H_0 is Undervalued

Wayne Hu STSCI, April 2014 The 1%

• H_0 : an end to end check of the standard cosmology when combined with the CMB

- Standard ruler $D(z_*)$: sound horizon at recombination z_*
- In flat Λ CDM, H_0 only remaining parameter in $D(z_*)$ representing the density contributed by Λ precisely predicted

- Compare precise predictions with H_0 measurements
- Any deviations indicate new physics during acceleration epoch or during recombination

- Standard ruler $D(z_*)$: sound horizon at recombination z_*
- Diffusion scale provides consistency check on sound horizon calibration: new physics at recombination, while BAO on acceleration

Falsifying \(\Lambda\)CDM

- CMB determination of matter density controls all determinations in the deceleration (matter dominated) epoch
- Planck: $\Omega_m h^2 = 0.1426 \pm 0.0025 \rightarrow 1.7\%$
- Distance to recombination D_* determined to $\frac{1}{4}1.7\% \approx 0.43\%$ (ACDM result 0.46%; $\Delta h/h \approx -\Delta \Omega_m h^2/\Omega_m h^2$) [more general: $-0.11\Delta w - 0.48\Delta \ln h - 0.15\Delta \ln \Omega_m - 1.4\Delta \ln \Omega_{\rm tot} = 0$]
- Expansion rate during any redshift in the deceleration epoch determined to $\frac{1}{2}1.7\%$
- Distance to any redshift in the deceleration epoch determined as

$$D(z) = D_* - \int_z^{z_*} \frac{dz}{H(z)}$$

- Volumes determined by a combination $dV = D_A^2 d\Omega dz/H(z)$
- Structure also determined by growth of fluctuations from z_*

Value of Local Measurements

- With high redshifts fixed, the largest deviations from the dark energy appear at low redshift $z\sim 0$
- By the Friedmann equation $H^2 \propto \rho$ and difference between H(z) extrapolated from the CMB $H_0=38$ and 67 is entirely due to the dark energy density in a flat universe
- With the dark energy density fixed by H_0 , the deviation from the CMB observed D_* from the Λ CDM prediction measures the equation of state (or evolution of the dark energy density)

$$p_{\mathrm{DE}} = \boldsymbol{w} \rho_{\mathrm{DE}}$$

• Likewise current amplitude of structure, e.g. local cluster abundance, tests the smooth dark energy paradigm

Forecasts for CMB+ H_0

• To complement CMB observations with $\Omega_{\rm m}h^2$ to 1%, an H_0 of ~1% enables constant w measurement to ~2% in a flat universe

New Physics?

H_0 is for Hints

Actual distance ladder measurements prefer larger value

Quantifying Tension

• Predictions for H_0 and the amplitude of structure from Planck in flat Λ CDM is 2-3+ σ in tension with measurements

Planck vs Local: ACDM

• Raising H_0 inferred from Planck CMB measurements with dark energy requires phantom equations of state

• Raising H_0 inferred from Planck CMB measurements with dark energy requires phantom equations of state

Curvature

- Hints of extra sterile neutrino species (~eV) in long-baseline and reactor anomalies
- Potentially populated (partially?) in early universe
- Changes expansion at recombination: age, sound horizon

Predicts same BAO (θ) angular and radial (z) scale; same SN= H_0D_A relative luminosity distance; same linear growth - change the ruler not the distance

• Predicts more damping of the CMB: sound horizon scales as conformal time η , random walk diffusion scale $\eta^{1/2}$

Gravitational Wave Excess

• BICEP2 B-polarization inflationary gravitational waves (r=0.2) imply low multipole temperature excess that is not observed (r<0.1)

Gravitational Wave Excess

• BICEP2 B-polarization inflationary gravitational waves (r=0.2) imply low multipole temperature excess that is not observed (r<0.1)

• Extra neutrino requires a blue-ward change in tilt, suppressing excess power at low multipoles

• Partially populated sterile, massive neutrinos change both the acoustic standard ruler and suppress structure and fixes both H_0 and clusters

Planck vs Local: ACDM

• Partially populated sterile, massive neutrinos change both the acoustic standard ruler and suppress structure and fixes H_0 , clusters and tensor excess

νrΛCDM: CMB predictions

• Partially populated sterile, massive neutrinos change both the acoustic standard ruler and suppress structure and fixes H_0 , clusters and tensor excess

νrΛCDM: CMB predictions

Allows a fully populated extra sterile neutrino of 0.5eV

Sterile Neutrinos: >3σ stat

oscillation populated mass= $m_s/\Delta N_{\rm eff}$ (eV)

 ΔN_{eff} =1, 1 fully populated species

Summary

- ΔH_0 from flat Λ CDM prediction indicates new physics
- Predictions from CMB are as precise as standard ruler calibration $|\Delta h/h| \approx |\Delta \Omega_m h^2/\Omega_m h^2| \approx 1.7\%$ currently
- To test predictions require direct measurements at this precision
- New physics either additions to ΛCDM at recombination (standard ruler) or during acceleration (distance-redshift)
- Consistency with damping tail, BAO distinguishes cases

Summary

- ΔH_0 from flat Λ CDM prediction indicates new physics
- Predictions from CMB are as precise as standard ruler calibration $|\Delta h/h| \approx |\Delta \Omega_m h^2/\Omega_m h^2| \approx 1.7\%$ currently
- To test predictions require direct measurements at this precision
- New physics either additions to ΛCDM at recombination (standard ruler) or during acceleration (distance-redshift)
- Consistency with damping tail, BAO distinguishes cases
- Current mismatch between $H_0 \approx 67$ prediction and $H_0 \approx 74$ measurements may indicate extra relativistic species at recombination
- Simultaneously alleviates tension with BICEP2 inflationary tensor detection
- If massive neutrino, also alleviates tension with cluster abundance