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Complete Principal Components
with Chen Heinrich, Vivian Miranda, Georges Obied

e Large angle CMB polarization depends not just on total Thomson
optical depth 7

e 7 from a steplike 1onization history can falsely rule out reionization
scenarios and bias cosmological parameters, e.g. m,,, og
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Handful of parameters completely describes observables:
e Any ionization history z.(z) to a given 2.y

e Single compact, complete, description for all models

e Effective likelihood, can be combined with other reionization data

e Priors appropriate for model parameters (unlike other model
independent approaches)



Horizon Scale Features

e Streaming photons from temperature inhomogeneities at
recombination — temperature quadrupole

e Thomson scattering of quadrupole leads to linear polarization

e Quadrupole, polarization features on horizon scale of reionization
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Polarization Power Transfer

e Polarization bump at horizon

scale during scattering

e Higher redshift leads
to higher multipoles
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Polarization bump at horizon
scale during scattering

Higher redshift leads
to higher multipoles

Transfer of power per
unit ionization, redshift

Cosmic variance errors
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Polarization Power Transfer

e Polarization bump at horizon

scale during scattering

e Higher redshift leads
to higher multipoles

e Transfer of power per

unit ionization, redshift

Redshift Response

(cosmic variance units)

e Cosmic variance errors
imply rich information 5
on high z ionization history §
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Principal Components
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Principal Components

e Jonization principal 4 | |
. 3 Ionization PCs —
components pre-determined ) o—1
from Fisher forecast Ol
n 0

e Basis functions, like Fourier

basis, capture observable
low frequency information
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e Faithful representation
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e Not a faithful reconstruction of ionization history

e Visualized best as cumulative high-z optical depth between
(2, Zmax) — first two modes, low vs high z



User’s Guide

e Provide(d) an effective likelihood for the PC parameters

e Extracts all reionization information to zy,., from polarization

e For any such model of reionization, incorporate Planck constraints
simply with effective likelihood - no need to reanalyze data

e Complete and allows any physically motivated Prior(parameters)
to be applied to analysis unlike other approaches

e Unphysical x. < 0, allowed by PCs, automatically eliminated

e Users guide for forward modeling using PCs:

Model | PCs ~ Parameters
xe(param) project . g (param) O2SUAN - prparam]
=1,[x.(param)] = Like[m (param)]

X Prior[param]



Planck 2015

e Tests on Planck 2015 data — (2018 VI data much improved stat &
Syst: Tianh = 0.0544 £ 0.0073 - likelihood not yet public)
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Planck 2015

e Standard step function (tanh) executes a 1D trajectory in space -
much larger allowed space to high z 1onization

x  tanh ML
----- — tanh 68,95% CL
B PC 68, 95% CL
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Planck 2015

e Allows much more ionization at high redshift than tanh 7 analysis
would imply (20, z > 15)

Heinrich, Miranda, Hu (2017)
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Planck 2015

e Originate from tight constraints at lowest £ but glitchy/noisy data
at higher /¢

Heinrich & Hu (2018)

7.5 — ‘ '
5.0 — Td
= 95—
; |
f:% OO |I.
i as H ‘
b’“ - 4.
| ®
EN —5.0
S)
—7.5
PC
~10.0 — ! ‘
l l l
10 20 30 40 50

[

e Improved in Planck 2018 VI - high-z constraints 7(15, 30) < 0.006



Planck 2015

e If priored to tanh models lowest ¢ constraints forbid raising 7
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Model Parameter Counting

e Example usage: double step reionization analyzed by PCs or
directly give same results

e Shows improved Ax? ~ 5.3 can be achieved by single extra
parameter — 7 at high z — 7

e Represented by 5 PCs for completeness
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Bias: Millea & Bouchet

e Priors on model
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Bias: Millea & Bouchet

e When this prior is projected from 2D to the 1D 7 dimension it has
a global shape even though locally flat by linearity

e Millea & Bouchet (adopted by Planck 2018) advocate dividing by
prior point by point in multidimensional space

0.75—
H07 B Planck 2015 data
0.50
0.8 — .
rior volume —)
X 0.25F
0.6
3 £ 0.00F
AT 0.4—
—0.25
0.2
—0.50
0.0 Projected Prior
[ | | =0.75 | | | | | |
0.00 0.05 0.10 0.15 0.20 —0.75 —050 —0.25 0.00 025 050 0.75

T12 m

e Flaw: only valid if the data does not constrain the orthogonal
dimension



Bias: Millea & Bouchet

e Thought experiment: orthogonal dimension is precisely measured,
prior irrelevant: correction for the non-existent bias, thereby
introduces a bias

e Currently, orthogonal direction already constrained better than
prior range

e Explicit test: change the prior range to be flat a priori rather than
by inversion — nearly identical results
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Bias: Millea & Bouchet

e Thought experiment: orthogonal dimension 1s precisely measured,
prior irrelevant: correction for the non-existent bias, thereby
introduces a bias

e Currently, orthogonal direction already constrained better than
prior range

e Explicit test: compared with larger shift from tanh assumption

— tanh 7

o

| | | |
—0.75 —-0.50 —025 0.00 025 050 0.75 0.00 0.05 0.10 0.15 0.20 0.02 0.04 0.06 0.08 0.10 0.12 0.14
mi T12 T



Fiducial Model and Range

e Results robust to
extending redshift range

e More parameters,
up to 7 for 2. = 50

e Changes in fiducial model
around which PCs built

e Cumulative optical
depth mostly unchanged

e Little current ability to
distinguish high from
ultra high

e Due to noisy measurements
for 15 < 7/ < 30
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Toward Cosmic Variance

e Forecast 14 < ¢ < 30 polarization cosmic variance limit
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Toward Cosmic Variance

e Cumulative 7 forecast improved
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e Post collaboration Planck systematics/maps improvement in
arXiv:1901.11386 — cv-limited at ¢ < 8, o, ., = 0.005, no single
multipole glitches

e Ground based CLASS experiment potentially can also reach near
cv-limited arXiv:1801.01481



Toward Cosmic Variance

e Cumulative 7 forecast improved
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e Post collaboration Planck systematics/maps improvement in
arX1v:1901.11386 — cosmic variance limited at ¢/ < &,
0. . = 0.005, no single multipole glitches

e Aside: 10nization history reconstruction never improved:
visualization always dominated by the worst constrained mode



Summary

e Planck will be the definitive source of large angle CMB
polarization information on reionization for foreseeable future

e PC technique encapsulates all of the Planck polarization
information on reionization out t0 2y, .«

e Additional constraints on cumulative optical depth at high-z

e Effective likelihood tools for fast, lossless analysis of any such
reionization model

e Priors can be chosen appropriate to model tested

e Questions:
what software tools would help allow this technique to be used?

what redshift ranges would be most useful?



