Scattering Secondaries

in the CMB

Wayne Hu

Tsinghua University, June 2011

Scattering Secondaries

- CMB secondary anisotropy: temperature and polarization anisotropy generated after recombination
- Temperature:
 - obscuration
 - Doppler
 - modulated Doppler effects
- Polarization:
 - Sachs-Wolfe quadrupole ionization history patchy reionization gravitational waves

Across the Horizon

Hu & White (2004); artist:B. Christie/SciAm; available at http://background.uchicago.edu

Gravitational Ringing

- Potential wells = inflationary seeds of structure
- Fluid falls into wells, pressure resists: acoustic oscillations

Primary CMB Anisotropy

• Exceedingly well-observed; 7-8 acoustic oscillations in temperature

SPT - Keisler et al (2011)

The Standard Cosmological Model

- Standard ACDM cosmological model is an exceedingly successful phenomenological model based on
 - Inflation: sources all structure
 - Cold Dark Matter: causes growth from gravitational instability
 - Cosmological Constant: drives acceleration of expansion

Across the Horizon

Hu & White (2004); artist:B. Christie/SciAm; available at http://background.uchicago.edu

Physics of Secondary Anisotropies

Primary Anisotropies

Scattering Secondaries

Gravitational Secondaries

Reionization

Anisotropy Suppression

 A fraction τ~0.1 of photons rescattered during reionization out of line of sight and replaced statistically by photon with random temperature flucutuation - suppressing anisotropy as e^{-τ}

Reionization Suppression

• Rescattering suppresses primary temperature and polarization anisotropy according to optical depth, fraction of photons rescattered

Tilt-τ Degeneracy

Only anisotropy at reionization (high k), not isotropic temperature fluctuations (low k) - is suppressed leading to effective tilt for WMAP (not Planck)

Scattering Secondaries

Why Are Secondaries So Smalll?

- Original anisotropy replaced by new secondary sources
- Late universe more developed than early universe

Density fluctuations nonlinear not 10^{-5}

Velocity field 10^{-3} not not 10^{-5}

- Shouldn't $\Delta T/T \sim \tau v \sim 10^{-4}$?
- Limber says no!
- Spatial and angular dependence of sources contributing and cancelling broadly in redshift

Anisotropy Suppression and Regeneration

- Recombination sources obscured and replaced with secondary sources that suffer Limber cancellation from integrating over many wavelengths of the source
 - Net suppression despite substantially larger sources due to growth of structure except beyond damping tail <10'

Doppler Effect in Limber Approximation

• Only fluctuations transverse to line of sight survive in Limber approx but linear Doppler effect has no contribution in this direction

Ostriker–Vishniac Effect

Patchy Reionization

Inhomogeneous Ionization

• As reionization completes, ionization regions grow and fill the space

Zahn et al. (2006) [Mortonson et al (2009)]

Inhomogeneous Ionization

 Provides a source for modulated Doppler effect that appears on the scale of the ionization region

Observational Constraints

 SPT detection of secondary anisotropy (likely SZ dominated, low level) sets upper limit on modulated Doppler contributions

SPT Hall et al - Leuker et al (2010)

Observational Constraints

• Combined with well-determined velocity, rms optical depth fluctuation at arcmin scale $\delta \tau < 0.0036$ (conservative 95% CL)

SPT Hall et al - Leuker et al (2010); Mortonson & Hu (2010)

Secondary Polarization

WMAP Correlation

• Reionization polarization first detected in WMAP1 through temperature cross correlation at an anomalously high value

Polarization from Thomson Scattering

• Differential cross section depends on polarization and angle

 $\frac{d\sigma}{d\Omega} = \frac{3}{8\pi} |\hat{\varepsilon}' \cdot \hat{\varepsilon}|^2 \sigma_T$

Polarization from Thomson Scattering

Isotropic radiation scatters into unpolarized radiation

Polarization from Thomson Scattering

Quadrupole anisotropies scatter into linear polarization

aligned with cold lobe

Whence Quadrupoles?

- Temperature inhomogeneities in a medium
- Photons arrive from different regions producing an anisotropy

(Scalar) Temperature Inhomogeneity

Hu & White (1997)

CMB Anisotropy

• WMAP map of the CMB temperature anisotropy

Whence Polarization Anisotropy?

- Observed photons scatter into the line of sight
- Polarization arises from the projection of the quadrupole on the transverse plane

Polarization Multipoles

- Mathematically pattern is described by the tensor (spin-2) spherical harmonics [eigenfunctions of Laplacian on trace-free 2 tensor]
- Correspondence with scalar spherical harmonics established via Clebsch-Gordan coefficients (spin x orbital)
- Amplitude of the coefficients in the spherical harmonic expansion are the multipole moments; averaged square is the power

E-tensor harmonic
Modulation by Plane Wave

- Amplitude modulated by plane wave \rightarrow higher multipole moments
- Direction detemined by perturbation type \rightarrow E-modes

A Catch-22

- Polarization is generated by scattering of anisotropic radiation
- Scattering isotropizes radiation
- Polarization only arises in optically thin conditions: reionization and end of recombination
- Polarization fraction is at best a small fraction of the 10^{-5} anisotropy: $\sim 10^{-6}$ or μK in amplitude

WMAP 3yr Data

Temperature Inhomogeneity

- Temperature inhomogeneity reflects initial density perturbation on large scales
- Consider a single Fourier moment:

Locally Transparent

• Presently, the matter density is so low that a typical CMB photon will not scatter in a Hubble time (~age of universe)

Reversed Expansion

• Free electron density in an ionized medium increases as scale factor *a*-³; when the universe was a tenth of its current size CMB photons have a finite (~10%) chance to scatter

Polarization Anisotropy

• Electron sees the temperature anisotropy on its recombination surface and scatters it into a polarization

Temperature Correlation

• Pattern correlated with the temperature anisotropy that generates it; here an *m*=0 quadrupole

Instantaneous Reionization

- WMAP data constrains optical depth for instantaneous models of τ =0.087±0.017
- Upper limit on gravitational waves weaker than from temperature

Why Care?

- Early ionization is puzzling if due to ionizing radiation from normal stars; may indicate more exotic physics is involved
- Reionization screens temperature anisotropy on small scales making the true amplitude of initial fluctuations larger by e^τ
- Measuring the growth of fluctuations is one of the best ways of determining the neutrino masses and the dark energy
- Offers an opportunity to study the origin of the low multipole statistical anomalies
- Presents a second, and statistically cleaner, window on gravitational waves from the early universe

Distance Predicts Growth

• With smooth dark energy, distance predicts scale-invariant growth to a few percent - a falsifiable prediction

Mortonson, Hu, Huterer (2008)

Ionization History

• Two models with same optical depth τ but different ionization history

Kaplinghat et al. (2002); Hu & Holder (2003)

Distinguishable History

 Same optical depth, but different coherence - horizon scale during scattering epoch

Principal Components

• Eigenvectors of the Fisher Matrix

Capturing the Observables

• First 5 modes have the information content and most of optical depth

Representation in Modes

- Truncation at 5 modes leaves a low pass filtered of ionization history
- Ionization fraction allowed to go negative (Boltzmann code has negative sources)

Representation in Modes

 Reproduces the power spectrum with sum over >3 modes more generally 5 modes suffices: e.g. total τ=0.1375 vs 0.1377

Total Optical Depth

- Optical depth measurement unbiased
- Ultimate errors set by cosmic variance here 0.01
- Equivalently 1% measure of initial amplitude, impt for dark energy

WMAP5 Ionization PCs

• Only first two modes constrained, $\tau = 0.101 \pm 0.017$

Mortonson & Hu (2008)

Model-Independent Reionization

- All possible ionization histories at z < 30
- Detections at 20 < l < 30 required to further constrain general ionization which widens the τn_s degeneracy allowing $n_s = 1$
- Quadrupole & octopole predicted to better than cosmic variance test ACDM for anomalies

Mortonson & Hu (2008)

Gravitational Waves

Quadrupoles from Gravitational Waves

- Transverse-traceless distortion provides temperature quadrupole
- Gravitational wave polarization picks out direction transverse to wavevector

Electric & Magnetic Polarization

(a.k.a. gradient & curl)

• Alignment of principal vs polarization axes (curvature matrix vs polarization direction)

Kamionkowski, Kosowsky, Stebbins (1997) Zaldarriaga & Seljak (1997)

Gravitational Wave Pattern

- Projection of the quadrupole anisotropy gives polarization pattern
- Transverse polarization of gravitational waves breaks azimuthal symmetry

density perturbation gravitational wave

Energy Scale of Inflation

- Amplitude of B-mode peak scales as square of energy scale (Hubble parameter) during inflation, power as E_i^4
- Good: upper limits are at GUT scale. Bad: secondaries & foregrounds

The B-Bump

- Rescattering of gravitational wave anisotropy generates the B-bump
- Potentially the most sensitive probe of inflationary energy scale

Slow Roll Consistency Relation

- Consistency relation between tensor-scalar ratio and tensor tilt $r = -8n_t$ tested by reionization
- Reionization uncertainties controlled by a complete p.c. analysis

Large Scale Anomalies

Large Angle Anomalies

- Low planar quadrupole aligned with planar octopole
- More power in south ecliptic hemisphere
- Non-Gaussian spot

Polarization Tests

Matching polarization anomalies if cosmological

Dvorkin, Peiris, Hu (2007)

Polarization Bumps

• If features in the temperature spectrum reflect features in the power spectrum (inflationary potential), reflected in polarization with little ambiguity from reionization

Patchy Reionization

Modulated Polarization

 Ionization or density fluctuations modulate large angle E polarization into small angle E and B polarization

B-mode Generation

• Optical depth modulation of quadrupole sources and E-mode screening creates B-modes

B-mode Contamination from Reionization

- Inhomogeneous reionization modulates polarization into B-modes (Hu 2000)
- Large signals if ionization bubbles >100Mpc at z~20-30

B-mode Contamination from Reionization

- Inhomogeneous reionization modulates polarization into B-modes (Hu 2000)
- Current expectation: grow to 10-100Mpc only at z<10 (Furlanetto et al 2004; Zahn et al 2006)

Mortonson & Hu (2006)
Inferred B-Mode Limits

• With SPT optical depth constraint, arcminute B-modes highly contrained; degree scale depends on ionization bubble size

SPT Hall et al - Leuker et al (2010); Mortonson & Hu (2010)

Summary

- Reionization suppresses primary anisotropy as e^{-τ} so the precision of growth measurements depends on τ precision
- Rescattering of quadrupole anisotropy leads to large angle polarization
- Shape of polarization spectrum carries sufficient information to measure \(\tau\) independently of ionization history (through PCs)
- Large angle polarization beginning to place constraints on ionization history ultimately 5 constraints
- Linear Doppler effect highly suppressed on small scales, leading order term is modulated effect: OV, kSZ, patchy reionization
- Current constraints place limits on optical depth fluctuations
- If large angle anomalies cosmological will be reflected in polarization