
, l

iwith as shown in the Ðgure. We show the correlations calculated with thel
jfull halo model and also with only the single halo term for (b)l

j
\ 77072.

Non-Gaussian correlation coefficient, which only involves the tri-CŒ
ij
NG,

spectrum (see eq. [42]). The transition to full correlation is due to the
domination of the single halo contribution.

by Hu & Tegmark (1999) and assume a full-sky survey with
fsky\ 1.

In Table 3, we show the inverse Fisher matrices deter-
mined under the Gaussian and non-Gaussian covariances,
respectively. For the purpose of this calculation, we adopt
the binning scheme as shown in Table 2, following White &
Hu (2000). The Gaussian errors are computed using the
same scheme by setting T i \ 0. As shown in Table 3, the
inclusion of non-Gaussianities leads to an increase in the
inverse Fisher matrix elements. We compare the errors on
individual parameters, mainly between the Gauss-(F~1)

ii
1@2,

ian and non-Gaussian assumptions in Table 4. The errors
increase typically by D15%. Note also that band-power
correlations do not necessarily increase cosmological
parameter errors. Correlations induced by nonlinear
gravity introduce larger errors in the overall amplitude of
the power spectrum measurements but have a much smaller
e†ect on those parameters controlling the shape of the
spectrum.

For a survey of this assumed depth, the shot-noise power
becomes the dominant error before the non-Gaussian signal
e†ects dominate over the Gaussian ones. For a deeper
survey with better imaging, such as the one planned with

TABLE 3

INVERSE FISHER MATRIX (] 103)

A : Gaussian Assumption

p
i

)" ln A )
K

n
s

)
m

h2

)" . . . . . . . . 1.57 [5.96 [1.39 4.41 [1.76
ln A . . . . . . 25.89 5.83 [17.34 6.74
)

K
. . . . . . . . 1.41 [3.81 1.43

n
s
. . . . . . . . . . 14.01 [6.03

)
m

h2 . . . . . . 2.67

B: Halo Model

p
i

)" ln A )
K

n
s

)
m

h2

)" . . . . . . . . 2.03 [7.84 [1.82 5.76 [2.30
ln A . . . . . . 33.92 7.65 [22.79 8.91
)

K
. . . . . . . . 1.78 [5.01 1.95

n
s
. . . . . . . . . . 18.43 [7.85

)
m

h2 . . . . . . 3.44

NOTE.ÈInverse Fisher matrix under the Gaussian assumption
(A) and the halo model (B). The error on an individual parameter is
the square root of the diagonal element of the Fisher matrix for the
parameter, while o†-diagonal entries of the inverse Fisher matrix
show correlations, and thus degeneracies, between parameters. We
have assumed a full-sky survey with parameters as(fsky \ 1)
described in ° 3.3.

the Large-Aperture Synoptic Survey Telescope (LSST;
Tyson & Angel 2000),4 the e†ect of shot noise decreases and
non-Gaussianity is potentially more important. However,
the non-Gaussianity itself also decreases with survey depth,
and, as we now discuss, in terms of the e†ect of non-
Gaussianities, deeper surveys should be preferred over
shallow ones.

3.4. Scaling Relations
To better understand how the non-Gaussian contribu-

tion scales with our assumptions, we consider the ratio of
non-Gaussian variance to Gaussian variance (Scoccimarro
et al. 1999),

C
ii

C
ii
G\ 1 ] R , (46)

with

R4
A

s,i T ii
i

(2n)22C
i
2 . (47)

Under the assumption that contributions to lensing con-
vergence can be written through an e†ective distance atr

*
,

4 Large-Aperture Synoptic Survey Telescope is available at : http ://
www.dmtelescope.org.

TABLE 4

PARAMETER ERRORS

Model )" ln A )
k

n
s

)
m

h2

Gaussian . . . . . . . . . 0.039 0.160 0.037 0.118 0.051
Full . . . . . . . . . . . . . . . 0.045 0.184 0.042 0.135 0.058
Increase (%) . . . . . . 15.3 15 13.5 14.4 13.7

NOTE.ÈParameter errors, under the Gaussian assumption(F~1)
ii
1@2 ,

and the halo model, and following the inverse-Fisher matrices in Table 3.
We have assumed a full-sky survey with parameters as described(fsky \ 1)
in ° 3.3.
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half the angular diameter distance to background sources,
and a width *r for the lensing window function, the ratio of
lensing convergence trispectrum and power spectrum con-
tribution to the variance can be further simpliÐed to

RD
A

s,i
(2n)2Veff

T1 (r
*
)

2P1 2(r
*
)
. (48)

Since the lensing window function peaks at we haver
*
,

replaced the integral over the window function of the
density Ðeld trispectrum and power spectrum by its value at
the peak. This ratio shows how the relative contribution
from non-Gaussianities scales with survey parameters : (1)
increasing the bin size, through ( P dl), leads to anA

s,iincrease in the non-Gaussian contribution linearly ; (2)
increasing the source redshift, through the e†ective volume
of lenses in the survey decreases the non-(Veff D r

*
2 *r),

Gaussian contribution ; while (3) the growth of the density
Ðeld trispectrum and power spectrum, through the ratio

decreases the contribution as one moves to a higherT1 /P1 2,
redshift. The volume factor quantiÐes the number of fore-
ground halos in the survey that e†ectively act as gravita-
tional lenses for background sources ; as the number of such
halos is increased, the non-Gaussianities are reduced by the
central limit theorem.

In Figure 7, we summarize our results as a function of
source redshift with 103, and 104, and setting thel

i
D 102,

bin width such that or dlD l. As shown, increas-A
s,i D l

i
2,

ing the source redshift leads to a decrease in the non-
Gaussian contribution to the variance. The predictions
based on the simpliÐcations in equation (48) tend to over-
estimate the non-Gaussianity at lower redshifts while
underestimating it at higher redshifts, although the exact
transition depends on the angular scale of interest ; this
behavior can be understood from the fact that we do not
consider the full lensing window function but only the con-
tributions at an e†ective redshift, midway between the
observer and sources.

In order to determine whether it is the increase in volume

FIG. 7.ÈRatio of non-Gaussian to Gaussian contributions, R, as a
function of source redshift The solid lines are generated through the(z

s
).

exact calculation (eq. [47]), while the dotted lines use the approximation
given in eq. (48). Here we show the ratio R for three multipoles correspond-
ing to large, medium, and small angular scales. The multipole binning is
kept constant, such that dlD l. Decreasing this bin size will linearly
decrease the value of R.

or the decrease in the growth of structures that leads to a
decrease in the relative importance of non-Gaussianities as
one moves to a higher source redshift, we calculated the
non-Gaussian to Gaussian variance ratio under the halo
model for several source redshifts and survey volumes. Up
to source redshifts D1.5, the increase in volume decreases
the non-Gaussian contribution signiÐcantly. When surveys
are sensitive to sources at redshifts beyond 1.5, the increase
in volume becomes less signiÐcant, and the decrease in the
growth of structures begins to be important in decreasing
the non-Gaussian contribution. Since in the deeply nonlin-
ear regime scales with redshift as the cube of theT1 /P1 2
growth factor, this behavior is consistent with the overall
redshift scaling of the volume and growth.

The importance of the non-Gaussianity to the variance
also scales linearly with bin width. As one increases the bin
width, the covariance induced by the non-Gaussianity
manifests itself as increased variance relative to the Gauss-
ian case. The normalization of R is therefore somewhat
arbitrary in that it depends on the binning scheme, i.e.,
R> 1 does not necessarily mean non-Gaussianity can be
entirely neglected when summing over all the bins. The
scaling with redshift and the overall scaling of the variance
with the survey area A is not. One way to get around the
increased non-Gaussianity associated with shallow surveys
is to have them sample a wide patch of sky, since C

ii
P

(1] R)/A. This relation tells us the trade-o† between
designing a survey to go wide instead of deep. One should
bear in mind, however, that not only will shallow surveys
have decreasing number densities of source galaxies, and
hence increasing shot noise, but they will also su†er more
from the decreasing amplitude of the signal itself and the
increasing importance of systematic e†ects, including the
intrinsic correlations of galaxy shapes (e.g., Catelan,
Kamionkowski, & Blandford 2001 ; Croft & Metzler 2000 ;
Heavens, Refregier, & Heymans 2000). These problems tilt
the balance more toward deep but narrow surveys than the
naive statistical scaling would suggest.

4. CONCLUSIONS

Weak gravitational lensing due to large-scale structure
provides important information on the evolution of clus-
tering and angular diameter distances, and therefore on
cosmological parameters. This information complements
what can be learned from cosmic microwave background
anisotropy observations. The tremendous progress on the
observational front warrants detailed studies of the sta-
tistical properties of the lensing observables and their use in
constraining cosmological models.

The nonlinear growth of large-scale structure induces
high-order correlations in the derived shear and con-
vergence Ðelds. In this work, we have studied the four-point
correlations in the Ðelds. Four-point statistics are special in
that they quantify the errors in the determination of the
two-point statistics. To interpret future lensing measure-
ments on the power spectrum, it will be essential to have
an accurate assessment of the correlation between the
measurements.

Using the halo model for clustering, we have provided a
semianalytical method to calculate the four-point function
of the lensing convergence, as well as the dark matter
density Ðeld. We have tested this model against numerical
N-body simulations of the power spectrum covariance in
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both the density and convergence Ðelds and obtained good
agreement. As such, this method provides a practical means
of estimating the error matrix from future surveys in the
absence of sufficiently large Ðelds, where it can be estimated
directly from the data, or large suites of N-body simula-
tions, where it can be quantiÐed in a given model context.
Eventually, a test of whether the covariance matrix esti-
mated from the data and the theory agree may even provide
further cosmological constraints.

This method can also be used to study other aspects of
the four-point function in lensing and any Ðeld whose rela-

tion to the dark matter density Ðeld can be modeled. Given
the approximate nature of these models, each potential use
must be tested against simulations. Nonetheless, the halo
model provides the most intuitive and extensible means to
study non-Gaussianity in the cosmological context current-
ly known.

We acknowledge useful discussions with Dragan Huterer,
Roman Scoccimaro, Uros Seljak, Ravi Sheth, and Matias
Zaldarriaga. W. H. is supported by the Alfred P. Sloan
Foundation.
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