Complete (but not completed!)

CMB Constraints from Large-Angle Polarization

Wayne Hu March 2019, Aspen

Complete Principal Components

with Chen Heinrich, Vivian Miranda, Georges Obied

- Large angle CMB polarization depends not just on total Thomson optical depth τ
- τ from a steplike ionization history can falsely rule out reionization scenarios and bias cosmological parameters, e.g. m_{ν} , σ_8

Complete Principal Components

with Chen Heinrich, Vivian Miranda, Georges Obied

- Large angle CMB polarization depends not just on total Thomson optical depth τ
- τ from a steplike ionization history can falsely rule out reionization scenarios and bias cosmological parameters, e.g. m_{ν} , σ_8

Handful of parameters completely describes observables:

- Any ionization history $x_e(z)$ to a given z_{max}
- Single compact, complete, description for all models
- Effective likelihood, can be combined with other reionization data
- Priors appropriate for model parameters (unlike other model independent approaches)

Horizon Scale Features

- Streaming photons from temperature inhomogeneities at recombination → temperature quadrupole
- Thomson scattering of quadrupole leads to linear polarization
- Quadrupole, polarization features on horizon scale of reionization

Polarization Power Transfer

- Polarization bump at horizon scale during scattering
- Higher redshift leads to higher multipoles

Horizon scale

→ Polarization feature

Higher multipole

→ Lower cosmic variance

Polarization Power Transfer

- Polarization bump at horizon scale during scattering
- Higher redshift leads to higher multipoles
- Transfer of power per unit ionization, redshift
- Cosmic variance errors imply rich information on high z ionization history

Horizon scale

→ Polarization feature

Higher multipole

→ Lower cosmic variance

Polarization Power Transfer

- Polarization bump at horizon scale during scattering
- Higher redshift leads to higher multipoles
- Transfer of power per unit ionization, redshift
- Cosmic variance errors imply rich information on high z ionization history
- Neighboring redshifts give degenerate response
- Requires optimized parameterization...

Principal Components

- Ionization principal components pre-determined from Fisher forecast Hu
 & Holder 2003; Mortonson & Hu 2007
- Basis functions, like Fourier basis, capture observable low frequency information
- Faithful representation
 of observables to cosmic
 variance limit

Five components:

first two - high to low z

Principal Components

- Ionization principal components pre-determined from Fisher forecast Hu
 & Holder 2003; Mortonson & Hu 2007
- Basis functions, like Fourier basis, capture observable low frequency information
- Faithful representation
 of observables to cosmic
 variance limit

- Not a faithful reconstruction of ionization history
- Visualized best as cumulative high-z optical depth between $(z, z_{\rm max})$ first two modes, low vs high z

User's Guide

- Provide(d) an effective likelihood for the PC parameters (Heinrich, Miranda, Hu 2017)
- Extracts all reionization information to $z_{\rm max}$ from polarization
- For any such model of reionization, incorporate Planck constraints simply with effective likelihood no need to reanalyze data
- Complete and allows any physically motivated Prior(parameters) to be applied to analysis unlike other approaches
- Unphysical $x_e < 0$, allowed by PCs, automatically eliminated
- Users guide for forward modeling using PCs:

Model
$$x_e(param)$$

PCs
 $m_a(param)$
 $m_a(param)$

Parameters
 $project$
 $m_a(param)$
 $m_a(param)$
 $m_a(param)$

P[param]

 $m_a(param)$
 $m_a(param)$

• Tests on Planck 2015 data – (2018 VI data much improved stat & syst: $\tau_{\rm tanh} = 0.0544 \pm 0.0073$ - likelihood not yet public)

Standard step function (tanh) executes a 1D trajectory in space much larger allowed space to high z ionization

• Allows much more ionization at high redshift than $tanh \tau$ analysis would imply $(2\sigma, z > 15)$

• Originate from tight constraints at lowest ℓ but glitchy/noisy data at higher ℓ

• Improved in Planck 2018 VI - high-z constraints $\tau(15, 30) < 0.006$

• If priored to tanh models lowest ℓ constraints forbid raising τ

• Improved in Planck 2018 VI - high-z constraints $\tau(15, 30) < 0.006$

Model Parameter Counting

- Example usage: double step reionization analyzed by PCs or directly give same results
- Shows improved $\Delta\chi^2\sim 5.3$ can be achieved by single extra parameter τ at high $z\to \tau_{\rm hi}$
- Represented by 5 PCs for completeness

- Priors on model
 parameters can be
 accounted for leading
 to no bias
- Millea & Bouchet
 1804.08476 claim
 technique is biased
 when considering
 total \(\tau\)
- τ : linear combination of m_1, m_2 with flat priors from physical bound $0 \le x_e \le x_{\max}$

- When this prior is projected from 2D to the 1D τ dimension it has a global shape even though locally flat by linearity
- Millea & Bouchet (adopted by Planck 2018) advocate dividing by prior point by point in multidimensional space

• Flaw: only valid if the data does not constrain the orthogonal dimension

- Thought experiment: orthogonal dimension is precisely measured, prior irrelevant: correction for the non-existent bias, thereby introduces a bias
- Currently, orthogonal direction already constrained better than prior range
- Explicit test: change the prior range to be flat a priori rather than by inversion nearly identical results

- Thought experiment: orthogonal dimension is precisely measured, prior irrelevant: correction for the non-existent bias, thereby introduces a bias
- Currently, orthogonal direction already constrained better than prior range
- Explicit test: compared with larger shift from tanh assumption

Fiducial Model and Range

- Results robust to extending redshift range
- More parameters, up to 7 for $z_{\rm max} = 50$
- Changes in fiducial model around which PCs built
- Cumulative optical depth mostly unchanged
- Little current ability to distinguish high from ultra high
- Due to noisy measurements for $15 \le \ell \le 30$

Toward Cosmic Variance

• Forecast $14 \le \ell \le 30$ polarization cosmic variance limit

Toward Cosmic Variance

• Cumulative τ forecast improved

- Post collaboration Planck systematics/maps improvement in arXiv:1901.11386 cv-limited at $\ell < 8$, $\sigma_{\tau_{\rm tanh}} = 0.005$, no single multipole glitches
- Ground based CLASS experiment potentially can also reach near cv-limited arXiv:1801.01481

Toward Cosmic Variance

• Cumulative τ forecast improved

- Post collaboration Planck systematics/maps improvement in arXiv:1901.11386 cosmic variance limited at $\ell < 8$, $\sigma_{\tau_{\rm tanh}} = 0.005$, no single multipole glitches
- Aside: ionization history reconstruction never improved: visualization always dominated by the worst constrained mode

Summary

- Planck will be the definitive source of large angle CMB polarization information on reionization for foreseeable future
- PC technique encapsulates all of the Planck polarization information on reionization out to $z_{\rm max}$
- Additional constraints on cumulative optical depth at high-z
- Effective likelihood tools for fast, lossless analysis of any such reionization model
- Priors can be chosen appropriate to model tested
- Questions:

what software tools would help allow this technique to be used? what redshift ranges would be most useful?