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Cosmic Acceleration
• Geometric measures of distance redshift from SN, CMB, BAO

Standard Ruler
Sound Horizon

v CMB, BAO angular
and redshift separation

Standard(izable)
 Candle

Supernovae
Luminosity v Flux



             Mercury or Pluto?
General relativity says Gravity = Geometry

 

And Geometry = Matter-Energy 
 

Could the missing energy required by acceleration be an incomplete
 description of how matter determines geometry? 
 



Modified Gravity = Dark Energy?
• Solar system tests of gravity are informed by our knowledge of the

local stress energy content

• With no other constraint on the stress energy of dark energy other
than conservation, modified gravity is formally equivalent to dark
energy

F (gµν) +Gµν = 8πGTM
µν − F (gµν) = 8πGTDE

µν

Gµν = 8πG[TM
µν + TDE

µν ]

and the Bianchi identity guarantees∇µTDE
µν = 0

• Distinguishing between dark energy and modified gravity requires
closure relations that relate components of stress energy tensor

• For matter components, closure relations take the form of
equations of state relating density, pressure and anisotropic stress
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Cosmological Constant

Falsifying ΛCDM
• Λ  slows growth of structure in highly predictive way



Modified Gravity 6= “Smooth DE”
• Scalar field dark energy has δp = δρ (in constant field gauge) –

relativistic sound speed, no anisotropic stress

• Jeans stability implies that its energy density is spatially smooth
compared with the matter below the sound horizon

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

∇2(Φ−Ψ) ∝ matter density fluctuation

• Anisotropic stress changes the amount of space curvature per unit
dynamical mass

∇2(Φ + Ψ) ∝ anisotropic stress

but its absence in a smooth dark energy model makes
g = (Φ + Ψ)/(Φ−Ψ) = 0 for non-relativistic matter



Falsifiability of Smooth Dark Energy
• With the smoothness assumption, dark energy only affects

gravitational growth of structure through changing the expansion
rate

• Hence geometric measurements of the expansion rate predict the
growth of structure

• Hubble Constant

• Supernovae

• Baryon Acoustic Oscillations

• Growth of structure measurements can therefore falsify the whole
smooth dark energy paradigm

• Cluster Abundance

• Weak Lensing

• Velocity Field (Redshift Space Distortion)



Mortonson, Hu, Huterer (2009)

QuintessenceCosmological Constant 

       Falsifying Quintessence
• Dark energy slows growth of structure in highly predictive way

• Deviation significantly >2% rules out Λ with or without curvature

• Excess >2% rules out quintessence with or without curvature and
 early dark energy [as does >2% excess in H0]



Mortonson, Hu, Huterer (2009)

QuintessenceCosmological Constant

Dynamical Tests of Acceleration
• Dark energy slows growth of structure in highly predictive way



Quintessence Falsified?
• No excess numbers of massive z>1 X-ray or SZ clusters with
 Gaussian initial conditions

• No excess power in gravitational lensing at high z relative to low z
 (Bean 0909.3853)

• But would such violations favor modified gravity?

• Given astrophysical systematics, expect purported 2σ violations
 of smooth dark energy predictions will be common in coming years!

(Jee et al 2009, Brodwin et al 2010)



Pink Elephant Parade
• SPT catalogue on 2500 sq degrees

Williamson et al (2011)



Falsify in Favor of What?



Modified Action f(R) Model
• R: Ricci scalar or “curvature”
• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

�
d

4
x
√
−g

�
R + f(R)

16πG
+ Lm

�

• fR ≡ df/dR: additional propagating scalar degree of freedom
(metric variation)

• fRR ≡ d
2
f/dR

2: Compton wavelength of fR squared, inverse
mass squared

• B: Compton wavelength of fR squared in units of the Hubble
length

B ≡ fRR

1 + fR
R

� H

H �

• � ≡ d/d ln a: scale factor as time coordinate



Modified Einstein Equation
• In the Jordan frame, gravity becomes 4th order but matter remains
minimally coupled and separately conserved

Gαβ + fRRαβ −
�

f

2
−�fR

�
gαβ −∇α∇βfR = 8πGTαβ

• Trace can be interpreted as a scalar field equation for fR with a
density-dependent effective potential (p = 0)

3�fR + fRR− 2f = R− 8πGρ

• For small deviations, |fR|� 1 and |f/R|� 1,

�fR ≈
1

3
(R− 8πGρ)

the field is sourced by the deviation from GR relation between
curvature and density and has a mass

m
2
fR
≈ 1

3

∂R

∂fR
=

1

3fRR



DGP Braneworld Acceleration
• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)

S =

�
d

5
x
√
−g

�
(5)

R

2κ2
+ δ(χ)

�
(4)

R

2µ2
+ Lm

��

with crossover scale rc = κ
2
/2µ2

• Influence of bulk through Weyl tensor anisotropy - solve master
equation in bulk (Deffayet 2001)

• Matter still minimally coupled and conserved

• Exhibits the 3 regimes of modified gravity
• Weyl tensor anisotropy dominated conserved curvature regime

r > rc (Sawicki, Song, Hu 2006; Cardoso et al 2007)

• Brane bending scalar tensor regime r∗ < r < rc (Lue, Soccimarro,
Starkman 2004; Koyama & Maartens 2006)

• Strong coupling General Relativistic regime r < r∗ = (r2
crg)1/3

where rg = 2GM (Dvali 2006)



DGP Field Equations
• DGP field equations

Gµν = 4r
2
cfµν − Eµν

where fµν is a tensor quadratic in the 4-dimensional Einstein and
energy-momentum tensors

fµν ≡
1
12

AAµν −
1
4
A

α
µAνα +

1
8
gµν

�
AαβA

αβ − A
2

3

�

Aµν ≡ Gµν − µ
2
Tµν

and Eµν is the bulk Weyl tensor

• Background metric yields the modified Friedmann equation

H
2 ∓ H

rc
=

µ
2
ρ

3
• For perturbations, involves solving metric perturbations in the bulk

through the “master equation”



Into the Bulk
• Calculation of the metric ratio g=Φ+Ψ/Φ−Ψ requires solving for
 the propagation of metric fluctuations into the bulk
• Encapsulated in the off brane gradient which closes the system
 (e.g. normal branch g=-1/(2Hrc+1) until deep in de Sitter)
 

Sawicki, Song, Hu (2007); Cardoso et al (2008)

Seehra & Hu (in prep)



Three Regimes
• Three regimes with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime return to General Relativity / Newtonian dynamics
  

 

r* rc

Scalar-Tensor
Regime

Conserved-Curvature
Regime

General Relativistic
Non-Linear Regime

r
halos, galaxy large scale structure CMB



f (R) Expansion History



Engineering f (R) Models
• Mimic ΛCDM at high redshift

• Accelerate the expansion at low redshift without a cosmological
constant

• Sufficient freedom to vary expansion history within
observationally allowed range

• Contain the phenomenology of ΛCDM in both cosmology and
solar system tests as a limiting case for the purposes of
constraining small deviations

• Suggests

f(R) ∝ Rn

Rn + const.

such that modifications vanish as R→ 0 and go to a constant as
R→∞



Form of f(R) Models 
•	 Transition from zero to constant across an adjustable curvature scale
•	 Slope n controls the rapidity of transition, field amplitude fR0 position
•	 Background curvature stops declining during acceleration epoch
	 and thereafter behaves like cosmological constant

Hu & Sawicki (2007) R/m2
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(R

)| 
/m

2  
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Expansion History
•	 Effective equation of state
	 weff scales with field amplitude fR0

•	 Crosses the phantom divide at
	 a redshift that decreases with n

•	 Signature of degrees of freedom
	 in dark energy beyond standard
	 kinetic and potential energy of
	 k-essence or quintessence
	 or modified gravity
	

Hu & Sawicki (2007)
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DGP Expansion History



Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Matching the DGP expansion history to a dark energy model
	 with the same expansion history 
•	 Effective equation of state w(z) [w0~-0.85, wa~0.35]

redshift z
Song, Sawicki & Hu (2006)
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Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA

redshift z
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Song, Sawicki & Hu (2006)



DGP Normal Branch
• On the normal branch, expansion does not self-accelerate and dark

energy in the form of a brane tension or scalar field necessary

H2 +
H

rc
=
µ2

3
(ρm + ρDE)

• Gravity is still modified as in the self-accelerated branch (but with
attractive forces)

• Ghost free in the quantum theory

• Can choose ρDE to match any desired expansion history including
flat ΛCDM

H2 ≡ µ2

3
(ρm + ρΛ)→ ρDE

• Separate out geometrical and dynamical tests of acceleration



Conserved Curvature Regime



Curvature Conservation
• On superhorizon scales, energy momentum conservation and
expansion history constrain the evolution of metric fluctuations
(Bertschinger 2006)

• For adiabatic perturbations in a flat universe, conservation of
comoving curvature applies ζ

� = 0 where � ≡ d/d ln a (Bardeen 1980)

• Gauge transformation to Newtonian gauge

ds
2 = −(1 + 2Ψ)dt

2 + a
2(1 + 2Φ)dx

2

yields (Hu & Eisenstein 1999)

Φ�� −Ψ� − H
��

H � Φ
� −

�
H

�

H
− H

��

H �

�
Ψ = 0

• Modified gravity theory supplies the closure relationship
Φ = −γ(ln a)Ψ between and expansion history H = ȧ/a supplies
rest.



Linear Theory for f(R)
• In f(R) model, “superhorizon” behavior persists until Compton
wavelength smaller than fluctuation wavelength B

1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B
1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.

• Small scale density growth enhanced and

8πGρ > R

low curvature regime with order unity deviations from GR

• Transitions in the non-linear regime where the Compton
wavelength can shrink via chameleon mechanism

• Given kNL/aH � 1, even very small fR have scalar-tensor regime



Hu, Huterer & Smith (2006)

PPF f(R) Description
Metric and matter evolution well-matched by PPF description
Standard GR tools apply (CAMB), self-consistent, gauge invar.

 

Hu & Sawicki (2007); Hu (2008)
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Integrated Sachs-Wolfe Effect
•��� CMB photons transit gravitational potentials of large-scale structure
•��� If potential decays during transit, gravitational blueshift of infall
��� not cancelled by gravitational redshift of exit
•��� Spatial curvature of gravitational potential leads to additional
��� effect  ∆T/T = −∆(Φ−Ψ)



Integrated Sachs-Wolfe Effect
•��� CMB photons transit gravitational potentials of large-scale structure
•��� If potential decays during transit, gravitational blueshift of infall
��� not cancelled by gravitational redshift of exit
•��� Spatial curvature of gravitational potential leads to additional
��� effect  ∆T/T = −∆(Φ−Ψ)



ISW Quadrupole
Reduction of large angle anisotropy for B0~1 for same expansion 

 history and distances as CDM
Well-tested small scale anisotropy unchanged 
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ISW-Galaxy Correlation
•��� Decaying potential: galaxy positions correlated with CMB

•��� Growing potential: galaxy positions anticorrelated with CMB

•��� Observations  indicate correlation 



Hu, Huterer & Smith (2006)

Galaxy-ISW Anti-Correlation
Large Compton wavelength B1/2 creates potential growth which can

 anti-correlate galaxies and the CMB
In tension with detections of positive correlations across a range

 of redshifts

Song, Peiris & Hu (2007); Lombriser et al (2010) B0<0.43

B0=5

B0=0



Hu, Huterer & Smith (2006)

DGP Horizon Scales
Metric and matter evolution well-matched by PPF description
Standard GR tools apply (CAMB), self-consistent, gauge invar.

 

Hu & Sawicki (2007); Hu (2008)
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   DGP CMB Large-Angle Excess
Extra dimension modify gravity on large scales
4D universe bending into extra dimension alters gravitational 

 redshifts in cosmic microwave background
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Hu, Huterer & Smith (2006)

CMB in DGP
Adding cut off as an epicycle can fix distances, ISW problem
Suppresses polarization in violation of EE data - cannot save DGP!

Fang et al (2008)



Hu, Huterer & Smith (2006)

CMB in DGP
Adding cut off as an epicycle can fix distances, ISW problem
Suppresses polarization in violation of EE data - cannot save DGP!

Fang et al (2008)



DGP Normal Branch
• Brane tension (cosmological constant) on normal branch allows
 models to pass ISW test
• Joint expansion history constraints require Hrc>3 at 95% CL
 

Lombriser et al (2009)
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Linear Scalar Tensor Regime



Three Regimes
• Metric: ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

• Superhorizon regime: ζ =const., g(a) = (Φ + Ψ)/(Φ−Ψ)

• Linear regime - closure↔ “smooth” dark energy density:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

G can be promoted to G(a), G(a, k) but for scalar degrees of
freedom conformal invariance requires G = GN and

• Non-linear regime:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

∇2Ψ = 4πGa2∆ρ+
1

2
∇2φ

with non-linearity in the field equation

∇2φ = glin(a)a2 (8πG∆ρ−N [φ])

waynehu
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Dynamical vs Lensing Mass
• Newtonian potential: Ψ=δg00/2g00 which non-relativistic particles feel
 

• Space curvature: Φ=δgii/2gii which also deflects photons
 

• Most of the incisive tests of gravity reduce to testing the
 space curvature per unit dynamical mass
 



Linear Power Spectrum
Linear real space power spectrum enhanced on small scales
Degeneracy with galaxy bias and lack of non-linear predictions

 leave constraints from shape of power spectrum 
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Lensing v Dynamical Comparison 
• Gravitational lensing around galaxies vs. linear velocity field
 (through redshift space distortions and galaxy autocorrelation)
• Consistent with GR + smooth dark energy beginning to test 
 interesting models 
 

Zhang et al (2007); Jain & Zhang (2008)

Reyes et al (2010); Lombriser et al (2010)
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DGP Power Spectrum
• Constant suppression in the linear regime for self-acceleration

Lue, Scoccimarro, Starkman (2004); Hu & Sawicki (2007)



Non-Linear GR Regime



Three Regimes
• Fully worked f(R) and DGP examples show 3 regimes

• Superhorizon regime: ζ =const., g(a)

• Linear regime - closure condition - analogue of “smooth” dark
energy density:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

g(a,x) ↔ g(a, k)

G can be promoted to G(a) but conformal invariance relates
fluctuations to field fluctuation that is small

• Non-linear regime:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

∇2Ψ = 4πGa2∆ρ− 1

2
∇2φ

waynehu
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Nonlinear Interaction
Nonlinearity in field equation recovers linear theory if N [φ]→ 0

∇2φ = glin(a)a2 (8πG∆ρ−N [φ])

• For f(R), φ = fR and

N [φ] = δR(φ)

a nonlinear function of the field

Linked to gravitational potential

• For DGP, φ is the brane-bending mode and

N [φ] =
r2c
a4
[
(∇2φ)2 − (∇i∇jφ)2

]
a nonlinear function of second derivatives of the field

Linked to density fluctuation - Galileon invariance - no
self-shielding of external forces

waynehu
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Non-Linear Chameleon
• For f(R) the field equation

∇2
fR ≈

1

3
(δR(fR)− 8πGδρ)

is the non-linear equation that returns general relativity

• High curvature implies short Compton wavelength and suppressed
deviations but requires a change in the field from the background
value δR(fR)

• Change in field is generated by density perturbations just like
gravitational potential so that the chameleon appears only if

∆fR ≤
2

3
Φ ,

else required field gradients too large despite δR = 8πGδρ being
the local minimum of effective potential



Non-Linear Dynamics
• Supplement that with the modified Poisson equation

∇2Ψ =
16πG

3
δρ− 1

6
δR(fR)

• Matter evolution given metric unchanged: usual motion of matter
in a gravitational potential Ψ

• Prescription for N -body code

• Particle Mesh (PM) for the Poisson equation

• Field equation is a non-linear Poisson equation: relaxation method
for fR

• Initial conditions set to GR at high redshift



Hu, Huterer & Smith (2006)

Environment Dependent Force
Chameleon suppresses extra force (scalar field) in high density, 

 deep potential regions
 

Oyaizu, Lima, Hu (2008)



Hu, Huterer & Smith (2006)

Environment Dependent Force
For large background field, gradients in the scalar prevent the

 chameleon from appearing
 

Oyaizu, Lima, Hu (2008)



Hu, Huterer & Smith (2006)

N-body Power Spectrum
5123 PM-relaxation code resolves the chameleon transition to GR:

 greatly reduced non-linear effect
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
Artificially turning off the chameleon mechanism restores much of

 enhancement
 

Oyaizu, Lima, Hu (2008) k (h/Mpc)
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
Models where the chameleon absent today (large field models)

 show residual effects from a high redshift chameleon
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Hu, Huterer & Smith (2006)

Cluster Abundance
• Enhanced abundance of rare dark matter halos (clusters) with
 extra force
 

Lima, Schmidt, Oyaizu, Hu (2008)
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Cluster f(R) Constraints
• Clusters provide best current cosmological constraints on f(R) models
• Spherical collapse rescaling to place constraints on full range of
 inverse power law models of index n
 

field amplitude

range of force

Schmidt, Vikhlinin, Hu (2009); Ferraro, Schmidt, Hu (2010)



Cluster f(R) Constraints
• Approaching competitiveness with solar system + Galaxy constraints 
 of few 10-6 at low n
• Vastly different scale
 

field amplitude

range of force

Schmidt, Vikhlinin, Hu (2009); Ferraro, Schmidt, Hu (2010)



Chameleon Mass Function
• Chameleon effect suppresses the enhancement at high masses
• Pile up of abundance at intermediate group scale
 

Lima, Schmidt, Oyaizu, Hu (2008)
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Chameleon Mass Function
• Simple single parameter extention covers variety of models
• Basis of a halo model based post Friedmann parameterization of
 chameleon
 

Li & Hu (2011)
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Hu, Huterer & Smith (2006)

Halo Model
Power spectrum trends also consistent with halos and modified 

 collapse 
 

Schmidt, Lima, Oyaizu, Hu (2008)
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Nonlinear Interaction
Nonlinearity in field equation recovers linear theory if N [φ]→ 0

∇2φ = glin(a)a2 (8πG∆ρ−N [φ])

• For f(R), φ = fR and

N [φ] = δR(φ)

a nonlinear function of the field

Linked to gravitational potential

• For DGP, φ is the brane-bending mode and

N [φ] =
r2c
a4
[
(∇2φ)2 − (∇i∇jφ)2

]
a nonlinear function of second derivatives of the field

Linked to density fluctuation - Galileon invariance - no
self-shielding of external forces
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Newtonian Potential Brane Bending Mode

DGP N-Body
• DGP nonlinear derivative interaction solved by relaxation
 revealing the Vainshtein mechanism  

Schmidt (2009); Chan & Scoccimarro (2009) (cf. Khoury & Wyman 2009)
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Apparent Equivalence Prinicple Violation
• Self-field of a “test mass” can saturate an external field
 (for f(R) in the gradient, for DGP in the second derivatives)  

Hui, Nicolis, Stubbs (2009); Hu (2009)



Summary
• Lessons from the f(R) and DGP worked examples – 3 regimes:

• large scales: conservation determined

• intermediate scales: scalar-tensor

• small scales: GR in high density regions, modified in low

• Large scales: expansion history and metric ratio
g = (Φ + Ψ)/(Φ−Ψ) through curvature conservation

• Intermediate scales: scalar tensor modified Newtonian regime, g
and Poisson equation

• Small scales: nonlinear interaction of modification field makes g
depend on local environment (not scale) - density or potential -
suppressing deviations

• N -body (PM-relaxation) simulations show halo model framework
can describe observables in the nonlinear regime




